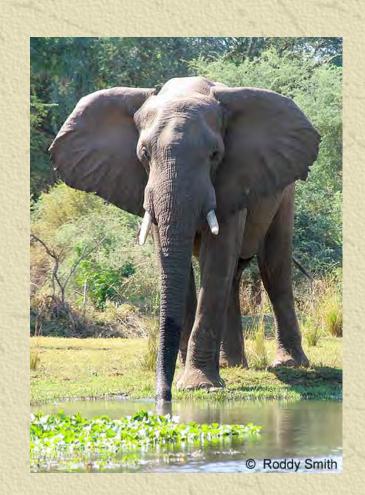


Sustainability Issues Remain at the Forefront

Science, Engineering, and Education for Sustainability (SEES)

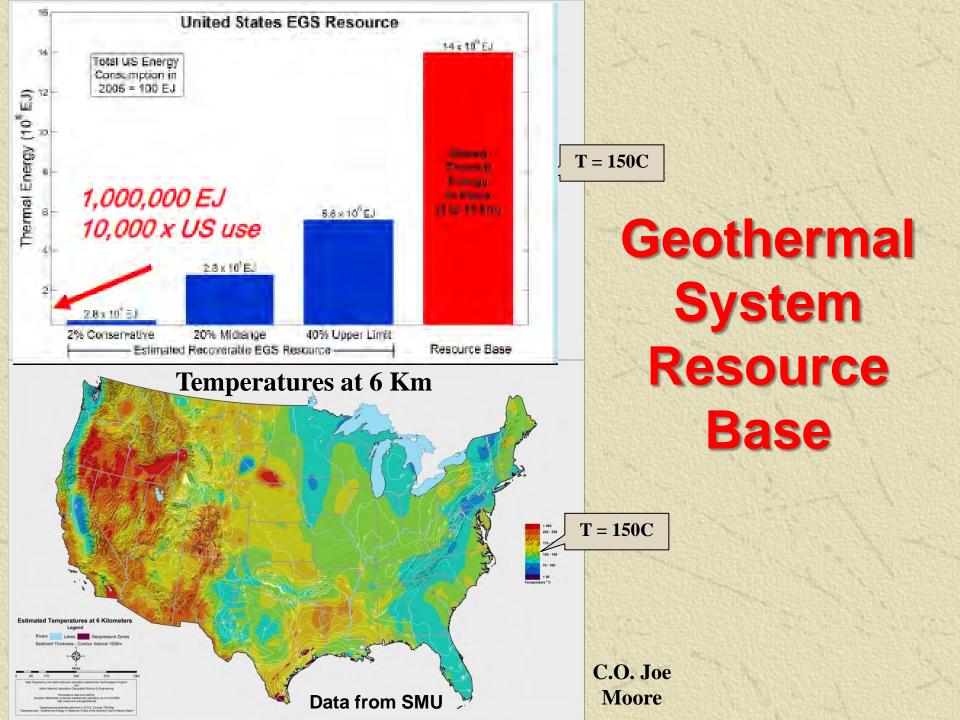
- Generate discoveries and build capacity to achieve an environmentally and economically sustainable future
- FY 2012 priorities:
 - Advance a clean energy future
 - Nurture the emerging SEES workforce
 - Expand research, education, and knowledge dissemination
 - Engage with global partners
- Environment, energy, and economy nexus

