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INTRODUCTION: The consensus view on the
peopling of the Americas is that ancestors of
modern Native Americans entered the Amer-
icas from Siberia via the Bering Land Bridge
and that this occurred at least ~14.6 thousand
years ago (ka). However, the number and tim-
ing of migrations into the Americas remain
controversial, with conflicting interpretations
based on anatomical and genetic evidence.

RATIONALE: In this study, we address four
major unresolved issues regarding the Pleis-
tocene and recent population history of Native
Americans: (i) the timing of their divergence
from their ancestral group, (ii) the number of
migrations into the Americas, (iii) whether
there was ~15,000 years of isolation of ances-
tral Native Americans in Beringia (Beringian

IncubationModel), and (iv) whether there was
post-Pleistocene survival of relict populations
in theAmericas related toAustralo-Melanesians,
as suggested by apparent differences in cranial
morphologies between some early (“Paleo-
american”) remains and those of more recent
NativeAmericans.Wegenerated31high-coverage
modern genomes from the Americas, Siberia,
and Oceania; 23 ancient genomic sequences
from the Americas dating between ~0.2 and
6 ka; and SNP chip genotype data from 79
present-day individuals belonging to 28 pop-
ulations from the Americas and Siberia. The
above data sets were analyzed together with
published modern and ancient genomic data
fromworldwide populations, aftermasking some
present-day Native Americans for recent Eu-
ropean admixture.

RESULTS:Using three different methods, we
determined the divergence time for all Native
Americans (Athabascans and Amerindians)
from their Siberian ancestors to be ~20 ka,
and no earlier than ~23 ka. Furthermore, we
dated the divergence between Athabascans
(northern Native American branch, together

withnorthernNorthAmer-
ican Amerindians) and
southernNorthAmericans
and South and Central
Americans (southernNative
American branch) to be
~13 ka. Similar divergence

times from East Asian populations and a diver-
gence time between the two branches that is
close in age to the earliest well-established
archaeological sites in the Americas suggest
that the split between the branches occurred
within the Americas.We additionally found that
several sequenced Holocene individuals from
the Americas are related to present-day pop-
ulations from the same geographical regions,
implying genetic continuity of ancient andmod-
ern populations in some parts of the Americas
over at least the past 8500 years. Moreover,
our results suggest that there has been gene
flow between someNative Americans fromboth
North and South America and groups related
to East Asians and Australo-Melanesians, the
latter possibly through an East Asian route
that might have included ancestors of modern
Aleutian Islanders. Last, using both genomic
and morphometric analyses, we found that
historical Native American groups such as the
Pericúes andFuego-Patagonianswerenot “relicts”
of Paleoamericans, and hence, our results do
not support an early migration of populations
directly related to Australo-Melanesians into
the Americas.

CONCLUSION: Our results provide an upper
bound of ~23 ka on the initial divergence of
ancestral Native Americans from their East
Asian ancestors, followed by a short isola-
tion period of no more than ~8000 years,
and subsequent entrance and spread across
the Americas. The data presented are con-
sistent with a single-migration model for all
Native Americans, with later gene flow from
sources related to East Asians and, indirectly,
Australo-Melanesians. The single wave diver-
sified ~13 ka, likely within the Americas, giving
rise to the northern and southern branches of
present-day Native Americans.▪
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Population history of present-day Native Americans. The ancestors of all Native Americans
entered the Americas as a single migration wave from Siberia (purple) no earlier than ~23 ka,
separate from the Inuit (green), and diversified into “northern” and “southern” Native American
branches ~13 ka. There is evidence of post-divergence gene flow between some Native Americans
and groups related to East Asians/Inuit and Australo-Melanesians (yellow).
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Howandwhen the Americaswere populated remains contentious. Usingancient andmodern
genome-wide data, we found that the ancestors of all present-day Native Americans,
including Athabascans and Amerindians, entered the Americas as a single migration wave
from Siberia no earlier than 23 thousand years ago (ka) and after no more than an
8000-year isolation period in Beringia. After their arrival to the Americas, ancestral Native
Americans diversified into two basal genetic branches around 13 ka, one that is now
dispersed across North and South America and the other restricted to North America.
Subsequent gene flow resulted in someNative Americans sharing ancestry with present-day
East Asians (including Siberians) and, more distantly, Australo-Melanesians. Putative
“Paleoamerican” relict populations, including the historical Mexican Pericúes and South
American Fuego-Patagonians, are not directly related to modern Australo-Melanesians as
suggested by the Paleoamerican Model.

