Enhanced Efficiency, Sustainable Power Generation, and CO2 Emission Reduction through Organic Rankine Cycle Technology

Simone Passera Dallas, April 26th 2016

Conference & Workshop April 25-26, 2016 SMU Campus, Dallas, TX

Turboden ORC turbogenerator-fields of application

Organic Rankine Cycle: Thermodynamics

- Closed thermodynamical cycle (Rankine cycle)
- ✓ Working fluid in closed loop
- ✓ Working fluid is a suitable organic fluid

Technical Advantages of Turboden proprietary Turbine & Process

A PROVEN SOLUTION

- The design of the turbine (casing, blading) is carried out by Turboden representing the core know-how since its foundation in 1980
- 300 Turboden ORC turbines successfully implemented with sizes from 200 kW to 20 MW
- Proven experience with 10 different ORC fluids
- Axial geometry is a traditional configuration, the most widely adopted in turbomachinery design
- Axial is the reference design for ORC, proven with millions of working hours worldwide

35 Years of Experience in ORC turbogenerators

1980 - Founded by Mario Gaia, professor at *Politecnico di Milano*

1990's – First ORC projects in solar, geothermal and heat recovery applications

1998 – First ORC biomass plant in Switzerland (300 kW)

2000's - ORC biomass plants in Europe

2013 - **MHI** acquires the majority of Turboden. Italian shareholders stay in charge of management

Today - Over 300 plants in the world, 240 in operation, 200 employees, ~100 M€ turnover (2012)

2009 - United Technologies Corp. (UTC) acquires the majority of Turboden's quotas. PW Power Systems supports Turboden in new markets beyond Europe. **100 plants sold**

Turboden ORC a proven worldwide experience

Application	Plants in Operation		Under Construction		Total	
	no.	MW	no.	MW	no.	MW
Wood Biomass	233	274,8	45	87,3	278	360,1
Geothermal	7	27,8	3	21,2	10	49
Solar thermal power	1	2	3	2	4	4
Heat Recovery	20	35,3	6	20,1	26	55,5
Waste to Energy	9	20,3	0	0	9	20,3
Total Turboden Plants	270	360,2	57	130,3	327	488,6

270 power plants in operation use Turboden ORC technology More than 8 million hours of operation cumulated and 7,800 GWh produced Average availability of our fleet > 98%

ORC gives significant advantages in different O&G fields

- ✓ High efficiency even with low enthalpy sources and with variable loads
- ✓ Low O&M minimum needs of dedicated operators (unmanned system)
- ✓ Remote support and control
- ✓ No water consumption/water treatment
- Compactness and simplicity
- ✓ No influence to the main process by-pass and automatic load following
- 1. Hot water from exhausted oil/gas wells (binary geothermal)
- 2. Gas turbines exhaust gas Gas compressor stations, natural gas liquefaction, gas storage, etc.
- 3. Associated Petroleum Gas (APG)
- 4. Refinery hot streams Distillation columns, Oil/Gasoline/Kerosene production, etc.

a group company of 🙏 MITSUBISHI HEAVY INDUSTRIES, LTD.

Reference project – Intelligent use of aquifer gases

- 1. Hybrid geothermal/gas power plant for combined electric and heating generation (20 MWe with zero CO2 emission)
- 2. Turboden ORC binary technology improves of around 30% the electrical efficiency of the power plant
- 3. Valorization of an "unconventional" source (i.e. thermal aquifer with methane content)
- 4. Pilot project is the result of intensive researches combining different expertise and the best technologies from different fields

Turboden Geothermal Plants in operation in Bavaria

Layout example of Turboden reference plant

5.6 MWe geothermal ORC Turboden plant for Hochtief Energy Management. Dürrnhaar – Munich, Germany – 2012

Reference Plant - Sauerlach

Plant type: Two-level cycle geothermal unit
Customer: SWM - StadtWerke München (public utilities company)
Site: Sauerlach, Munich, Germany
Start-up: December 2012
Heat source: geothermal fluid at 140°C
Cooling device: air condensers
Total power: 5+ MW_e plus 4 MW_{th} (13.6 MMBtu/h) decoupling for district heating
Working fluid: refrigerant 245 fa (non flammable)

Custom-made solution according customer requests

Oil&Gas applications

2. Gas turbines exhaust gas

Copyright © - Turboden S.r.l. All rights reserved

Oil&Gas applications

3. Associated Petroleum Gas (APG) explotation

APG produced in oil extraction fields is often flared to the atmosphere because its economic valorization as hydrocarbon is unfeasible

Main reasons:

Cycling availability, low calorific value, variable composition, high sulfur content, etc.

 \rightarrow Difficult employment in high conversion efficiency power systems (e.g. gas turbines and reciprocating engines).

Turboden ORC characteristics (such as flexibility, excellent partial load behavior and unmanned operation) allows the exploitation of flare gases to produce electricity

Example of flare gas utilization: Turboden ORC unit coupled with gas burner and a thermal oil loop

3. Associated Petroleum Gas (APG) explotation: reference plant in Russian refinery of Lukoil

Site: Perm, Russia Customer/End user: LabNT/LUKoil Status: started up in January 2015 Heat source: flare gas burning (boiler designed to burn gas with a minimum lower calorific value of 4,500 kcal/Nm3 Heat source temperature: thermal oil at 300 °C Inlet/Outlet water temperature: 65/95 °C (149/203°F) Electric power: ~1.8 MW Net electric efficiency: ~18%

Project description

Flare gas from oil extraction wells is burned to heat up thermal oil which is used to feed up an ORC CHP unit.

The electricity produced reduces the plant consumptions, whereas, the hot water produced is exploited in oil refinery processes including warming up of refined products to be pumped.

Oil&Gas applications

4. Refinery hot streams

- Exhaust gases of distillation columns
- Condensing steam in gas treatment process
- Exhausted or not used wells
- others.....

clean energy ahead

(1) Heat carrier temperature above 300°C

Conclusion

- ORC technology offers various potential opportunities for the efficiency and CO2 reduction in the Oil&Gas different fields
- ORC technology suitable for the exploitation of the low enthalpy geothermal potential in Oil&Gas fields
- Important to identify attractive opportunities from a technical and economic point of view
- Turboden has proven experience worldwide and can help you in the identification and development of the best solutions for your case

Thanks for your attention

Turboden HQ at a glance, Brescia, Italy

Visit us at: Turboden website: <u>www.turboden.eu</u> Official YouTube Channel: <u>https://www.youtube.com/user/TurbodenItaly</u>

Simone Passera simone.passera@turboden.it