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We investigate the question of similarity in homogenous isotropic turbulence using
the well known shell models, GOY and Sabra. These are crude models of the 3D
Navier Stokes equations in spectral form, but with far fewer degrees of freedom. In
fact, there is only one complex variable, u,, for each octave (shell) in wave number
space, 2" < VZ\ < 2". The shells interact within their nearest neighbors and form
a dynamical system with a strange attractor. Our dynamical system is forced at the
largest scale (smallest n), in a statistically steady fashion. The energy, pumped in
by the forcing, cascades through the shells to the smallest scales (largest n) where
dissipation is active. In the intermediate scales, only inertial forces are active. This
is the range of scales that exist when the Reynolds number is high and forms part
of the so-called universal equilibrium range. We analyze the statistics of the time
series of u,(t) and find that self-similarity exist between shells in the inertial range.
Specifically, the pdf of u,, can be described by a similarity formula involving an affine
transformation on a logarithmic axis. We use data from shell model simulations to

estimate parameters in a recently developed theory for the inertial range.
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Chapter 1

INTRODUCTION

In this thesis we focus on the simplest possible turbulence in three dimensional
incompressible fluid. The whole space is filled with fluid so there are no confining
walls and corresponding boundary layers. Moveover, the turbulence is homogeneous,
isotropic, and driven into statistical equilibrium by a strong steady large scale forc-
ing. This results in a high Reynolds number. In principle, we are interested in the
limit of infinite Reynolds number. This limit is particularly interesting because of
the behavior of the dissipation - namely, there is nonzero dissipation in the limit of
vanishing viscosity. Therefore, the Euler equations do not apply as they have no dis-
sipation term. The dynamics and statistics at scales much smaller than the forcing
scale are believed to be universal, e.g. [7]. That is, independent of the particulars of
the forcing. For this reason, the small scales (small relative to the forcing scale) are
commonly referred to as the universal equilibrium range. In turn, this range divides
into two parts: the dissipation range and the inertial range (or subrange). In the in-
ertial range, the scales are large enough for the dissipation to be negligible. In other
words, inertial forces alone rule this area. Our interest is the statistics of turbulence
in the inertial range. The classical view is that it should have universal properties.

There is much debate about what those universal properties might be. Some
even argue against universality altogether. An old idea dating back to Kolmogorov
1941 [11] suggests scale invariance of the statistics in the inertial range. In other
words, the inertial range might exhibit self-similarity. The governing equations -

Navier Stokes equations in Fourier space - certainly suggest so because the viscous



term can be neglected in the inertial range and the rest can be expressed in scale
independent form. The idea of universal self-similarity goes a significant step beyond
just universality.

The first self-similarity that comes to mind was suggested by Kolmogorov and is
known as statistical self-similarity. This particular self-similarity is contradicted by
both experimental and computational evidence e.g. [7]. The subject of this thesis is

to investigate another type of self-similarity proposed in [14, 15, 16].

1.1. Homogeneous Isotropic Turbulence

The governing equations are the incompressible Navier Stokes equations:

1
g—?—l—(u-V)u = —;Vp+uv2u+F, (1.1)

V-ou = 0, (1.2)

where u is the flow velocity, p is the fluid density, p is the pressure, v is the kinematic
viscosity, and F is the forcing. The density is constant so there are no buoyancy
effects. The viscosity is also constant. Moreover, the fluid is unbounded so there
are no walls and boundary layers. We consider an idealized forcing specified in wave
number space at a single spatial frequency so that we have homogeneity and isotropy.
Under these circumstances we can transform the entire problem to Fourier space.