I
t is generally agreed that ancestral Native
Americans are descendants of Siberian peo-
ples who traversed the Bering Land Bridge
(Beringia) from northeast Asia in Late Pleis-
tocene times, and although consensus has

yet to be reached, it is mostly conceded that the
Clovis archaeological complex, dating to ~13 thou-
sands years ago (ka), does not represent the first
migration as long supposed (1–7). Archaeological
evidence accumulated over the past two decades
indicates that people were south of the North

American continental ice sheets more than a
millennium earlier and had reached as far south
as southern South America by at least ~14.6 ka
(1–3). Interpretations differ, however, regarding
the precise spatiotemporal dynamics of the peo-
pling process, owing to archaeological claims for
a substantially earlier humanpresence predating
the Last Glacial Maximum (LGM) (~20 ka) (8–10)
and conflicting interpretations of the number
and timing ofmigrations fromBeringia based on
anatomical and genetic evidence (11–16). Much

of the genetic evidence is from studies of mito-
chondrial DNA (mtDNA) and Y chromosome,
which as single, uniparentally inherited loci are
particularly subject to genetic drift and sex-biased
demographic and cultural practices.
Among the principal issues still to be resolved

regarding the Pleistocene and recent population
history of Native Americans are (i) the timing of
their divergence from their Eurasian ancestors;
(ii) whether the peopling was in a single wave or
multiple waves and, consequently, whether the
genetic differences seen between major subgroups
of Native Americans (such as Amerindian and
Athabascan) result from different migrations or
in situ diversification in the Americas (5, 6, 17, 18);
(iii) whether themigration involved ~15,000 years
of isolation in the Bering Strait region, as pro-
posed by the Beringian Incubation Model to
explain the high frequency of distinct and wide-
spread American mitogenomes and private ge-
netic variants (19–22); and last, (iv) whether there
was post-divergence gene flow from Eurasia and
possibly even population replacement in the
Americas, the latter suggested by the apparent
differences in skull morphology between some
early (“Paleoamerican”) remains and those of
more recent Native Americans (23–27). We ad-
dress these issues using genomic data derived
from modern populations, supplemented by an-
cient specimens that provide chronologically con-
trolled snapshots of the genetics of the peopling
process as it unfolded.
We sequenced 31 genomes from present-

day individuals from the Americas, Siberia, and
Oceania to an average depth of ~20×: Siberians—
Altai (n = 2), Buryat (n = 2), Ket (n = 2), Koryak
(n = 2), Sakha (n = 2), and Siberian Yupik (n = 2);
North American Native Americans—Tsimshian
(n= 1); southernNorthAmerican andCentral and
South American Natives—Pima (n = 1), Huichol
(n = 1), Aymara (n = 1), and Yukpa (n = 1); and
Oceanians—Papuan (n = 14) (table S1) (28). All
the genome-sequenced present-day individ-
uals were previously genotyped by using single-
nucleotide polymorphism (SNP) chips (4, 29–35)
except for the Aymara individual, whichwas SNP
chip–genotyped in this study (tables S3 and S4).
They were selected on the basis of their ancestry
profiles obtainedwith ADMIXTURE (36) so as to
best represent their respective populations and
to minimize recent genetic admixture from pop-
ulations of western Eurasian origin (28). For
populations represented by more than one in-
dividual, we also verified from the genotype data
that the sequenced individuals did not represent
close relatives (28). We additionally sequenced
23 genomes from ancient individuals dating be-
tween ~0.2 and 6 ka fromNorth and South Amer-
ica, with an average depth ranging between
0.003× and 1.7×, including specimens affiliated
to putative relict Paleoamerican groups such as
the Pericúes fromMexico and Fuego-Patagonians
from the southernmost tip of South America
(table S5) (23, 26–28). Last, we generated SNP
chip genotype data from 79 present-day indi-
viduals belonging to 28 populations from the
Americas and Siberia (table S4) (28). All the

RESEARCH

SCIENCE sciencemag.org 21 AUGUST 2015 • VOL 349 ISSUE 6250 aab3884-1



aforementioneddata setswere analyzed together
with previously published genomes and SNP chip
genotype data (tables S1, S3, and S4), masking the
data for recent European admixture in some
present-day Native American populations (28).