SEES - Geosciences Foci

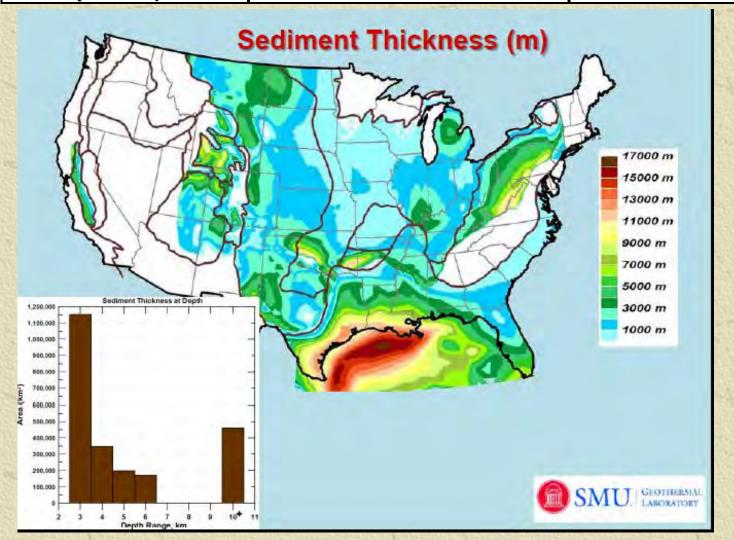

- Sustainable Energy Pathways
 - characterize and understand existing energy systems and their limitations (e.g. wind, geothermal, hydro)
 - understand risks and stressors associated with new and emerging energy sources (e.g. tidal, clean coal, carbon sequestration)
- Sustainability Research Networks
 - interdisciplinary research and education partnerships involving government, academe, and the private sector
 - address fundamental issues of use in improving policy and practices with regard to energy, the environment, and human well-being

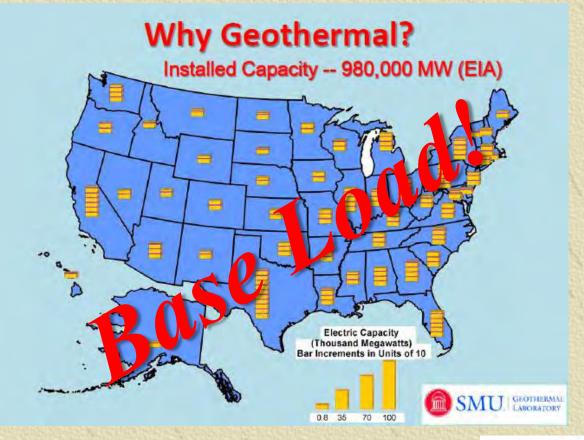
Tracking an Energy Elephant

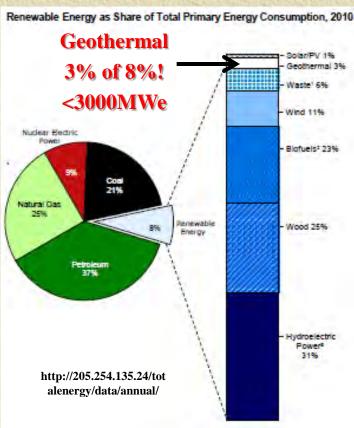
Geothermal Potential of Sedimentary Basins Nov 6-9, 2011, Salt Lake City, Utah


?

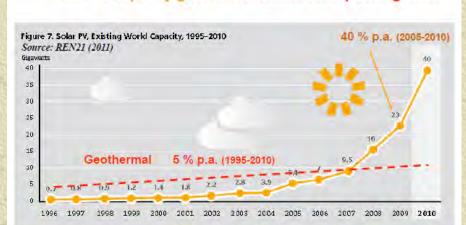
"What are the basic science and engineering questions that need to be addressed in order to make geothermal energy production from sedimentary basins practical?"

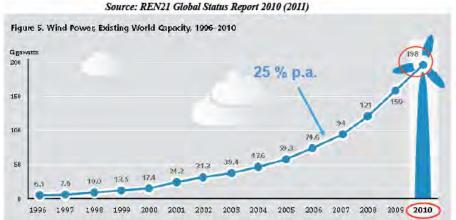

Question #1 Why Bother?

