

Introduction to HEATSPOWER

SMU Geothermal Energy & Waste Heat to Power Conference Successful Heat to Power Development

Tony Straquadine, Manager, Government Affairs

March 14, 2013

Agenda

- Introduction to :
 - NRGreen Power, and
 - Alliance Pipeline Canada
- Technology
 - Waste Heat to Power– advantages & process
 - Organic Rankine Cycle
- Development Opportunities and Challenges
 - Waste Heat to Power Opportunities
 - Advancing Waste Heat to Power in the U.S.
- Closing remarks & Questions

Overview – NRGreen Power

03/14/2013

- NRGreen Power is an Alliance Canada related party first established in 2002
- Commercial development of waste heat electrical generation opportunities at Alliance Pipeline compressor stations

Strong and Stable Ownership 50% Enbridge 50% Veresen

Alliance Pipeline System

03/14/2013

SMU Geothermal & Waste Heat to Power Conference

Waste Heat to Power Generation Advantages:

- Electric generation that produces <u>no new</u> greenhouse gas emissions
 - Avoidance of @ 55,000 tonnes of GHG's per year (as compared to traditional fossil fuel generation)
- Technology can be applied to existing industrial facilities and transmission pipelines
- Reliable source of power from pipeline compressors (98+%) = baseload power
- Can be interconnected at distribution or transmission voltages

Waste Heat to Power Generation Process:

Innovative technology consists of two processes

- The 1st process loop captures waste heat from hot turbine exhaust using a heat exchanger that contains circulating thermal oil and a waste heat recovery unit
- The 2nd process loop is the energy converter system that transfers the heat from the thermal oil to a circulating organic working fluid through a series of heat exchangers using the Organic Rankine Cycle process

SMU Geothermal & Waste Heat to Power Conference

Organic Rankin Cycle – Ormat[®]

NRGreen P(7)WER

ORegen[™] – General Electric

LET'S CAPTURE IT

F

Successful Development in Canada

- Four Waste Heat to Power Generating facilities in Saskatchewan:
 - Kerrobert, SK in service 2006
 - Alameda, Estlin & Loreburn, SK in service 2008
- Safe (no incident) operations at all sites since start-up
- Semi attended operation ORMAT ORC technology
- Long-term Power Purchase Agreement with SaskPower
- Max generating capacity @ 5.4 MWhr per site

NRGreen Power / Alliance Pipeline Kerrobert, SK Facility

NRGreen P(4)WER

03/14/2013

SMU Geothermal & Waste Heat to Power Conference

New Facilities: Alberta Initiatives

• Whitecourt Recovered Energy Generation Project:

- 1st global application of G.E.'s innovative **ORegen™** system
- Designed to reliably generate 14 Megawatts of electricity per hour with no new emissions, water or incremental fuel
- Project is funded in part from Alberta's Climate Change Emissions Management (CCEMC) Corporation
- Projected in-service date: Q2 2013
- Deregulated market risk offset

- "Pool Pricing" Agreement & CCEMC funding
- Subject to Alberta regulatory regimes

Whitecourt Recovered Energy Project

Project Construction Underway

Utilizing heat generated from Alliance Pipeline's Windfall Compressor Station operations near Whitecourt, Alberta

1 1

03/14/2013

SMU Geothermal & Waste Heat to Power Conference

ELECTRIFYING

NEWS Green power is coming to town

Waste Heat to Power U.S. Opportunities:

Proposed Projects at Alliance Compressor Stations:

Seven sites capable of 6 MW

These projects will provide the following benefits:

- Can generate 700,000 MWh per year
 - Enough to power ~182,000 homes
- No new GHG emissions and does not use water
 - <u>Offset @385,000 tonnes of GHG Emissions</u> per year
- Estimated ~ \$300 million of capital investment

U.S. Development Challenges

- Waste Heat to Power is NOT on a level playing field with other "emission-free power"
 - Generation result 'equivalent" to other Renewables
 - WHP not defined in PURPA or Energy Independence and Security Act of 2007
- Perceived U.S. Regulatory uncertainties (FERC):
 - Allow for pipeline-related entities to develop projects outside of the current rate-base & rate of return
 - Consider developing a Waste Heat to Power Policy Statement
- Lack of demand for Heat to Power by Utilities
 - Potential Grid Interconnection challenges

Advancing Waste Heat to Power:

- Create utility demand for waste heat to power generation by including in State renewable energy portfolio requirements
- Minimize "Transmission Interconnection" barriers, including:
 - Interconnect study queue's

- Costs related to interconnection
- Add Waste Heat to Power as a qualified technology in
 - Tax Codes Section 45 (PTC's) & 48 (ITC's)
 - Future Master Limited Partnership eligibility

Closing remarks:

- NRGreen Power has a solid, safe and efficient history operating WHP facilities
- Advantages of NRGreen Power's Projects include:
 - Electricity generation that produces no new greenhouse gas emissions
 - Reliable source of base-load power from existing pipeline compressors
 - Technology can be applied to other industrial heat sources
- Project Economics require Public Policy Support on a State / Federal level to facilitate future development of Waste Heat to Power Projects in the U.S.

Key Contacts :

Tony Straquadine

Manager, Government Affairs Alliance Pipeline Inc. (952) 983-1005

NRGreen P(7)WER

03/14/2013

SMU Geothermal & Waste Heat to Power Conference