The structure of Native American
populations and the timing of their
initial divergence

We explored the genetic structure of Native
American populations in the context of world-
wide populations using ADMIXTURE (36), using
a reference panel consisting of 3053 individ-
uals from 169 populations (table S3) (28). The
panel included SNP chip genotype data from
present-day individuals generated in this study
and previously published studies, as well as the
4000-year-old Saqqaq individual from Green-
land (29) and the 12,600-year-oldAnzick-1 (Clovis
culture) individual from Montana (table S3) (5).
When assuming the number of ancestral pop-
ulations (K) to be four (K = 4), we found a Native
American–specific genetic component, indicating
a shared genetic ancestry for all Native Americans,
including Amerindians and Athabascans (fig. S4).
Assuming K = 15, there is structure within the
Native Americans. Athabascans and northern

Amerindians (primarily from Canada) differ from
the rest of the Native Americans in sharing their
own genetic component (fig. S4). As reported pre-
viously, Anzick-1 falls within the genetic variation
of southern Native Americans (5), whereas the
Saqqaq individual shares genetic components
with Siberian populations (fig. S4) (29).
To ascertain the population history of present-

day Native American populations in relation to
worldwide populations, we generated admixture
graphs with TreeMix (28, 37). All of the modern
Siberian andNative American genomes sequenced
in this study, except for the North American Tsim-
shian genome that showed evidence of recent
western Eurasian admixture (28), were used for this
analysis, togetherwithpreviouslypublishedgenomes
from Africa (Yoruba) (38), Europe (Sardinian
and French) (38), East Asia (Dai and Han) (38),
Siberia (Nivkh) (39) and the Americas (Karitiana,
Athabascan, and Greenlandic Inuit) (table S1)
(5, 38, 39). The ancient individuals included in
the analysis were Saqqaq, Anzick-1, and the
24,000-year-old Mal’ta child from south-central
Siberia (4). By use of TreeMix, we affirmed that
all Native Americans form amonophyletic group
across all 10 migration parameter values, with
further diversification into two branches, one

representing Amerindians (represented in this
analysis by Amerindians from southern North
America and Central and South America) and
the other representing Athabascans (Fig. 1B and
fig. S5). Paleo-Eskimos and Inuit were supported
as a separate clade relative to the Native Amer-
icans, as reported previously (Fig. 1B and fig. S5)
(29, 39). Our results show that the Siberian Yupik
and Koryak are the closest Eurasian populations
to the Americas, with the Yupik likely represent-
ing back-migration of the Inuit into Siberia (Fig.
1B and fig. S5).
To assess the pattern of the earliest human

dispersal into the Americas, we estimated the
timing of the divergence of ancestral Native
Americans from East Asians (hereafter, includ-
ing Siberians) using multiple methods. There
is still some debate regarding mutation rates in
the human genome (40), and this uncertainty
could affect our estimates and results.
We applied diCal2.0 (method 1) (28), a new

version of diCal (41) extended to handle complex
demographic models involving multiple popula-
tions withmigration (42), and an identity-by-state
(IBS) tract method (method 2) (43) (supplemen-
tary materials, materials and methods 2) to the
modern genomes data set (28). With these, we
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first estimated divergence times between Native
Americans and the Koryak of Siberia, one of the
genetically closest sampled East Asian popula-
tions to Native Americans (fig. S5), using demo-
graphic models that reflect a clean split between
the populations (28). With both diCal2.0 and the
IBS tract method, the split of Native Americans
(including Amerindians and Athabascans) from
the Koryak dates to ~20 ka (tables S11A and S12
and fig. S15) (28).

We further applied diCal2.0 to models with
gene flow postdating the split between Native
Americans and Koryak (Fig. 2A) and found that
they provided a better fit to the data than did
themodels without gene flow (fig. S18) (28). Overall,
simulated data based on the models inferred by
using diCal2.0 and real data show very similar IBS
tract length distributions (Fig. 2B) and relative
cross coalescence rates (CCRs) between pairs of
individuals estimated by using the Multiple Se-

quentially Markovian Coalescent (MSMC) meth-
od (method3) (Fig. 2, C andD) (28,44). This serves
as a confirmation for the model estimates from
diCal2.0. We evaluated all three methods using
simulations under complex demographic mod-
els and additionally investigated the effects of
switch-errors in haplotype phasing on the esti-
mates (28).
We then applied the diCal2.0 model that al-

lows for gene flow between populations after
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Fig. 1. Origins and population history of Native
Americans. (A) Our results show that the ancestors
of all present-day Native Americans, including Amer-
indians and Athabascans, derived from a single migra-
tion wave into the Americas (purple), separate from the
Inuit (green).Thismigration from East Asia occurred no
earlier than23ka and is in agreementwith archaeological
evidence from sites such as Monte Verde (50). A split
between the northern and southern branches of Native
Americans occurred ~13 ka, with the former comprising
Athabascans and northern Amerindians and the latter
consisting of Amerindians in southern North America
and Central and South America, including the Anzick-1
individual (5).There is an admixture signal between Inuit
and Athabascans as well as some northern Amerindians
(yellow line); however, the gene flow direction is un-