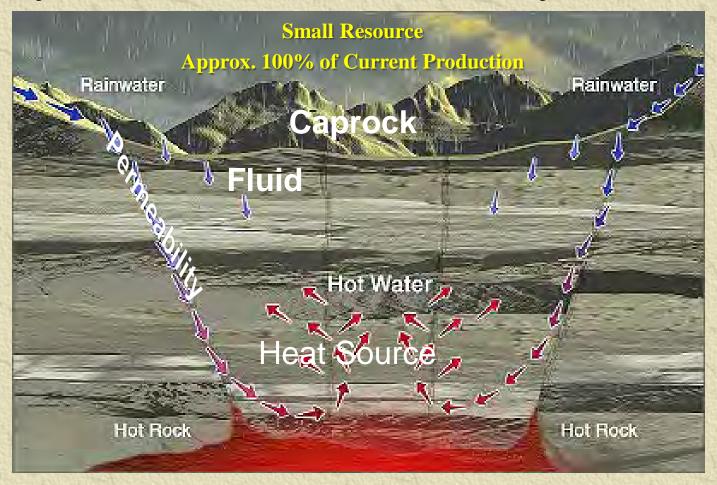




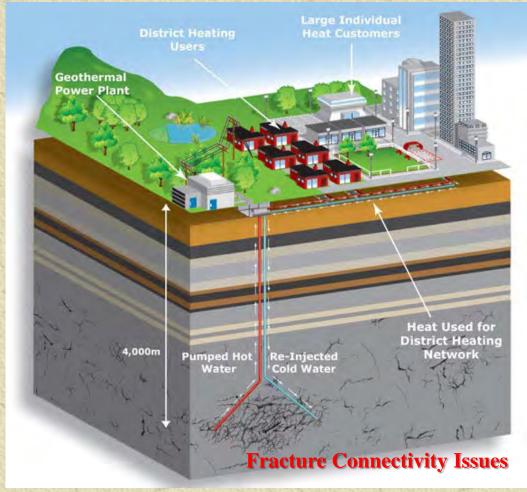
Category of Resource	Thermal Energy, in Exajoules $(1EJ = 10^{18}J)$	Reference
Conduction-dominated EGS		
Sedimentary rock formations	100,000	MIT, 2006
Crystalline basement rock formations	13,300,000	MIT, 2006
Supercritical Volcanic Systems	74100 excludes Yellowstone NP, Hawaii	USGS Circular 790
Hydrothermal	2,400 – 9,600	USGS Circular 726 and 790
Coproduced (oil field) fluids	0,0944 - 0,4510	McKenna, et al. (2005)
Geopressured systems 71,000 – 170,000 (includes metha		USGS Circular 726 and 790


(C.O. Joe Moore)

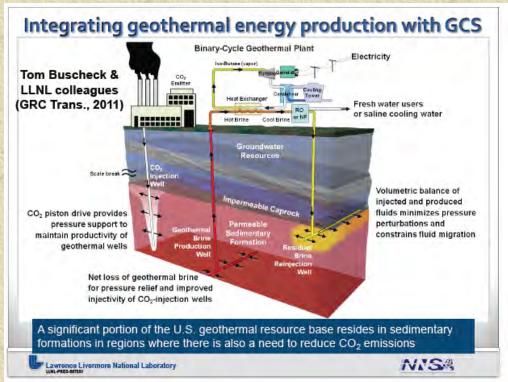


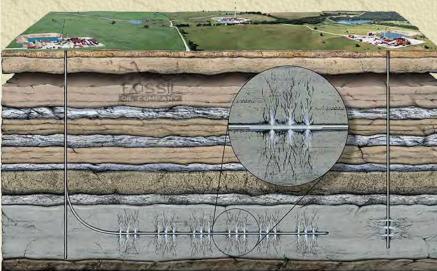

Geothermal growth: all hydrothermal! C.O. Ladsi Rybach Source: REN 21 Global Status Report 2010

Global wind power growth


Category of Resource	Thermal Energy, in Exajoules $(1EJ = 10^{18}J)$	Reference
Conduction-dominated EGS		
Sedimentary rock formations	100,000	MIT, 2006
Crystalline basement rock formations	13,300,000	MIT, 2006
Supercritical Volcanic Systems	74100 excludes Yellowstone NP, Hawaii	USGS Circular 790
Hydrothermal	2,400 – 9,600	USGS Circular 726 and 790
Coproduced (oil field) fluids	0,0944 - 0,4510	McKenna, et al. (2005)
Geopressured systems	71,000 – 170,000 (includes methane)	USGS Circular 726 and 790