There, a single equation describes the problem:

o " = -
— + vk ) 0 (k,t) = ik, Py (K 0 (P, )l (T, ) dp + E(k), 1.
<8t+y )u (Et) = - J<>/ﬁ+q~:1;u](p g R)ap+ BE), - (13)

where ¢ is the Fourier transform of u, 4; is the i-component of the Fourier velocity
vector, k is the wave number, F' is the Fourier transform of the forcing, /Z, pand ¢

are wave vectors

P, (12) _ 5, — Mk (1.4)



is the projection operator that removes the pressure term. This is the traditional
starting point for the study of homogeneous isotropic turbulence [3, 10, 13] which
always develops when the forcing is strong enough to give a high Reynolds number.

Homogeneity and isotropy refers to independence of location and orientation in
space. The first to utilize this type of turbulence was G.I. Taylor [23]. With these

properties it makes sense to talk about energy per unit volume, e.g.

1

B = () (1.5)

unit box:

where () means average and unit box is defined as [0,1] by [0,1] by [0,1]. It is
traditional to decompose the energy according to the wave number in Fourier space.
This gives the energy spectrum E (|E |) which is typically plotted on double logarithmic

scales as sketched in Figure 1.1. The reason for using the double logarithmic scales
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Figure 1.1. Sketch of an energy spectrum. (eps file)

is that some parts of the spectrum obey power laws and thus become straight lines



in Figure 1.1. In particular, the inertial range obeys a power law with slope —5/3
or nearly so. The —5/3 value was obtained theoretically by Kolmogorov 1941 via
a scaling argument together with his four-fifth’s law [11]. Experimental evidence

[7, 9, 4] has confirmed an inertial range with slope near —5/3.

1.2. Moments of the Inertial Range

To study the inertial range, moments of various quantities are employed. The
energy spectrum is just one example of an inertial range moment obeying a power
law; other examples include (|ﬁ(E)|p> There is a transform specifically designed to
deal with moments, namely, the Mellin transform. It is related to the more familiar
Fourier and Laplace transform through various manipulations in the complex plane;

see [22].

1.2.1. Mellin Transforms
The Mellin transform is defined as
b:) = Mlofa)iz] = [ ota) d. (16)
When ¢(x) is a probability density function of a positive random variable X,
¢(x)der = Prizx < X <z +dz}, x>0, (1.7)
then the moments of X are
(XP) = /000 2Po(x)dx. (1.8)

Next, we introduce z into the equation so that we may write moments in terms of

Mellin transforms;

T

= Mo(z);p+1]. (1.9)

- [ e
0
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Since the random variable is positive, moments of non-integer orders are readily de-
fined!. The only restriction on p is that the improper integral must converge. The
function ¢ is then uniquely determined from its moments through the inverse Mellin
transform. It, like the inverse Laplace transform, involves a contour integral in the
complex plane.

In order to use the Mellin transform in our investigations, it is necessary that we
know how various self-similarities transform. Suppose, our pdf, ¢, depends paramet-
rically on a length scale, ¢, i.e. ¢ = ¢(x,¢), in a self-similar way where ¢ = 27/k. For

example, we could have

é(x,0) = C(0)f (%) , (1.10)

where o = (X?)Y/2 and f(x) > 0, represents the similarity profile. Of course, C would

then be specified by the requirement that ¢(x,¢) be a pdf, i.e.

/OOO o(z,0)dx = C [~ f (m) dr =1 (1.11)
=C= (0f~ f(u)du)_l =0l (1.12)

For the Mellin transform, we then have

Mip(:0):2) = eMm|f(%):]

(1.13)

where F(z) = M[f(x); 2] and F(1) =1 only if f(x) is a pdf.

"We can also use Mellin transforms for a random variable that is only real rather than positive.

To do this, we split ¢ unto its odd and even parts. Each part can then be treated similarly to (1.9).



Correspondingly, we have

(XP) = Mo(z; 0);p+ 1] = ) (1.14)
and
()7 = Mistass2p = (T2 (115
so that the dimensionless ratio
(X?)  Flp+1) (F(2)\"
o= F - () (11

is independent of ¢. The self-similarity (1.10), also known as global scaling invariance
or statistical self-similarity, was used by Kolmogorov as a postulate in his 1941 theory
to obtain the —5/3 slope [11]. From (1.16) it follows that the corresponding exponents

are linear, i.e. if (X?) = C,¢% then ¢, = p(;.