resolved because of the complexity of the admixture events (28). Additionally,we see a weak signal related to Australo-Melanesians in someNative Americans,
whichmay have beenmediated through East Asians and Aleutian Islanders (yellow arrows). Also shown is theMal’ta gene flow into Native American ancestors
some 23 ka (yellow arrow) (4). It is currently not possible for us to ascertain the exact geographical locations of the depicted events; hence, the positioning of
the arrows should not be considered a reflection of these. (B) Admixture plot created on the basis of TreeMix results (fig. S5) shows that all Native Americans
form a clade, separate from the Inuit, with gene flow between some Native Americans and the North American Arctic. The number of genome-sequenced
individuals included in the analysis is shown in brackets.
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their split in order to estimate divergence times
for Native Americans from more geographically
and genetically distant East Asian groups, in-
cluding the Siberian Nivkh and Han Chinese. As
before, the divergence estimates for Amerindians
and Athabascans were very similar to one an-
other, ~23 ka (table S11B and figs. S18 and S21).
Hence, our results suggest that Amerindians

and Athabascans were, by three different meth-
ods, consistently equidistant in time to popula-
tions that were sampled fromdifferent regions of
East Asia, including some proximate to Beringia,
and with varied population histories. This sug-
gests that these two major Native American
subgroups are descendants of the same source

population that split off from ancestral East
Asians during the LGM. It is conceivable that
harsh climatic conditions during the LGMmay
have contributed to the isolation of ancestral
Native Americans, ultimately leading to their ge-
netic divergence from their East Asian ancestors.
We also modeled the peopling of the Americas

using a climate-informed spatial genetic model
(CISGeM), in which the genetic history and lo-
cal demography is informed by paleoclimatic and
paleovegetation reconstructions (28, 45), and
found the results to be in accordance with the
conclusion of a single migration source for all
Native Americans. Using present-day and an-
cient high-coverage genomes, we found that

Athabascans and Anzick-1, but not Greenlandic
Inuit and Saqqaq (29, 39), belong to the same ini-
tial migration wave that also gave rise to present-
day Amerindians from southern North America
and Central and South America (Fig. 3) and that
this migration likely followed a coastal route,
given our current understanding of the glacial
geological and paleoenvironmental parameters
of the Late Pleistocene (fig. S31).
In all cases, the best fit of the demographic

models to the IBS tract distribution and relative
CCR by MSMC required gene flow between Sibe-
rian and Native American populations after their
initial split (Fig. 2, B to D). We also found strong
evidence for gene flow between Athabascans and
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Fig. 2. Divergence estimates between Native Americans and Siberian
Koryak. (A) The demographic model used allows for continuous gene flow
between populations 1 and 2, starting from the time TDIV of divergence and
ending at TM. The backward probability of migration per individual per gen-
eration is denoted bym.The bottleneck at TB captures the out-of-Africa event.
(B) The red and black solid curves depict empirical distributions of IBS tracts
shared between Karitiana-Koryak and Athabascan-Koryak, respectively. The
orange, pink, dashed blue, and dashed green curves depict IBS tracts shared
between the two population pairs, simulated under two demographic models
based on results from diCal2.0. Overall, for Karitiana-Koryak and Athabascan-

Koryak, the migration scenarios (orange and pink, respectively) match the
empirical curves (red and black, respectively) better than the clean split sce-
nariosmatch (dashed blue and dashed green, respectively),withmore long IBS
tracts showing evidence of recent common ancestry between Koryaks and
Native Americans. (C and D) Relative CCRs for the Karitiana-Koryak and
Athabascan-Koryak divergence (red), respectively, including data simulated
under the two demographicmodels in (B). In both cases, themodel with gene
flow (orange) fits the data (red) better than does the clean split model (blue).
The migration model explains a broader CCR tail in the case of Karitiana-
Koryak and the relatively late onset of the CCR decay for Athabascan-Koryak.
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the Inuit (table S11B), supported by results from
ADMIXTURE(fig. S4), TreeMix (fig. S5),D-statistics
using both whole-genome and SNP chip geno-
type data (figs. S6 and S8A) (28, 46, 47), and
outgroup f3-statistics using whole-genome data
(fig. S12) (28, 47). We attempted to estimate the
divergence times between Inuit and Siberians as
well as Inuit andNativeAmericans (table S11 and
figs. S19 and S25 to S27), but our analyses were
complicated by gene flow between Inuit and Ath-
abascans as well as complex admixture patterns
among Arctic groups (fig. S5).
We tested the duration andmagnitude of post-

