

Geothermal Energy Technology Powering Projects in Alaska and China

Bernie Karl

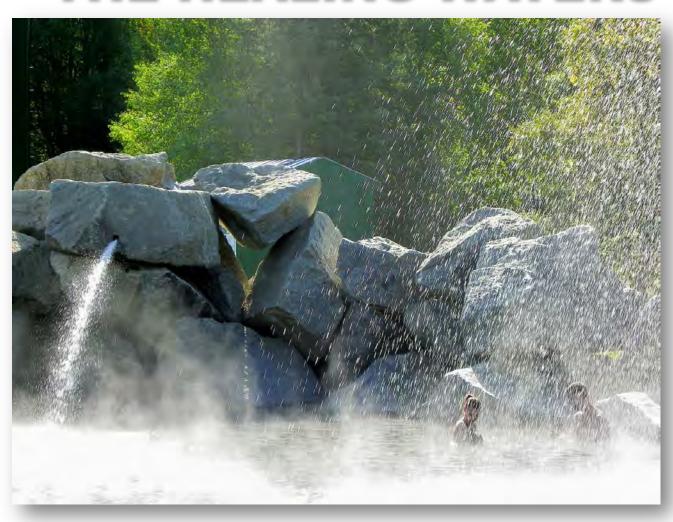
Chena Hot Springs Resort

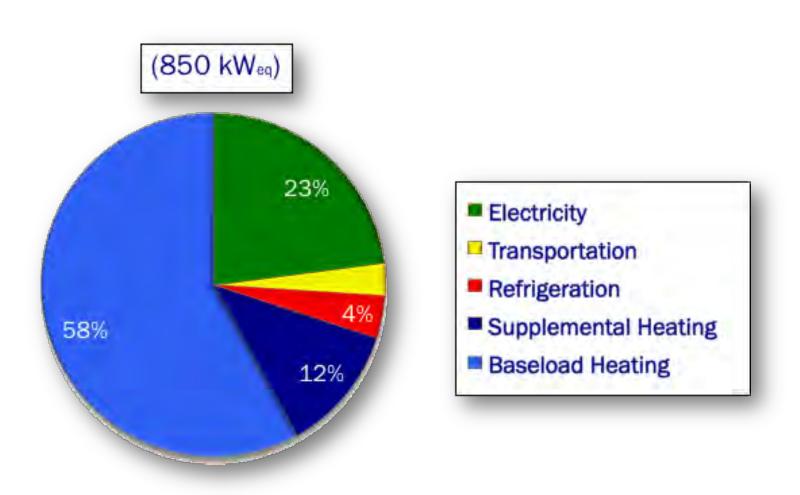
OUR VISION

To become a self-sustaining, self-reliant community that can produce the energy, food, and fuel to meet our needs

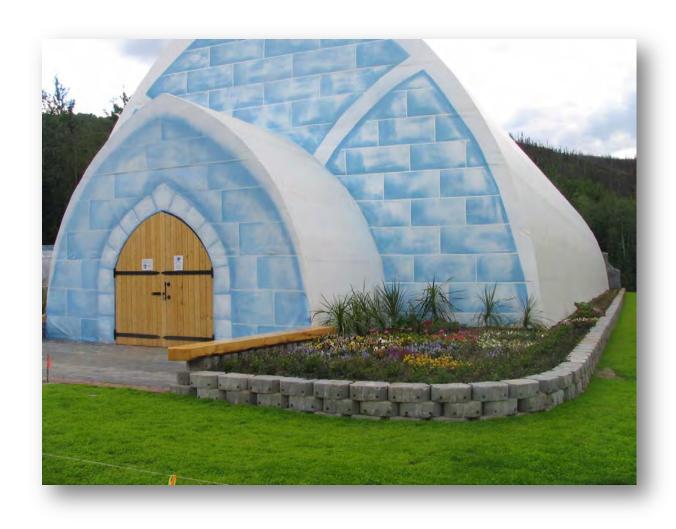
SUSTAINABLE LIVING

CHENA HOT SPRINGS RESORT




- ***** Accommodations
- ***** Activities
- * Healing Waters
- World Class Dining
- Aurora Viewing
- Wildlife Viewing
- * And many other adventures!