Hydrothermal (Convective) Systems


C.O. Joe Moore


Category of Resource	Thermal Energy, in Exajoules $(1EJ = 10^{18}J)$	Reference
Conduction-dominated EGS		
Sedimentary rock formations	100,000	MIT, 2006
Crystalline basement rock formations	13,300,000	MIT, 2006
Supercritical Volcanic Systems	74100 excludes Yellowstone NP, Hawaii	USGS Circular 790
Hydrothermal	2,400 – 9,600	USGS Circular 726 and 790
Coproduced (oil field) fluids	0,0944 - 0,4510	McKenna, et al. (2005)
Geopressured systems	71,000 – 170,000 (includes methane)	USGS Circular 726 and 790

Enhanced Geothermal Systems

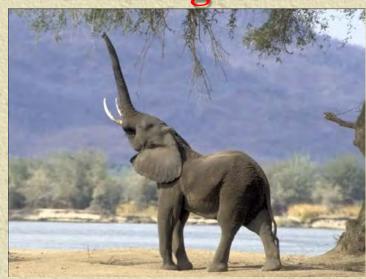
Category of Resource	Thermal Energy, in Exajoules $(1EJ = 10^{18}J)$	Reference
Conduction-dominated EGS		
Sedimentary rock formations	100,000	MIT, 2006
Crystalline basement rock formations	13,300,000	MIT, 2006
Supercritical Volcanic Systems	74100 excludes Yellowstone NP, Hawaii	USGS Circular 790
Hydrothermal	2,400 – 9,600	USGS Circular 726 and 790
Coproduced (oil field) fluids	0,0944 - 0,4510	McKenna, et al. (2005)
Geopressured systems	71,000 – 170,000 (includes methane)	USGS Circular 726 and 790

http://www.bing.com/images/search?q=oil+drilling&qpvt=oil+drilling&FORM= IOFRML#x0v6408

Sedimentary Basins Heat Volume and Matrix Permeability

Reality #1: geothermal water is a relatively lowenthalpy, low-value product compared to oil and gas

Energy Source	"Good" Well Flow Rate	Energy Flow Rate	(alue (\$/day per well)
Geothermal	100 kg/s	100 MW _e 10 MW _e	\$24k @ 10c/kWh
Ground Water	2000 gpm (130 kg/s)	pump needed	\$3k @ \$1/1000 gal
Oil	5,000 bb. d) 16 kg/s)	320 MW _{th}	\$400k @ \$80/bbl
Natural Gas	20,000 mcf/d	250 MW _{th}	\$80k @ \$4/mcf


procurant half of all wells being drilled today in U.S. are for oil and they have contained and multi-stage "frac" completions – the fracking costs ~ \$5 million on top of drilling costs

C.O Rick Allis

Hurdles!

Challenges!

Reality #2: the risk-reward equation is challenging when thinking of deep wells (3 – 5 km for high temperature stratigraphic targets); and geothermal developments need both injection and production wells. Note Mansure (2011 GRC) recommends using multiplier of 2 to correct from 2003 to 2010.

Wells > 3 km deep probably cost ~ \$7 - 10 million each

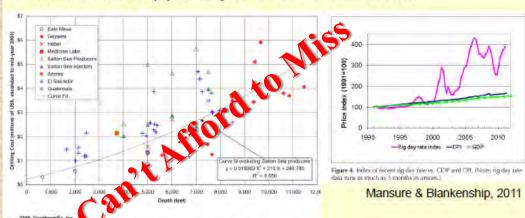
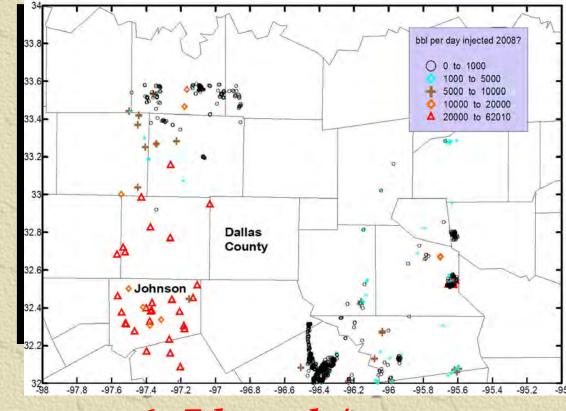


Figure 8. Correlation of drilling cost versus well depth (as of 2003) (from GeothermEx, 2004).