split gene flow between Native Americans and
Siberians using diCal2.0 by introducing stopping
time of gene flow as a free parameter (28). We
still obtained the highest likelihood for a diver-
gence time of 22 ka between Amerindians and
Siberians as well as Athabascans and Siberians,
although estimates for gene-flow rate and end of
the gene flow differ (table S11C and fig. S22).
Gene flow between Athabascans and Siberians
seems to have stopped ~12 ka (table S11C), sug-
gesting a link to the breaching of the Beringian
Land Bridge by rising sea levels (48).
Overall, our results support a common Sibe-

rian origin for all Native Americans, contradict-
ing claims for an early migration to the Americas
from Europe (49), with their initial isolation and
entrance into the Americas occurring no earlier
than 23 ka, but with subsequent admixture with
East Asian populations. This additionally sug-
gests that the Mal’ta-related admixture into the
early Americans (4), representing ancestors of
both Amerindians and Athabascans (Fig. 1 and
fig. S5), occurred sometime after 23 ka, after the
Native American split from East Asians.

Subsequent in situ diversification of
Native American groups

That Amerindian and Athabascan groups were
part of the same migration implies that present-
day genetic differences observed between them
must have arisen later, after ~23 ka. Using the
clean-split model in diCal2.0 on the modern ge-
nomes data set, we estimated that Athabascans

and Karitiana diverged ~13 ka (95% confidence
interval of ~11.5 to 14.5 ka, estimated from para-
metric bootstrap results) (table S11A and fig. S16),
which is consistent with results fromMSMC (fig.
S27) (28).
Where the divergence between Karitiana and

Athabascans occurred is not known. However,
several independent lines of evidence suggest
that it is more likely to have occurred in lower-
latitude North America instead of eastern Beringia
(Alaska). These include the equidistant split times
of Amerindians and Athabascans to Asian pop-
ulations, the relatively brief interval between
their estimated divergence date range and the
age of Anzick-1 (12.6 ka) (5), and last, the geo-
graphic location of Anzick-1 to the south of the
North American ice sheets and its clear affilia-
tion with the “southern branch” of Native Amer-
icans (taken broadly to include Amerindians
from southern North America and Central and
South America) (5), as determinedwith outgroup
f3-statistics by using SNP chip genotype data
from present-day worldwide populations (Fig. 4
and figs. S13 and S14) (47). Divergence in North
America would also be consistent with the known
pre-Clovis age sites in the Americas, such asMonte
Verde (14.6 ka) (50). The most parsimonious
model would be that both Amerindians and
Athabascans are descendants of the same an-
cestral Native American population that entered
the Americas then subsequently diversified. How-
ever, we cannot discount alternative and more
complex scenarios, which could be tested with
additional ancient samples.
By the Clovis period (~12.6 ka), the ancestral

Native American population had already diver-
sified into “northern” and “southern” branches,
with the former including ancestors of present-
dayAthabascans andnorthernAmerindian groups
such as Chipewyan, Cree, and Ojibwa and the
latter including Amerindians from southern
North America and Central and South America
(Fig. 4 and fig. S14). We tested whether later
gene flow from East Asian sources, such as the
Inuit, might explain the genetic differences be-
tween these two branches. Using D-statistics

on SNP chip genotype data (47) masked for non-
native ancestry, we observed a signal of gene
flow between the Inuit and northwest Pacific
Coast Amerindians such as Coastal Tsimshian
and Nisga’a, residing in the same region as the
northern Athabascans (fig. S8B) (28). However,
this signal of admixture with the Inuit, also de-
tected in Athabascans (figs. S6 and S8A), was not
evident among northern Amerindian populations
located further east, such as Cree, Ojibwa, and
Chipewyan (fig. S8C) (28). This suggests that
the observed difference between the northern
and southern branches is not a consequence of
post-split East Asian gene flow into the northern
branch and also provides a possible explanation
as towhy the southern branch Amerindians such
as Karitiana are genetically closer to the northern
Amerindians located further east than to north-
west coast Amerindians andAthabascans (fig. S9).
In contrast to Anzick-1, several of theHolocene

individuals from the Americas—including those
sequenced in this study, as well as the 8500-year-
old Kennewick Man (51)—are closely related to
present-day Native American populations from
the same geographical regions (Fig. 4 and figs.
S13 and S14). This implies genetic continuity of
ancient and modern populations in some parts
of the Americas over at least the past 8500 years,
which is in agreement with recent results from
Kennewick Man (51).