All made possible with renewable energy!


THE HEALING WATERS

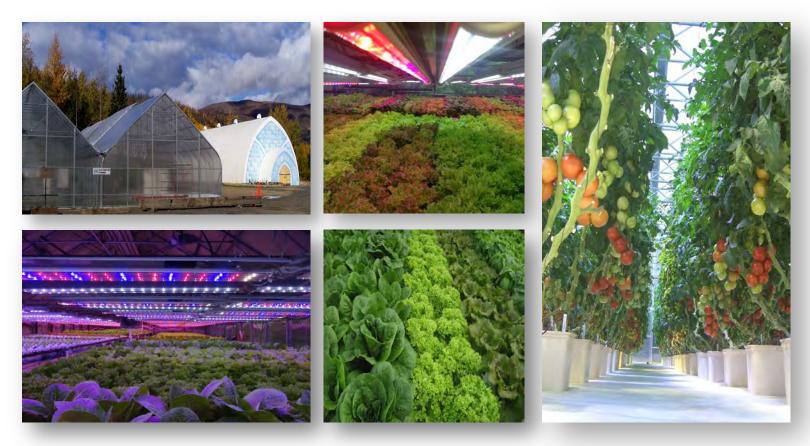
ENERGY USE AT CHENA HOT SPRINGS

CHENA AURORA ICE MUSEUM

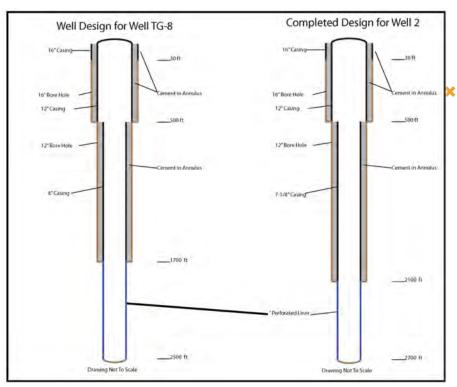
CHENA ABSORPTION CHILLER

Monument Creek
Provides Cooling Water
(~40F)

Geothermal Wells Provide Hot Water (~165F)


Approximately 15 tons of Refrigeration Required for Ice Museum (180,000 BTU/h)

DISTRICT HEATING


- First geothermal well drilled in November 1998
- All buildings on property are heated geothermally using ~300gpm of 165°F water
- Estimated yearly savings of \$383,000 in heating fuel costs

CHENA FRESH GREENHOUSE

The LED and hydroponic systems decrease winter energy costs and increase production. It is the largest of its kind in Alaska and the USA.

NEW GEOTHERMAL WELLS

Deepening well TG-8 increased the geothermal capacity of the reservoir, and produces water at 174 °F

The total project cost to drill the two wells will be an estimated \$2,154,000.

NEW 2500' PRODUCTION WELL 174°F WATER DRILLED WITH A JEFCO 50K USING A WASSARA WATER HAMMER. 2000-2500 PSI COLD WATER.

NEW INJECTION WELL 2700'

DRILLING 2700' INJECTION WELL

TESTING WELL

2000 PSI AIR BOOSTER

DRILLING WITH 2000 PSI AIR AND HIGH PRESSURE COLD WATER

10,000 PSI MUD PUMPS WITH WATER FILTERS

2500 FT PRODUCTION WELL 174° F

Project support provided by

DOE, U.S. Department of Energy United Technologies Corporation

CHENA POWER GEOTHERMAL POWER PLANT

CHENA POWER MOBILE ORC

CHENA POWER MOBILE ORC PROJECT GOALS

- x To validate the production of low temperature resources
- To help realize the potential for geothermal production on oil & gas sites
 - Both producing and non-producing wells, in terms of fossil fuel
 - Show that lower cost geothermal projects are possible, as most geothermal costs are associated with drilling
 - Prove to oil & gas companies that our unit operates safely and efficiently
- Test and document the reliability of this new technology
- Gain a better understanding of operational costs associated with this equipment
- Help realize that a more distributed power generation network is attainable and an effective solution to energy problems