1.3. Scaling Exponents

In the inertial range, the moments of almost any numerical value one can think
of are power laws in the scale. When working in Fourier space the magnitude of
the wave number |k| defines the scale. However, not all theoretical investigations
use Fourier space. The Karmon-Howarth equation [10], for example, works with a
spatial length scale. This equation, formulated in the thirties, uses two point spatial
correlations for the reason that these are readily obtained experimentally. Specifically,
velocity differences between two points depend only on the separation distance ¢ when
the turbulence is homogeneous and isotropic. Only two velocity differences come into
play: dvj(¢) and v, (¢). The former is parallel to the line segment connecting the two
points, the latter perpendicular to it. For the second order moments, e.g. ((dv))?), a
direct connection can be established with Fourier space through Parseval’s identity.

For other orders there is, unfortunately, no similar connection.



The four-fifth’s law of Kolmogorov in 1941 was formulated in terms of évy(¢). This
states

((50))") = et (117)

where € is the dissipation. Combining the four-fifth’s-law with the assumption of

statistical self-similarity (1.10), he readily obtained
((dv))P) = Cplr = Cet/3¢r/3 (1.18)

with ¢, = (3p/3 = p/3, where C, are supposedly universal coefficients. This scaling
law is commonly called K41. Note ¢, is a linear function of p. The -5/3 slope of the
energy spectrum is a direct consequence of K41. The idea of universal coefficients
soon was questioned by Landau [7]. Since the sixties it also has become clear that
the scaling exponents (, are nonlinear, which is referred to as anomalous scaling and
is often associated with intermittent fluctuations.

Experimental evidence [2, 18, 20, 24] conclusively shows that (, is nonlinear, but
also show that the four-fifth’s law is valid. There have been many attempts at model-
ing the anomalous scaling. Kolmogorov in 1962 suggested that ¢, should be quadratic
in his log normal theory. By using a matched asymptotic expansion Lundgren has
produced a model in which K41 and anomalous scaling results are present [12]. The
moments are given as an integral that depends on a function f(q), where f(gq) has
a peak close to ¢ = 1/3. If ¢ = 1/3, then K41 is produced. However, if ¢ < 1/3,
then anomalous scaling is produced [12]. Another model that mimics observed scaling
exponents is the Log-Poisson model of She and Leveque [21]. They argue that the
moment ratios create a universal relationship between consecutive structures. This
in turn led to the scaling exponents we use in Chapter ?7?7. The data that came from
the experiment done by [2] was the foundation for another model. After observing
their data, Parisi and Frisch decided to weaken the global scale-invariance of K41 and

use a local scale-invariance [1]. Each of these models produces anomalous scaling.
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1.4. Methods for Obtaining Data from the Inertial Range

In order to study the inertial range, we need to obtain numerical data. There
are at least three different approaches one can take: physical experiments [25]; direct
numerical simulations of the Navier Stokes equations [17]; and numerical studies of
models of the Navier Stokes equations [7]. There are advantages and shortcomings to
each approach. In the physical experiment all the effects of Navier Stokes equations
are, of course, present in real form. However, homogeneous and isotropic turbulence is
an idealization which can only be approximated in an experimental facility. Moreover,
the data may not be obtainable in the form one would like. In particular, experiments
usually provide time series of velocity increments év and dv, for various separations
whereas one would like to known the Fourier decomposition of the velocity.

Direct numerical simulations of the Navier Stokes equations do provide the Fourier
decomposition but at limited Reynolds numbers. It is difficult to have high resolution
in the entire inertial range and still have an adequate dissipation range. The periodic
box effect, inherent in the usual spectral codes, is also a problem at the larger scales.
In spite of these shortcomings, direct numerical simulations are undoubtedly the best
at providing data. The computational resources are, however, well outside the range
of what is reasonable for this thesis.