C.O Rick Allis

Flow Rates


Economic Sedheat

.5 barrels/sec

(80 l/sec at 150C for 5MWe; MIT Panel, 2006)

.6-.7 barrels/sec

(62k-53k bpd; Flow Rate Technical Group 2010)

Question #3 What are the questions?

Topics

The Native Basin

Heat

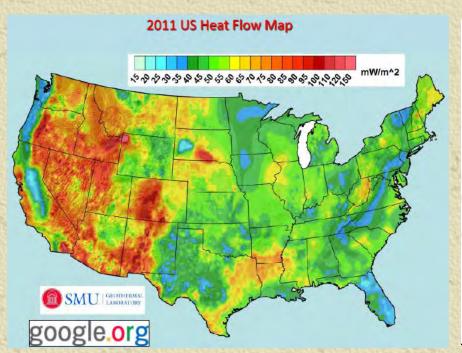
Fluid flow

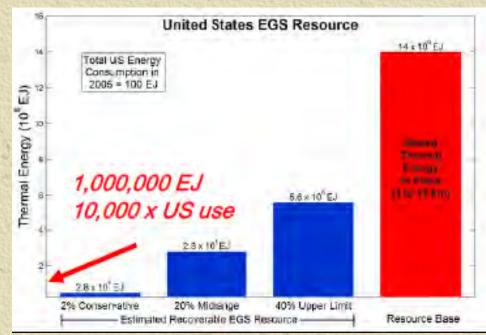
Engineering

Drilling

Reservoir

Geophysics

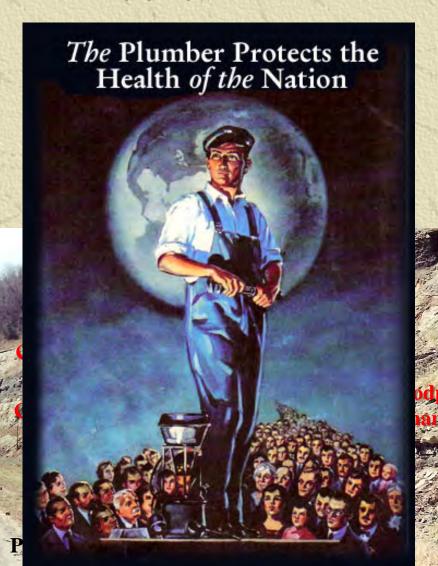

Cyberinfrastructure


Education

Topics The Native Basin Heat

How does heat move within sedimentary basins at large scales and how does this impact the renewability of the resource?

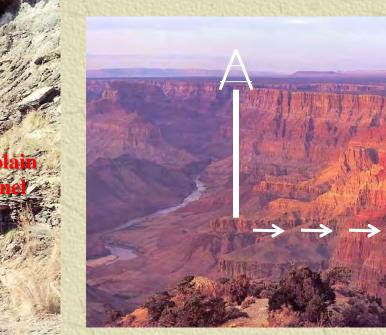
How is heat stored and released on the local and micro scales and how does this impact efficiency of heat sweep?



C.O. David Blackwell

Topics

The Native Basin

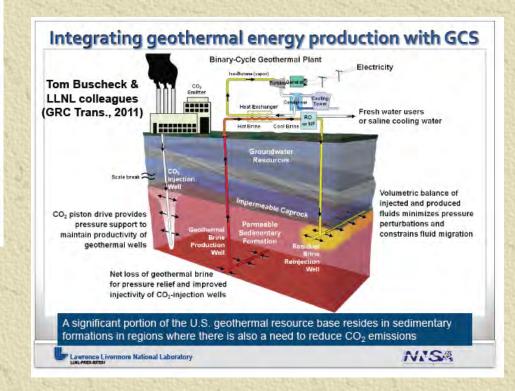

Fluid flow

What are the fundamental sedimentary processes that control the filling of sedimentary basins across all scales, and how do they impact permeability, connectivity, and heterogeneity of deep-basin flow paths?