MOBILE ORC PROJECT TIMELINE

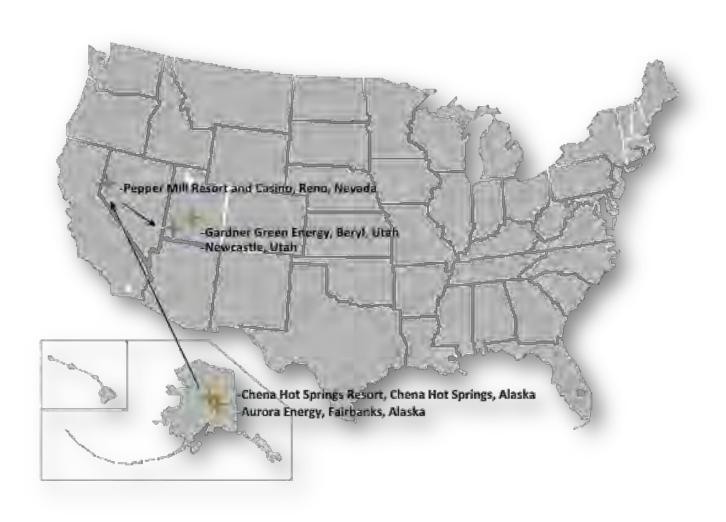
Construction Phase July 1, 2008

Aurora Energy Validation of ORC using a waste heat stream for urban municipal energy generation in Fairbanks, AK

Planning for future deployments to Oil & Gas sites for co-production

~92% complete

May 16, 2014


Unit was producing power from Chena Hot Springs geothermal resource at the Renewable Energy Fair and U.S. Senate Energy and Natural Resources Sub-Committee Field Hearing

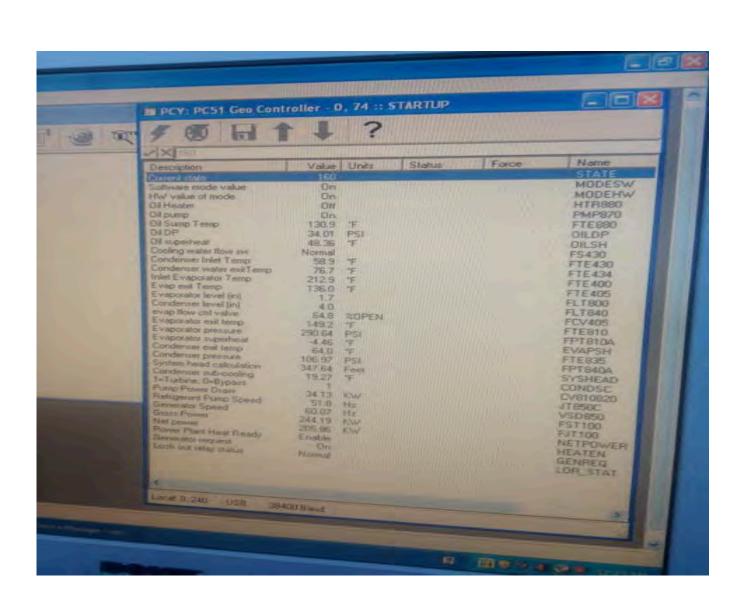
Display and Confirmation of the unit's mobility and its effectiveness for power generation for urban applications.

MAP OF THE MOBILE ORC'S PROGRESS

MOBILE ON LOCATION IN UTAH

Christenson Farm and Castle Valley Greenhouse in Newcastle, Utah

MOBILE ON LOCATION IN UTAH



The Mobile ORC is currently in Newcastle, Utah set to power a large scale greenhouse.