For this reason, we resort to studying models of Navier Stokes equations in wave
number space. Such models are known as shell models and allow us to consider very
high Reynolds numbers. In fact, the limit of infinite Reynolds numbers is approach-

able. Moreover, the computational resource requirements are modest.

1.5. Organization of the Chapters

In Chapter 7?7 will we explore the use of stretched exponentials as functions to

describe inertial range pdf’s. However, we find that this class of functions fail because



they do not admit for power law scaling in the inertial range. Chapter 77 investigates
pdf’s constructed from given scaling exponents. In particular, we look at the log
Poisson model of anomalous scaling [21]. We find that the pdf has a number of strange
and undesirable features. Chapter 77 presents an analytic example of a pdf that is
self-similar yet satisfies the power law requirement with nonlinear exponents. This
provides a specific example that anomalous scaling may be expressed through self-
similarity; an idea that was believed to have sunk with K41. This is a specific example
from the new theory proposed in [14]. Chapter ?? introduces the shell models which
will be used to generate inertial range data for our analysis in subsequent chapters.
Shell models are severe truncations of the Navier Stokes equations in Fourier space.
We chose two specific models; GOY and Sabra, both are well known. Both shell
models are crudely analogous to spectral Navier Stokes equations [5, 6]. In Chapter
7?7, we prove that the inviscid invariants, energy and helicity, are conserved for the
truncated version of each model when the viscosity and forcing vanish. The truncated
versions are what we actually solve numerically. Chapter ?? carries out the numerical
simulations on each model and investigates how viscosity effects the results and the
duration of a simulation. We also introduce structure functions, scaling laws, scaling
exponents, and characteristic length scales. In Chapter 7?7, we look at the pdf for
the time series of each shell variable. In particular, we show how the data in the
inertial range can be collapsed using a similarity transformation. Furthermore, we
inspect how well the power laws hold for each model. Chapter ??7 reviews a new
self-similarity theory built on the observed collapse of the data in Chapter ??7. The
functional equation for the pdf emerges from the theoretical analysis. Discarding the
GOY model, Chapter 2, then applies the new theory to the data from the Sabra shell

model. Chapter ?? wraps up the analysis of the theory and the shell model.



Chapter 2

APPLYING THE NEW SIMILARITY THEORY TO THE SHELL
MODEL DATA

In the theoretical analysis in Chapter 7?7, we found the similarity formulas for the
inertial range in terms of four constants 3, ng, a, Cs (five if (3 is included) . While
this may seem like many constants to determine, one should keep in mind that two
constants are unavoidable. There has to be a characteristic length, £y, equivalently, ng
performs this function. Also, there has to be a constant characterizing the forcing rate,
(related to the dissipation rate because this system is in equilibrium). Cj performs
this role. [ and a came about through the functional equation (?? and ??). The
theory does not provide values for these constants other than 0 < # < 3 and a < 0.

In this chapter, we will use the data form the Sabra model to find 5 and a. Because
the GOY model data does not meet our standards for the power law requirement, it
cannot be expected to follow the theory. First, we show how the power laws can be
plotted so as to reveal ng and C3. This is theoretically possible because we have found
a universal expression for the coefficients C,. The technique is to introduce rescaled
structure functions. Second, we examine the data to see if the horizontal stretching
fits the theoretical expression (Infy — In£)'/# or equivalently a power law in n — ny.
Likewise, we can check if the horizontal and vertical shifts are linear functions of n

as predicted by the theory. Finally, we can extract § and a from the data.
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2.1. Determination of ng and (5 via Rescaled Structure Functions

