

Proposed USAID Geothermal Resource Assessment in Pakistan

Jeffrey Humber Senior Energy Adviser USAID Office of Afghanistan and Pakistan Affairs

January 10, 2018

Mud Volcanoes & Geothermal Fluids in Makran Coastal Area, Baluchistan Province, Pakistan Source: Energy Foundation of Pakistan

U.S Agency for International Development

Who/ What is USAID

- USAID is the primary foreign assistance arm of the US Government
- USAID works along with US State Department developing/ implementing programs of technical and financial assistance to US allies supporting economic growth and development
- USAID foreign aid assistance to its partner countries typically consists of a combination of TA/ capacity building, some construction, and/or government-to-government grants
- Increasingly, USAID assistance seeks to leverage increased private investment and opportunities -- if possible -- for US business (using very limited budgets)

- Since 2009, the US Government Has Committed Close to \$1 Billion to Support Pakistan's Electricity Sector:
 - Pakistan has been a key strategic partner to US efforts in South Asia
- USAID Assistance Has Focused on:
 - Reducing losses and improving collections, profitability, and performance of Pakistan's nine distribution companies
 - Funding strategic transmission lines connecting \$1.2 billion, 680MW of private wind projects to the grid
 - Improving energy sector policy and regulatory governance
 - Constructing and/or retrofitting select thermal and hydro-electic plants

• USAID Support Has:

- Added about 2,800 megawatts (MW) to the Pakistan national grid
- Increased distribution company revenues by \$460 million
- Improved electricity service to over 38 million Pakistanis
- Supported construction/ negotiation of Pakistan's 1st \$ LNG imports

Going Forward, We Plan to Focus More Heavily on Increasing/ Accelerating Private Investment in Clean Energy by:

- Strengthening Government of Pakistan (GoP) governance, policy, and investment enabling environment
- **Providing Technical and Capacity Building Assistance** to GoP agencies/ sub-units responsible for negotiating/ closing private sector deals
- Providing Select Government Grants to Leverage Private Projects
 - E.g. NTDC upgrades of transmission lines connecting wind, hydro, and solar generation to the national grid
- Strengthening Distribution and Transmission Systems
- Supporting Grid and Off-Grid Private Business Opportunities
 - Direct Business-to-Business Sales
 - Renewable Energy Zones AND
 - **o** Geothermal Energy Development

Why Might Pakistan Have Geothermal Potential?

The seismic boundary of Pakistan has been formed by the interaction of the Arabian, Indian and Eurasian Plates.

WHERE ARE PAKISTAN'S GEOTHERMAL ENERGY RESOURCES?

PAKISTAN'S GEOTHERMAL ENERGY ZONES AND LOCATION OF DRILLED AND ABANDONED O&G WELLS

Co-Location of Pakistan Industry and O&G Wells

Abandoned Oil Exploratory Well Near Islamabad Capital

Geothermal Water flowing with Artisan Pressure @ 5000 Barrel/ Day with + 100 °C Temp, since 1980 from sedimentary Acquire at 1500 Meter Depth. Location 33 04 ' 44 N 72 56' 50'E

Source: Energy Foundation

LOWER INDUS BASIN SINDH PROVINCE PAKISTAN BADIN SANGHAR GEOTHERMAL RIFT BASIN

Temperature in Drill Wells

Site	Depth	Temperature C°	Temperature F°	Well Status
1	3877	151	304	P/A
2	3651	158	316	P/A
3	3598	153	307	P/A
4	3350	161	321	P/A
5	3420	151	303	P/A
6	4034	164	327	P/A

LOWER INDUS BASIN SINDH PROVINCE PAKISTAN UPPER SINDH GEOTHERMAL BASIN

Temperature in Drill Holes/ Hot water

Site	Depth	Temperature C°	Temperature F°	Well Status
1	141	176	348	GAS
2	3400	132	270	P/A
3	3700	143	290	CONDENSATE
4	3700	146	296	GAS
5	3800	137	280	GAS
6	3800	149	300	P/A
7	3800	139	280	CONDENSATE
8	3800	139	280	GAS
9	1448	90	195	GAS
10	2700	176	<350	GAS
11	`2700	168	335	GAS

(Note: The names of the sites are not being identified to advance further studies Source: Javed Ahmad, Energy Foundation.

UPPER INDUS SEDIMENTARY BASIN: PUNJAB & KPK PROVINCES, PAKISTAN, POTWAR GEOTHERMAL BASIN

Temperature in Drill Wells

Site	Depth (m)	Temperature C°	Temperature F°	Well Status
1	5730	160	320	
2	5840	139	282	P/A
3	4814	125	257	P/A
4	4223	119	246	P/A
5	3711	99	202	Hot Water Flowing
6	4940	136	277	P/A
7	4814	125	257	P/A
8	4900	137	279	P/A
9	4739	130	266	P/A
10	4020	101	213	P/A

MIDDLE INDUS BASIN PUNJAB (South) PROVINCE

Temperature in Drill Wells

Site	Depth	Temperature C°	Temperature	Well Status
			F°	
1	3631	112	233	P/A
2	3000	101	214	P/A
3	3682	113	236	P/A
4	2226	105	221	P/A
5	3601	116	240	GAS
6	4406	125	257	P/A
7	4798	137	279	P/A
8	3034	127	260	P/A

(P/A) Drill Holes Plugged & Abandoned

Source: Javed Ahmed, Energy Foundation Pakistan.