Evidence of more distant Old World gene
flow into some Native Americans

When testing for gene flowbetweenAthabascans
and Inuit with masked SNP chip genotype data–
based D-statistics (47) (fig. S8), we observed a
weak tendency for the Inuit to be much closer to
the Athabascans than to certain Amerindians
such as theNorth American Algonquin and Cree,
and the Yaqui and Arhuaco of Central and South
America (respectively), as compared with other
Amerindians such as the Palikur and Surui of
Brazil (fig. S8).
To further investigate this trend, we tested for

additional gene flow from Eurasian populations
into the Americas with D-statistics using the
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Fig. 3. Testing migrations into the Americas by using a climate-informed
model. Estimates of difference in genetic divergence between Amerindians (from
southern North America and Central and South America) or Koryak versus Ath-
abascan and Greenlandic Inuit and the ancient Saqqaq and Anzick-1 genomes
(black vertical lines), compared with posterior probability distribution predicted
from a climate-informed spatial genetic model reconstructing a single wave into

the Americas (curves, the colored part represents the 95%credibility interval). DT
for populationX is defined as T(X, Koryak)– T(X, Central and South Amerindians)
(28). Both Anzick-1 and the Athabascans were part of the same wave into the
Americas towhichotherAmerindianpopulations fromsouthernNorthAmerica and
Central and South America belonged, whereas the Inuit and Saqqaq are the de-
scendants of different waves (observed values outside the 95% credibility interval).
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Fig. 4. Diversification within the Americas. SNP chip genotype data–based
outgroup f3-statistics (47) of the form f3(X, Ancient; Yoruba) were used to
estimate the shared ancestry between ancient samples from the Americas and
a large panel of worldwide present-day populations (X), including Athabascan
and Amerindian groups from North America (table S3), some of which were
masked for non-native ancestry before the analysis (28).The outgroup f3-statistics
are depicted as heat maps, with the sampling location of the ancient sample

marked by the dotted lines, and corresponding ranked plots with error bars are
shown in fig. S14. “BP” refers to time before present.We find the Anzick-1 sample
to share most ancestry with the southern branch of Native Americans when
using multiple northern Native Americans sequenced in this study, which is
consistentwith (5).The sevenHolocene age samples sharemost ancestrywith
Native Americans, with a general tendency to be genetically closer to present-
day Native American populations from the same geographical region.
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masked SNP chip genotype data set (47). We
found that someAmerican populations—including
the Aleutian Islanders, Surui, and Athabascans—
are closer to Australo-Melanesians as compared
with other Native Americans, such as North Amer-
ican Ojibwa, Cree, and Algonquin and the South
American Purepecha, Arhuaco, and Wayuu (fig.
S10). The Surui are, in fact, one of closest Na-
tive American populations to East Asians and
Australo-Melanesians, the latter including Pap-
uans, non-PapuanMelanesians, Solomon Island-
ers, and South East Asian hunter-gatherers such
as Aeta (fig. S10). We acknowledge that this ob-
servation is based on the analysis of a small frac-
tion of the whole-genome and SNP chip genotype
data sets—especially for the Aleutian Islander
data, which is heavily masked owing to recent
admixture with Europeans (28)—and that the
trends in the data are weak.
Nonetheless, if it proves correct, these results

suggest that there may be a distant Old World
signal related to Australo-Melanesians and East
Asians in some Native Americans. The widely
scattered and differential affinity of Native Amer-
icans to the Australo-Melanesians, ranging from a
strong signal in the Surui to amuchweaker signal
in northern Amerindians such as Ojibwa, points
to this gene flow occurring after the initial peo-
pling by Native American ancestors.
However, how this signal may have ultimately

reached South America remains unclear. One
possible means is along a northern route via the
Aleutian Islanders, previously found to be closely
related to the Inuit (39), who have a relatively
greater affinity to East Asians, Oceanians, and
Denisovan than Native Americans in both whole-
genome and SNP chip genotype data–based D
tests (table S10 and figs. S10 and S11). On the
basis of archaeological evidence and mtDNA
data from ancient and modern samples, the
Aleutian Islands are hypothesized to have been
peopled as early as ~9 ka by “Paleo-Aleuts” who
were succeeded by the “Neo-Aleuts,”with present-
day Aleutian Islanders potentially resulting from
admixture between these two populations (52, 53).
Perhaps their complex genetic history included
input from a population related to Australo-
Melanesians through an East Asian continental
route, and this genomic signal might have been
subsequently transferred to parts of the Amer-
icas, including South America, through past gene
flow events (Fig. 1). Evidence for this gene flow
is supported with diCal2.0 and MSMC analyses
showing a weak but recent gene flow into South
Americans from populations related to present-
day Northeast Asians (Koryak) (Fig. 2C and table
S11C), who might be considered a proxy for the
related Aleutian Islanders.