When we previously defined structure functions, we neglected to include an intrin-
sic length scale. The intrinsic scale plays an important role in regard to the scaling
coefficients, C’p. Without an intrinsic scale, the coefficients cannot be described in
universal terms. The reason is that any factor of the form 2™ can be attached to

the coefficient. In other words, we can write

Sy(n) = C,27"%

_ ép2n1Cp2—C(n—n1) (2.1)

and redefine the coefficient as C,2"1%. Only when we can fix n; at some preferred
value, like an intrinsic scale ng, can we talk about universal coefficients. The theoret-

ical formulas from the previous chapter [14] state

(0 = C, (é)C (2.2)

Using ¢ = 2m/k, where k = k2", we can translate to shell notation. Hence, we

replace ¢ with 27 /(ky2"), we get

S)(n) = G, (%)c

2n0 Cp
- o)

= (2 %mno), (2.3)

To rescale the structure functions, we must know C;,. Again, we use the theoretical

formula for the universal coefficients found in [14],

L ()" »

=z

11



Thus, (2.3) reads

2 50\

Next, we will take the natural logarithm of both sides:

/3
2 (5_@))17 2_<,,(n_n0)] (2.6)

In (Sy(n)) =1In PG

or

In (S, (n)) = In (I%) +2m (5703) —y(n— o) In2 2.7)

then

In (W) - gln <57a”) — ¢y(n — ng) In2. (2.8)

Our final step is to move p to the left hand side

Ly, (S 2)

. _ %m (5—03) _ %gp(n —ng) In2. (2.9)

2

The left hand side is the data we plot. Whereas, the right hand side is the the-
oretical expression. When plotted against n, the theoretical expression calls for
1/pln (W) to form a set of straight lines (one for each p), with a single point
in common, namely (ng, 1/31n (5C5/2).

It is for this reason we have introduced the rescaled structure functions. This is
shown in Figure 2.1. Note, in the absence of anomalous scaling, i.e. ¢, = p/3, (2.9)
produces the same straight line for all p. Thus, the spread of the lines in Figure 2.1
is a signature of anomalous scaling.

The theoretical expression is, of course, only valid when n is in the inertial range.
By fitting straight lines to the power laws in the inertial range, as is done in Figure
2.1, we extrapolate to find the focusing point for all the lines. In fact, we observe that
the lines have an approximate common point of intersection. The focusing confirms
the theoretical expression for the scaling coefficients in (2.4). If (2.4) did not apply

the lines would not intersect at the same point.

12



The common point of intersection forms the virtual origin for the inertial range.
That is, the scaling laws cannot be continued to larger scales (smaller n). In fact, ng
is the smallest n for S,(n) in (2.5) that corresponds to a pdf.

Figure 2.1 is significant for many reasons. Not only does it determine an intrinsic
length scale for the inertial range, and confirm the theoretical coefficient formula
(2.4), it also shows that all S,(n) can be computed from S,(72) and the virtual origin,
where n represents a single shell located inside the inertial range. This fact alone
shows that the inertial range is self-similar. If we know all S,(n) for some value of
n, then the radial profile can be determined through an inverse Mellin transform.
The similarity implied by Figure 2.1 then allows us to obtain the radial profile for all

inertial range shells.

2.1.1. The Limit of p — 0

Figure 2.2.a show where p = 0 would be in the graph of rescaled structure func-
tions. This is due to (2.9) involving a division by zero for p = 0. Nonetheless, we
can define a rescaled structure function for p = 0 through a limiting process. Figure
2.2.b clearly suggest that there are no problems for small p. On the right hand side of
(2.9) it is the factor (,/p that causes the problem. Since (y = 0, L’'Hopitals rule can
be applied. In fact, the singularity at p = 0 is removable. We implement L’Hopitals

rule for the data by means of a difference quotient:

lim S, = lim 5 =S5 (2.10)

p—0 p—0  2p

where

5= (M) . (2.11)

13
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2.2. Graphically Measured Collapse