- Identify and Review Available Geothermal Data -- from existing, abandoned, and capped oil and gas wells, volcanism, geothermal outcroppings along faults, and geothermal spring resources.
- 2. Conduct Initial Technical Review of Potential Opportunities in Three Target Markets:
 - Grid-scale geothermal production
 - Geothermal co-production from O&G Wells
 - Potential Direct Use geothermal opportunities
- 3. Develop Short- and Medium-term Development Strategy for Subsequent Development
 - If Step #2 is encouraging, initially quantify potentials of opportunities, and develop priorities and strategy for further study and development
 - If the Step 2 indicates very limited potential, then cease work

- 4. Further Analysis and Investigation of Select High-Value Short- and Medium-term Commercial Market Opportunities
 - Estimate potentials of high-value target markets
 - Further identify and analyze **specific** priority geothermal fields and wells
 - Evaluate commercial opportunities and markets
 - Co-locate industrial, commercial, and agricultural locations with specific geothermal sites
 - Identify potential business-to-business applications
- 5. Review Legal and Regulatory Framework/ Barriers to Geothermal Development
- 6. Review Commercial Issues Associated with Geothermal Development

Geothermal fumaroles, Geysers Hot water & Steam Springs with more than 140 °C temperature, flowing year-round in the Northern Himalayan Valleys, Pakistan Source: Energy Foundation

Thank You!

Questions?

Jeffrey Humber USAID Office of Afghanistan and Pakistan Affairs 1300 Pennsylvania Avenue NW Washington, DC 20523-4600 Office: 202 712-1153 Mobile: 202 251-5320 Email: Jhumber@USAID.gov

Ms. Saima Qadir Task Manager TetraTech International Islamabad, Pakistan Office Pakistan: Mobile: (US) 202 352-5502 Email:Saima.Qadir@tetraTech.com

Pakistan's Current Energy Crisis: A Business Opportunity?

- Power load shedding (6-10 hours) currently is biggest economic issue for Pakistan
- Prime Minister Sharif set solving Pakistan's energy problems as the nation's number one priority, essential to improving its economy
- Pakistan's Energy fuel mix is inappropriate and not sustainable
- Per Capita power consumption is expected to increase from 800 to 2,538 kWh/yr by 2035, requiring the installation of over 100,000 MW of new generation capacity.

- GoP Has Significant History with Independent Power Producers (IPPs)
 - Nearly 50% of installed Pakistan generation owned by IPPs
 - Investment framework and bankable security agreements designed 20 years ago, observe international standards, and are continually refined

• Private IPP Projects Get Done in Pakistan

- Over 800 MW of privately-owned, wind, hydro, and solar energy projects reached financial closure over the last 2 years
- LOIs signed for an additional 2,000 MW of wind

 Sharif/ Abassi Government Is Very Supportive of Private Investment

- Also, GoP receives major support from MFIs and bi-lateral donors (e.g. USAID)
- Pakistan Offers Sovereign Guarantees On Payments
 - GoP has never defaulted on NTDC/DISCO payments to IPP (occasional delay)
 - One of few remaining countries in world offering sovereign guarantees

- One Stop IPP Development Window (thru AEDB or PPIB)
 - o Standardized processes and guidelines for IPP developers
- o Deal Terms
 - o GOP Sovereign Guarantee on PPA purchase obligations
 - o Guaranteed 17-20% IRR, tariff indexation, and equity repatriation
 - Bankable, standardized, internationally-accepted security agreements (PPA, IA, EPC, FSA, etc.)
 - Protection against political risk & change in law
 - Tax free regime (no corporate income, sales, withholding, customs, dividend taxes)
 - Connection to the Grid is Responsibility of Purchaser
- Guaranteed Repatriation of Equity and Shareholder Dividends
- Guaranteed Remittance of Pakistani Rupees into USD

Attractive Renewable Energy-specific Investment Incentives:

- GoP provides sovereign guarantee on electricity purchase
- GoP guarantees return on investment between 17% to 20% (IRR)
- Front-end loaded, tariff regimes for power projects
- Net metering and banking of electricity allowed

Pakistan Local Attractions

- Karachi -- a growing financial market with energy deal experience
- Available strong, local, IPP partners (e.g. HUBCO, Sapphire, and numerous Pakistan industrial groups)
- Growing local banks with clean energy lending experience for local finance

- Experienced in Hands-on Country Political Risk Management
- Possess Regulatory Know-how
- Increase Ability to Attract Quality HR in Pakistan
- Experienced in Bidding, Tariff and Security Package Negotiations, and History With Various GoP Decision-makers

On the Other Hand, There are Risks.... But With Viable Solutions

• Domestic Security Concerns -- Both Perceived and Real

- o Localized security risks
- GOP aggressively and successfully cracking down on terrorism
- Highlights the value/need for experienced local Pakistani partners
- o IPP projects have been successfully operating for 20 years
- Risks Presented by GoP Circular Debt
 - o Pakistan's successful adherence to terms of IMF Standby Loan
 - Strong donor pressure/ support to Pakistan's energy sector
- Lack of In-Depth GOP Institutional Capacity
 - "Lack of capacity", nevertheless GoP managed to financially close over 800 MW of IPPs in 2014
 - Strong donor support in improving capacity