What are the digenetic processes that operate in deep sedimentary basins and how do they augment or deduct permeability as they evolve?

What controls the natural processes whereby fractures form and evolve within basin sediments, and what is the impact of these fractures on the transmission of fluid flow?

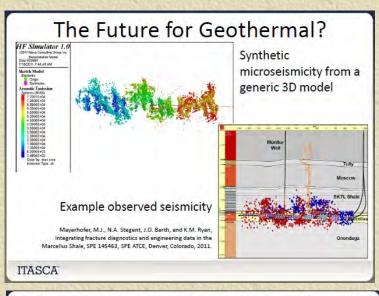
Topics Engineering Drilling


What a 10 MWe well on vertical discharge looks like...
(dry steam well on left; two-phase discharge on right)

Let's go hunting!

C.O Rick Allis

What new or improved well technologies can make drilling and developing large boreholes possible and practical at very high temperatures?


Can numerical decision models be generated that effectively predict geothermal operational risk?

Topics

Engineering

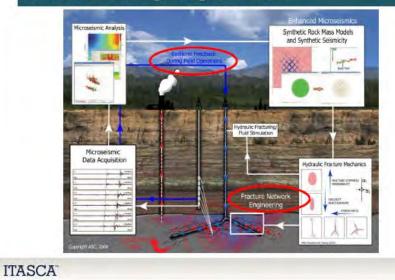
Reservoir

Role of Heterogeneities and Discontinuities

- Faults
- Joints
- Layers
- Interbedding
- Anisotropy
- Lenses
- Veins

Fisher, K., and N. Warpinski, Hydraulic fracture height growth: real data, SPE 145949, SPE ATCE, Denver, Colorado, 2011

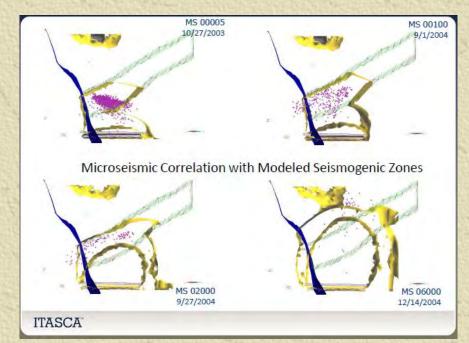
Fig. 16—Mineback photograph (and like drawing) of fracture kinking, offsetting, and turning as interface is cross

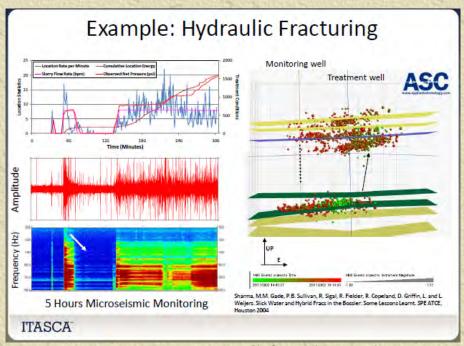

What new techniques can be defined that permit us to predict, control, and monitor stimulated fracture systems in deep, hot, and heterogeneous media?

How can we effectively monitor the evolution of fractures, heat regime, and stress conditions induced by geothermal extraction?

What are the relationships and thresholds between modified fluid pressures and induced seismicity?

Interpreting fracture diagnostics from microseismic data provides a double feedback for engineering the network.

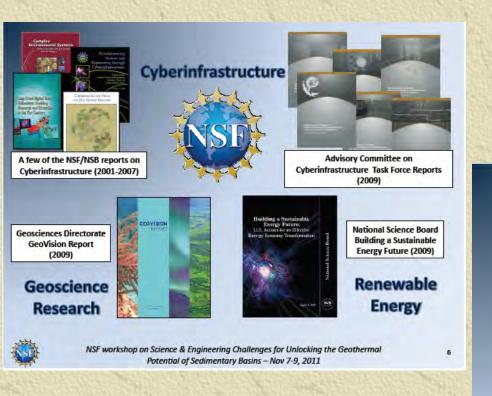

C.O. Will Pettitt


Topics Geophysics

How can discrete geophysical methods be integrated to identify basin properties critical to geothermal development (e.g. permeability pipes, thermal distribution, etc)?