Figure 2.3 show log-log plots of the radial profile Py(r;n) for n ranging from 3 to
20. As described in Chapter ??7, these graphs can be made to collapse by a similarity
transformation. Specifically, rigid horizontal shifts together with linear horizontal
stretching. Both shifts and stretching can be measured. The process is as follows.
We first select one reference shell in the middle of the inertial range. Let that be
n = 12. The graphical objects corresponding to each of the other shells are then
shifted rigidly and stretched horizontally so that the graphs match that of Py(r;12)
as shown in Figures 7?7 through ??7. Because the axes from Figure 2.3 are attached to
Py(r;n) we can readily identify the vertical shift. It is listed in Table 2.2. We can also
identify matching abscissa on the fixed and transformed scale. The horizontal bars
in Figure ?? through ?? are included for this purpose. The corresponding abscissa
pairs are listed in Table 2.2. Since the transformation is linear only two values are
needed for each n. From these values we calculate the horizontal stretching factor A
and shift B, i.e.

Tstretched = Axy + B (2.12)

Say a and b are two points on the fixed axis corresponding to ¢ and d on the stretched

axis, then

¢ = Aa+B (2.13)

d = Ab+B. (2.14)

So that,

16



a—>b

A = p— (2.15)
be — ad

B = ) 2.1
P— (2.16)

Figure 7?7 shows the vertical and horizontal shifts as functions of n. We observe
that both are linear functions of n as called for by the theory. The scatter around
the regression line is in part due to the matching of the graphical objects being done
manually. The theory does provide analytical formulas to do a computational collapse.
However, the data we obtained contained too much statistical noise. Therefore, we
were not able to use the analytical formulas. The vertical shift is also shown. It
forms a straight line on log-log scales. Consequently, the stretching is a power law in
(n — ng) just as predicted by the theory. The slope is 1/5 and we obtain § = 1.23

from the regression line.
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Table 2.1. Measurements for scaling individual radial profiles. Shell 12 is selected as
the radial profile to be scaled to. The fixed scale refers to the Shell 12 axis. The first
pair of fixed and stretched scales refers to the initial alignment of the horizontal axis.

The second pair refers to the terminal alignment of the horizontal axis.

Measurements for Graphical Collapse

Fixed Scale

Stretched Scale

Fixed Scale

Stretched Scale

Vertical Shift

15
16.2
15.6

16
14.8
15.8
15.6
15.7
15.2
15.5

17

17

18

18

19

19

20

22.2
22
21
21
19
19
18
17
16
15

15.7

15.2

15.6

15.2
16

15.1

16.1

21.1
22.1
23.1
22.8
23.2
23.3
23.5
23.6
23.8
24.3
24
24
24
24
24
24
24

24
24
24
24
24
24
24
24
24
24
23.6
24.3
23.3
23.1
22.8
22.7
22.6

7
6.2
5.8
5.6
3.7
3.2
1.8
1.2
0.8

-0.7
-1.6
-2.4
-2.8
-3.9
-4.3
-5.8
-6.5

18




Figure 2.3. Individual plots of each of the radial profiles that have a similar curve.
The radial profiles Fy(r;n) plotted on log-log scales for 3 < n < 20 for Sabra Run 9.



Appendix A
APPENDIX

A.1. Description of GOY Shell Model Runs and Table

In most cases, we have forced the models in the first shell so that the inertial range
forms on the ultraviolet side. However, in run 2 from Table A.1, we force in shell
seven and observe an infra-red inertial range form. Run 1 uses the parameters of [26]
originally used. This run is used as a control and to reproduce Pisarenko et. al. [19]
work. Run 2 is equivalent to Run 1 as far as the parameters are concerned. However,
in this run, we force in shell 6. As a result, we see an infra-red inertial range. We
can apply the affine collapse to this data as well. This result is of interest in the light
of Carl Gibson idea that the true cascade in turbulence is from small to large scales
[8]. We start with small forcing in Run 3. Here, the forcing is small enough that
the solution is quasi-periodic and we have no inertial range. We can observe this in
the distribution of u,. In this particular case, the points were located in a ring that
was centered at the origin (see Figure A.1). However, there is still circular symmetry
about the origin in this case.