CHENA POWER ORC GENERATOR

Front view of heavy duty electronics cabinets.

Generator Assembly

Power Lines

Heavy Duty Electronics Cabinets

Turbine Assembly

Heat Exchangers

REVOLUTIONARY TURBINES

View of turbine assembly.

BIOMASS FUEL SOURCE: PELLETS

Fuel pellets created on site with recycled paper and cardboard through K&K Recycling program.

THERMAL OIL HEATER

Pellet intake on the Thermal Oil

Heater.

- From the pelletizer, the pellets are transported directly to the thermal oil heater.
- Once there, they are moved directly into the heater via another conveyor system where they are burned to heat the thermal oil circulating through the heater to the generator.
 - Utilizing separate contained loop systems, this oil is used to vaporize a refrigerant that is used as a working fluid for the generator.

Chena Power / Kaishan Compressors

KAISHAN COMPRESSOR CO, LTD, AND ITS PRODUCTS

Yan Tang PhD, MSc, PEng General Manager of Kaishan Compressor President of Kerry North America Development Center kaishanus1@gmail.com 2012.11.16

Designed in USA, Made in China

- What most companies are doing
- Kerry North America Development Center + Kaishan Compressor Co., Ltd

Kaishan Compressor Co., Ltd

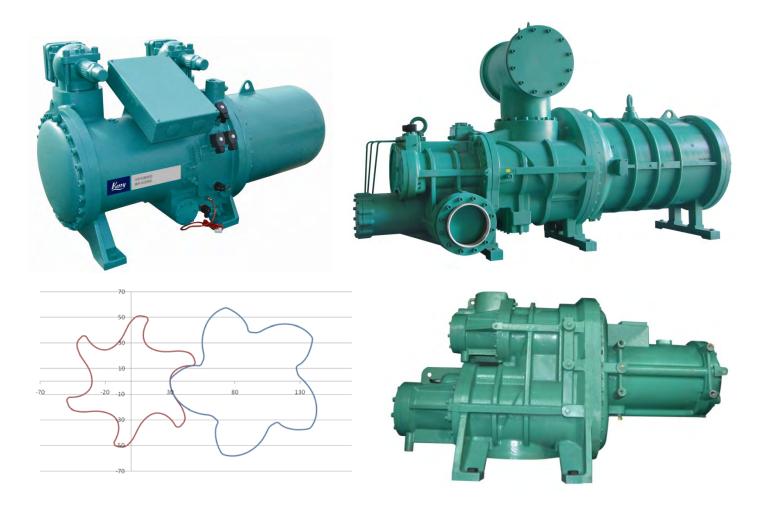
- Zhejiang Quzhou Site (Headquarter):
 - > 3 Hours by Train, 4 Hours by Driving to Shanghai
 - Foundry, Pressure Vessel, Heat Exchanger and Sheet Metal Plants
 - ORC Screw Expander Power Station
 - Small Screw Compressors
 - Reciprocating Compressors
 - Screw and Reciprocating Air Compressor Units
 - Centrifugal Compressors

Kaishan Compressor Co., Ltd

Basic Numbers:

Current Employees: 3000

2009 – 2011 Sales


Year	Sales in US Dollars	Screw Compressor Units
2009	115.9M	15,000
2010	242.4M	25,000
2011	396.8M	32,000

- > 150,000 Reciprocating Air Compressors Annually
- ➤ The 3rd Largest Screw Compressor Manufacturer by Volume in the World, the Largest in China
- ➤ Kaishan Compressor is a Public Company, and IPO was completed on August 19th, 2011

Main Products

> Refrigeration Screw Compressors and Screw Expanders

New at Chena Hot Springs Resort 300 KW screw expander with a synchronous generator

New at Chena Hot Springs Resort 300 KW screw expander with a synchronous generator

THANK YOU

United State of America Department of Energy

Pratt & Whitney Power Fairbanks North Star Borough

K & K Recycling