Testing the Paleoamerican model

The detection of an Australo-Melanesian genetic
signal in the Americas, however subtle, returns
the discussion to the Paleoamericanmodel, which
hypothesizes, on the basis of cranial morphology,
that two temporally and source-distinct popula-
tions colonized the Americas. The earlier popu-
lation reportedly originated in Asia in the Late

Pleistocene and gave rise to both Paleoamericans
and present-day Australo-Melanesians, whose
shared cranial morphological attributes are pre-
sumed to indicate their common ancestry (23).
The Paleoamericans were, in turn, thought to have
been largely replaced by ancestors of present-day
Amerindians, whose crania resemble modern East
Asians and who are argued to be descendants of
later arrivingMongoloid populations (14, 23, 26, 54).
The presence of Paleoamericans is inferred pri-
marily from ancient archaeological specimens in
North and South America and a few relict popu-
lations of more recent age, which include the ex-
tinct Pericúes and Fuego-Patagonians (24, 25, 55).
The Paleoamerican hypothesis predicts that

these groups should be genetically closer to
Australo-Melanesians than other Amerindians.
Previous studies of mtDNA and Y chromosome
data obtained fromFuego-Patagonian and Paleo-
american skeletons have identified haplogroups
similar to those of modern Native Americans
(55–57). Although these results indicate some
sharedmaternal and paternal ancestry with con-
temporaryNativeAmericans, uniparentalmarkers
can be misleading when drawing conclusions
about the demographic history of populations.
To conclusively identify the broader population
of ancestors who may have contributed to the
Paleoamerican gene pool, autosomal genomic
data are required.
We therefore sequenced 17 ancient individ-

uals affiliated to the now-extinct Pericúes from
Mexico and Fuego-Patagonians from Chile and
Argentina (28), who, on the basis of their distinc-
tive skull morphologies, are claimed to be relicts
of Paleoamericans (23, 27, 58, 59). Additionally,
we sequenced twopre-Columbianmummies from
northern Mexico (Sierra Tarahumara) to serve as
morphological controls because they are expected
to fall within the range of Native American mor-
phological cranial variation (28). We found that
the ancient samples cluster with other Native
American groups and are outside the range of
Oceanian genetic variation (Fig. 5 and figs. S32,
S33, and S34) (28). Similarly, outgroup f3-statistics
(47) reveal low shared genetic ancestry between
the ancient samples and Oceanians (figs. S36 and
S37) (28), and genome-based and masked SNP
chip genotype data–basedD-statistics (46, 47) show
no evidence for gene flow from Oceanians into
the Pericúes or Fuego-Patagonians (fig. S39) (28).
Because the Paleoamerican model is based on

cranial morphology (23, 27, 58, 59), we also mea-
sured craniometric data for the ancient samples
and assessed their phenotypic affinities to sup-
posed Paleoamericans, Amerindians, and world-
wide populations (28). The results revealed that
the analyzed Fuego-Patagonians showed closest
craniometric affinity to Arctic populations and
the Paleoamericans, whereas the analyzed female
Pericúes showed closest craniometric affinities
to populations fromNorth America, the Arctic re-
gion, and Northern Japan (table S15). Our analy-
ses demonstrated that the presumed ancestral
ancient Paleoamerican reference sample from
Lagoa Santa, Brazil (24) had closest affinities to
Arctic and East Asian populations (table S15).

Consequently, for the Fuego-Patagonians, the
female Pericúes, and the Lagoa Santa Paleo-
american sample, we were not able to replicate
previous results (24) that report close similar-
ity of Paleoamerican and Australo-Melanesian
cranial morphologies. Male Pericúes samples
displayed more craniometric affinities with pop-
ulations from Africa and Australia relative to the
female individuals of their population (fig. S41).
The results of analyses based on craniometric
data thus are highly sensitive to sample structure
and the statistical approach and data filtering
used (51). Our morphometric analyses suggest
that these ancient samples are not true relicts of
a distinct migration as claimed and hence do not
support the Paleoamerican model. Similarly, our
genomic data also provide no support for an
early migration of populations directly related to
Australo-Melanesians into the Americas.