In order to obtain an inertial range which the new similarity theory requires, we
increase the forcing for Run 4. In Run 4, we still have virtually no inertial range.
We must increase the forcing further. In Run 5, the model is chaotic and we have
somewhat more of an inertial range. Run 6 increases the forcing and the shell number,
however we are not obtaining enough of an inertial range. In Run 7, we increase the
forcing significantly. The number of shells remains the same, but this time, we observe

a distinct inertial range. We want to observe how much forcing we can pump into the
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Figure A.1. Distribution of u;. This plot displays the quasi-periodic nature of Run 3
for shell 10 (eps file).
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system before numerical problems arise. Thus, we create Run 8 and Run 9. Run 10 is
at the limit of what is numerically possible with out model. This run took four days
to complete and is the longest run in the computation. However, this run is not long
enough to generate a statically significant ensemble for the smaller shell numbers.
Therefore, we have backed off in the forcing level and simulated a longer time series

in Run 9.

Table A.1. Simulations with the GOY shell model with respective parameters. Run
1 uses the original GOY form found in (??). Runs 2-10 use the log polar form of
GOY found in (?7?).

Types of Runs Considered for Collapse
Run # tend Forcing v ko | Forcing Shell | # Shells ‘
1 2 x 104 (1+4)x5x107 |[1077 |27 4 22
2 1x1073 | (1+4) x2.048 x 1010 | 1 1 7 26
3 1 x 103 (1+14) x 10° 1 1 1 20
4 3 x 102 (1+1) x 10° 1 1 1 20
5 5 x 10 (1+14) x 107 1 1 1 20
6 1 x10 (1+1) x 10® 1 1 1 23
7 1x1073 (1+1i) x 1012 1 1 1 23
8 1x107 (1+1) x 1016 1 1 1 27
9 1x1078 (1+14) x 10%° 1 1 1 30
10 1x 1071 (1+14) x 10% 1 1 1 36

A.2. Description of Sabra Shell Model Runs and Table

Like the GOY shell model, the Sabra shell models are forced in the first shell so
that the inertial range forms on the ultraviolet side. However, in run 2 from Table
A.2, forces in shell seven and we are able to observe an infra-red inertial range form.

Run 1 uses the parameters of [26] originally used. This run is used to illustrate the
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immediate differences between GOY and Sabra, i.e. oscillations in the inertial range.
Figure ?7? illustrates this. Run 2 is equivalent to Run 1 in log polar form. The
parameters are equivalent to [26] in the original evaluation. However, in this run, we
force in shell 7. As a result, we see an infra-red inertial range. The affine collapse
can be applied to this data as well. The rest of the runs follow much the same as the

GOY shell model. We again focus on Run 9 for the same reasons as GOY.

Table A.2. Simulations with the Sabra shell model with respective parameters. Run

1 uses the original Sabra form found in (?7). Runs 2-10 use the log polar form of
Sabra found in (77?).

Types of Runs Considered for Collapse
Run # tend Forcing v ko | Forcing n | # of n
1 2 x 104 (14+i)x5x1073 1077|274 4 22
2 1x 1073 | (1+414) x2.048 x 101 | 1 1 7 26
3 1x 103 (1+14) x 10° 1 1 1 20
4 3 x 10 (1+1) x 10 1|1 1 20
5 5 x 10 (1+1) x 107 1|1 1 20
6 1 x 10 (1+1) x 108 1|1 1 23
7 1x1073 (1+14) x 102 1 1 1 23
8 1x10°¢ (1+14) x 1016 1 1 1 27
9 | 1x10°8 (1+414) x 102 1| 1 1 30
10 1x 10710 (1+14) x 10% 1 1 1 36
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