Design Requirements for Commercial Sedimentary Geothermal Projects

Chad Augustine
National Renewable Energy Laboratory

Power Plays: Geothermal Energy in Oil and Gas Fields
Southern Methodist University
April 25-26, 2016
Geothermal vs. Petroleum – a Comparison

<table>
<thead>
<tr>
<th>Petroleum</th>
<th>Geothermal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>Temperature</td>
</tr>
<tr>
<td>300-350°F is “Hot” (150-175°C)</td>
<td>300-650+°F (150-350+°C)</td>
</tr>
<tr>
<td>Flow Rates</td>
<td>Flow Rates</td>
</tr>
<tr>
<td>5,000 bpd/well is “High Flow” (150 gal/min per well)</td>
<td>50,000 bpd/well is average (1,500 gal/min per well)</td>
</tr>
<tr>
<td>Vertical and Long Reach Horizontal Onshore/Offshore</td>
<td>Vertical/Deviated Onshore</td>
</tr>
<tr>
<td>5”-7” diameter production interval</td>
<td>8”-12” diameter bottom hole</td>
</tr>
<tr>
<td>Production Profile/Timeframe</td>
<td>Production Profile/Timeframe</td>
</tr>
<tr>
<td>High Initial Flow (months) Declining Rate (years)</td>
<td>Constant Production 20-30+ Years</td>
</tr>
<tr>
<td>Lithology</td>
<td>Lithology</td>
</tr>
<tr>
<td>Sedimentary</td>
<td>Volcanic/Intrusive/Metamorphic</td>
</tr>
<tr>
<td>Facies</td>
<td>Facies</td>
</tr>
<tr>
<td>Stratigraphic/Structural</td>
<td>Complex Fault-Dominated</td>
</tr>
<tr>
<td>Recovered Product & Value</td>
<td>Recovered Product & Value</td>
</tr>
<tr>
<td>Petroleum (Oil & Gas)</td>
<td>Heat (Hot Water)</td>
</tr>
<tr>
<td>~$40/barrel oil</td>
<td>~$0.25/barrel hot water</td>
</tr>
</tbody>
</table>
Temperature is important, but is not enough...

Need both Temperature AND Flow Rate for commercial power generation:

Electricity Generation vs. Temperature

Flow Rate Requirements vs. Temperature

Adapted from Augustine and Falkenstern (2014), SPE-163142
Which is a better sedimentary geothermal target?

- Areas A (red) and B (blue) both show elevated temperatures
- Area A has higher temperature...
- ...but Area B has higher porosity (ϕ) and permeability (k): $\phi \sim \log(k)$
- Area B is selected due to its higher porosity (higher permeability)

Based on static reservoir model for Wattenberg Field built from well logs (Zhou, CSM Masters Thesis, 2016)
Sedimentary Geothermal Reservoir Requirements

Temperature
- Resource quality
- Higher temperature = more power potential

Reservoir Volume
- Resource available
- Must be large enough to maintain production for project lifetime
- Areal Extent x Pay Zone Thickness

Flow Capacity \((kh)\)
- Resource recoverability
- Amount of geofluid that can be produced from well
- Formation permeability \((k)\) and pay zone thickness \((h)\)

Utility-Scale Electricity Generation
Sedimentary Geothermal Doublet – Analytic Model

• **Time for thermal breakthrough** at production well (Gringarten, 1979)

\[
\Delta t = \left[\phi + (1 - \phi) \frac{\rho_r C_{p,r}}{\rho_w C_{p,w}} \right] \frac{\pi D^2 h}{3} \frac{1}{Q}
\]

• **Pressure difference** between injection and production wells (Gringarten, 1979; Muskat, 1939)

\[
\Delta P = \frac{\mu Q}{\pi k h} \ln \left(\frac{D}{r_{well}} \right)
\]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Porosity, (\phi)</td>
<td>0.15</td>
</tr>
<tr>
<td>Reservoir thickness, (h)</td>
<td>50 m</td>
</tr>
<tr>
<td>Rock heat capacity, (\rho_r C_r)</td>
<td>2,770 kJ/m(^3)/°C</td>
</tr>
<tr>
<td>Water heat capacity, (\rho_w C_w)</td>
<td>3,860 kJ/m(^3)/°C</td>
</tr>
<tr>
<td>Water viscosity, (\mu_{avg})</td>
<td>2.18e-4 Pa-s</td>
</tr>
<tr>
<td>Well radius, (r_{well})</td>
<td>0.108 m (8.5” diam.)</td>
</tr>
<tr>
<td>Reservoir lifetime, (\Delta t)</td>
<td>30 years</td>
</tr>
</tbody>
</table>
Reservoir Lifetime and Well Spacing

- Well spacing on the order of 4,000-6,000 ft (1-2 km) required for doublet system for production well flow rates typically found at conventional hydrothermal power plants (independent of reservoir permeability)

\[\Delta t = \left[\phi + \left(1 - \phi \right) \frac{\rho_r C_{p,r}}{\rho_w C_{p,w}} \right] \frac{\pi D^2 h}{3 \frac{Q}{Q}} \]

Assuming reservoir height of \(h = 50 \text{ m} \) (165 ft)

Adapted from Augustine (GRC 2014)
Well Productivity

- Average required reservoir transmissivity/flow capacity vs. well productivity for a range of well spacings with 30-year reservoir lifetime
- Productivity index range studied requires reservoir permeabilities of hundreds to thousands of mD for the specified system performance

Assuming reservoir lifetime of 30 years

\[
\frac{Q}{\Delta P} = \frac{\pi k h}{\mu} \left(\ln \left(\frac{D}{r_{well}} \right) \right)^{-1}
\]

Adapted from Augustine (GRC 2014)
Summary – “Ball Park” Reservoir Requirements

1. Well-doublet system reservoirs with life times of 30 years and well flow rates of 25,000-50,000 bpd (~50-100 L/s) require a well spacing on the order of 3,000-6,000 ft

2. Relatively high permeabilities, on the order of hundreds or thousands mD, required for commercially-viable vertical well doublet systems

(from Kirby, 2012)
Can Reservoir Performance Be Improved?

1. Vertical wells doublet with hydraulic fractures
2. Horizontal wells with open-hole completions
3. Horizontal wells with longitudinal fractures
4. Horizontal wells with multi-stage hydraulic fractures

- Studied impact of well-configurations on well productivity
- Found that use of horizontal wells and fracturing can increase well productivity by factor of 3-5

Adapted from Cho et al. (Stanford 2015)
Summary

1. Need to speak the same language
2. Temperature is important, but is not the only factor
 - Need large flow rates (ex. ~80,000 bpd @ 300°F for ~5 MW_e) ➔ High reservoir permeability (100’s to 1,000’s mD) and thickness
 - Need long system lifetime (20-30 years) ➔ Large reservoir and well spacing (several thousand feet)
3. Petroleum industry has knowledge and expertise to find and develop these systems
 - In-depth knowledge of potential sedimentary basins
 - Improve reservoir performance with well design and enhancement techniques
Questions?

Contact Info:
Chad Augustine
National Renewable Energy Laboratory
chad.augustine@nrel.gov

This work was supported by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy (EERE), Geothermal Technologies Office (GTO) under Contract No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory.

Special thanks to Dr. Luis Zerpa, Jae Kyoung Cho and Mengnan Zhou of the Colorado School of Mines Petroleum Engineering Department for their collaboration on this project.
Related Publications

Additional References