Discussion

That Native Americans diverged from their East
Asian ancestors during the LGM and no earlier
than 23 ka provides an upper bound, and per-
haps the climatic and environmental context,
for the initial isolation of their ancestral popu-
lation and a maximum estimate for the entrance
and subsequent spread into the Americas. This
result is consistent with the model that people
entered the Americas before the development of
the Clovis complex and had reached as far as
southern South America by 14.6 ka. Because ar-
chaeological evidence provides only a minimum
age for human presence in the Americas, we can
anticipate the possible discovery of sites that ap-
proach the time of the divergence of East Asians
and Native Americans. However, our estimate for
the initial divergence and entry of Native Amer-
ican ancestors does not support archaeological
claims for an initial peopling substantially earlier
than the LGM (8–10).
Although our data cannot provide the precise

geographical context for the initial peopling pro-
cess, it has allowed us to more accurately esti-
mate its temporal dynamics. This, in turn, has
enabled us to reassess the Beringian Incubation
Model, which, based on mtDNA data and the
timing and geographical distribution of archae-
ological sites, hypothesized a ~15,000-year-long
period of isolation of ancestral Native Americans
in Beringia during the LGM (19–21). Our results,
along with recent findings of mtDNA haplogroup
C1 in Iceland and ancient northwest Russia (60),
do not fit with the proposed 15,000-year span of
the Beringian Incubation Model (19–21). It is pos-
sible that a shorter period of isolation occurred
(~8000 years), but whether it occurred in Siberia
or Beringia will have to be determined from fu-
ture ancient DNA and archaeological findings.
Given the genetic continuity betweenNativeAmer-
icans and some East Asian populations (figs. S4
and S5), other demographic factors, such as surf-
ing during population expansions into unoccupied
regions (61), may ultimately need to be taken into
account to better understand the presence of a
large number of high-frequency private variants
in the indigenous populations of the Americas.
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The data presented here are consistent with
a single initial migration of all Native Americans
and with later gene flow from sources related
to East Asians and, more distantly, Australo-

Melanesians. From that single migration, there
was a diversification of ancestral Native Amer-
icans leading to the formation of northern and
southern branches, which appears to have taken

place ~13 ka within the Americas. This split is
consistent with the patterns of uniparental ge-
nomic regions of mtDNA haplogroup X and some
Y chromosome C haplotypes being present in
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Fig. 5. The Paleoamericanmodel. (A) Principal component analysis plot of 19
ancient samples combined with a worldwide reference panel, including 1823
individuals from (6). Our samples plot exclusively with American samples. Plots
with other reference panels consisting of Native American populations are pro-
vided in fig. S32. (B) Population structure in the ancient Pericú, Mexican
mummy, and Fuego-Patagonian individuals from this study. Ancestry propor-

tions are shown when assuming six ancestral populations (K = 6).The top bar
shows the ancestry proportions of the 19 ancient individuals, Anzick-1 (5), and
twopresent-dayNativeAmericangenomes fromthis study (Huichol andAymara).
The plot at the bottom illustrates the ancestry proportions for 1823 individuals
from (6). Our samples show primarily Native American (ivory, >92%) and Si-
berian (red, ~5%) ancestry.The plot with K = 13 is provided in fig. S33.
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northern, but not southern, populations in the
Americas (18, 62). This diversification event co-
incides roughly with the opening of habitable
routes along the coastal and the interior corri-
dors into unglaciated North America some 16
and 14 ka, respectively (63, 64), suggesting a pos-
sible role of one or both of these routes in the
isolation and subsequent dispersal of Native
Americans across the continent.

Methods

DNA was extracted from 31 present-day indi-
viduals from the Americas, Siberia, and Oceania
and 23 ancient samples from the Americas and
converted to Illumina libraries and shotgun se-
quenced (28). Three of the ancient samples were
radiocarbon dated, of which two were corrected
for marine reservoir offset (28). SNP chip geno-
type data was generated from 79 present-day
Siberians and Native Americans affiliated to 28
populations (28). Raw data from SNP chip and
shotgun sequencing were processed by using
standard computational procedures (28). Error
rate analysis, DNA damage analysis, contamina-
tion estimation, sex determination, mtDNA and
Y chromosome haplogroup assignment, ADMIX-
TURE analysis, ancestry painting and admixture
masking, principal component analysis using
SNP chip genotype data, TreeMix analysis on
genomic sequence data,D-statistic and outgroup
f3-statistic tests on SNP chip genotype and ge-
nomic sequence data, divergence time estima-
tion by use of diCal2.0, an IBS tract method and
MSMC, climate-informed spatial genetic model
analysis, and craniometric analysis were per-
formed as described (28).
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