What are the critical advances needed to better predict and measure thermal properties of fluids and solids in deep-Earth settings?

How can geophysical aspects of deep-Earth settings be effectively simulated within the lab?



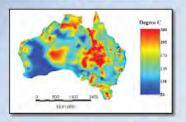
C.O. Will Pettitt

Topics

Cyberinfrastructure

C.O. Walter Snyder

What partnerships best serve research advancement and industrial success of sedimentary basin geothermal systems and how are they most effectively linked?


What data sharing systems are most likely to be both effective and organically grow?

SOME SOCIAL/POLITICAL/CULTURAL ISSUES

International collaboration and cooperation

Working with the international geothermal community on:

- Developing common approaches, standards and protocols to data
- Sharing data modeling approaches and software

NSF workshop on Science & Engineering Challenges for Unlocking the Geothermal Potential of Sedimentary Basins – Nov 7-9, 2011

Topics Education

What short-term and long-term efforts will prove most effective toward tempering workforce shortages expected of an emerging geothermal industry?

What efforts would prove most effective at raising the current low profile of geothermal energy in the mind of the public and policy makers?

National Geothermal Academy Summer 2012

What are the positive and negative feedbacks tied to relationships between the geothermal and oil and gas industries as it relates to perceptions, workforce development, and educational infrastructure?

What are the most effective forms of cyberinfrastructure that may be used to promote sharing of data and education materials in order to foster more offerings of geothermal curricula?

What are the best vehicles for fostering cross-disciplinary education and scholarship between engineering and science disciplines?

What are the best processes for building an educational and workforce pipeline from K-12, though undergraduate, to graduate, to professional in the geothermal sciences, and how can we best assure that women and minorities are not leaked from this system?

+ Over 50 attendees from around the world...
....gathered in Reno, Nevada!

Attracted students, professors, and industrialists backgrounds and expertise

Question #4 The Next Steps?

SEDHE

-NSF Research Coordination Network (RCN)

Build a research community for geothermal energy from sedimentary basins

-What Do We Do?

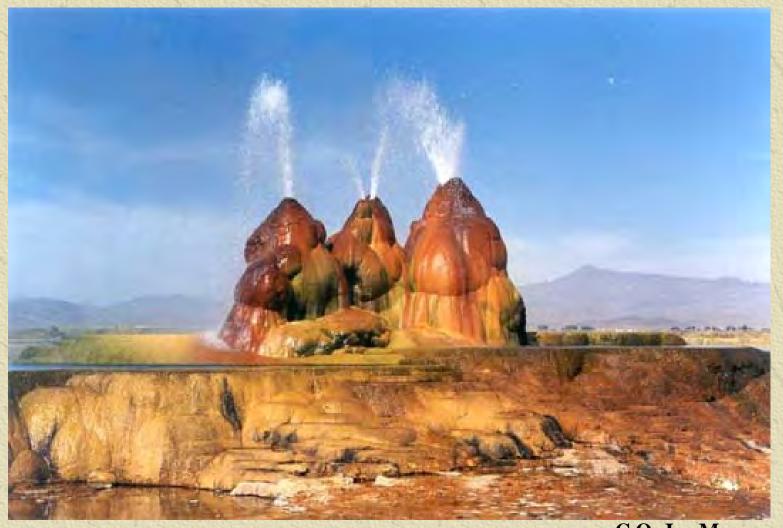
Workshops

GSA Penrose: Predicting and Detecting Natural and Induced Flow Paths for Geothermal Fluids in Deep Sedimentary Basins

Student opportunites

Lab visits, etc.

Education


Short courses, Web Materials

Sponsorship

Web page

WWW.SedHeat.org

Contact me John.holbrook@TCU.EDU

C.O. Joe Moore