
Geothermal Technologies Office 2013 Peer Review

ENERGY Energy Efficiency & Renewable Energy

confidential, or otherwise restricted information.

 Demonstrate/test the technical and economic feasibility of generating electricity from low-temperature (150° F to 300° F) geothermal resources using binary power systems.

2. Demonstrate that the technology can be replicated within a wide range of physical parameters including fluid temperatures, flow rates, and the price of electricity sales.

3. Disseminate the results of this study by publishing and presenting in national, regional and local venues

- 4. Facilitate entrepreneurship in development of oil field geothermal resources
- 5. Train scientists and engineers in geothermics.

Scientific/Technical Approach DE-EE002854 Low Temperature


U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Aqua Advisory Group

- Water Flood EOR
- Cedar Hills Oil Field
- Bowman, County, ND
- 210 °F, 875 gpm, low TDS water from Lodgepole Fm.
- One of five wells total available water 1,750 gpm
- Two 125 kW ORC engines by Access Energy

Scientific/Technical Approach DE-EE002731 Co-Produced

Energy Efficiency & Renewable Energy

(0)

(())

DE-EE0002731 Co-Produced

- Water Flood EOR
- Eland-Lodgepole Field
- Dickinson, ND
- 210 °F, 400 gpm, high TDS water from Lodgepole Fm.
 - 12 oil wells
- 5 injection wells
- 1 gas flare

Original partners: Encore, Inc. Denbury, Inc. West Plains Electric Coop. – Basin Electric

Edward Arthur Patterson Lake

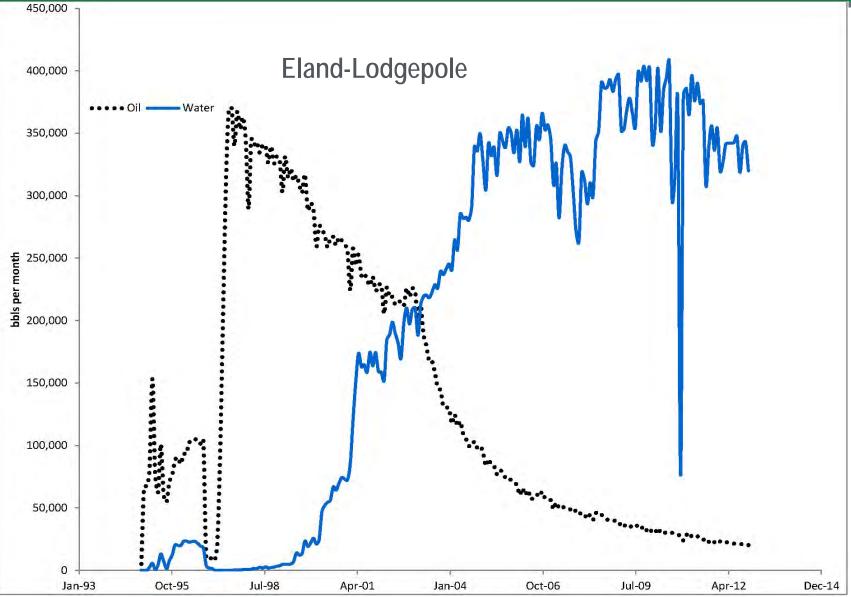
Image © 2011 DigitalGlobe © 2011 Google Image © 2011 GeoEye © 2011 Europa Technologies 97" N 102°52'27.68" W elev 738

4 | US DOE Geothermal Office

Imagery Dates: Nov 23, 2003

Objective 1: Demonstrate Feasibility

eere.energy.gov


ODOGIE

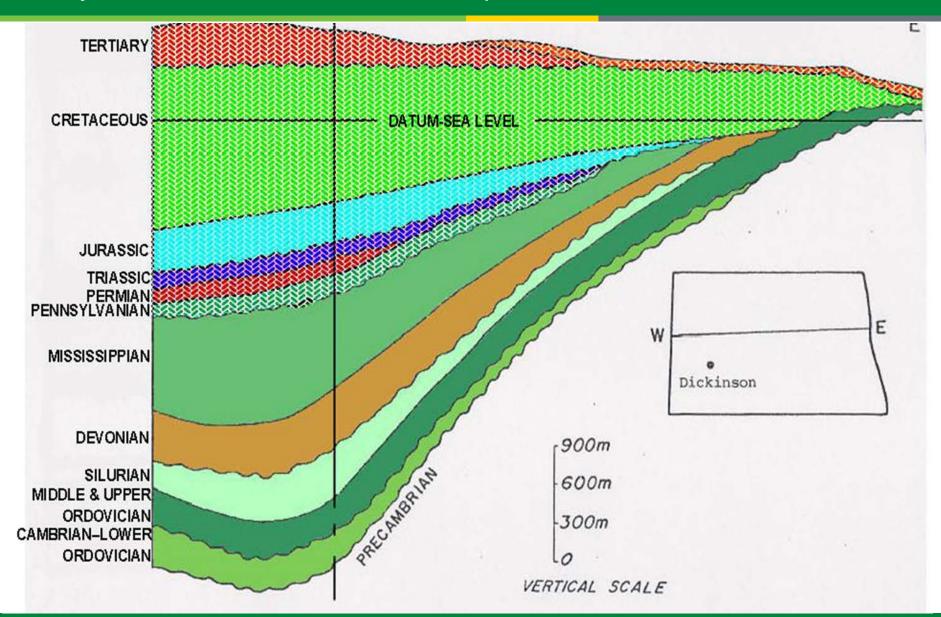
Eve alt 5.99 km

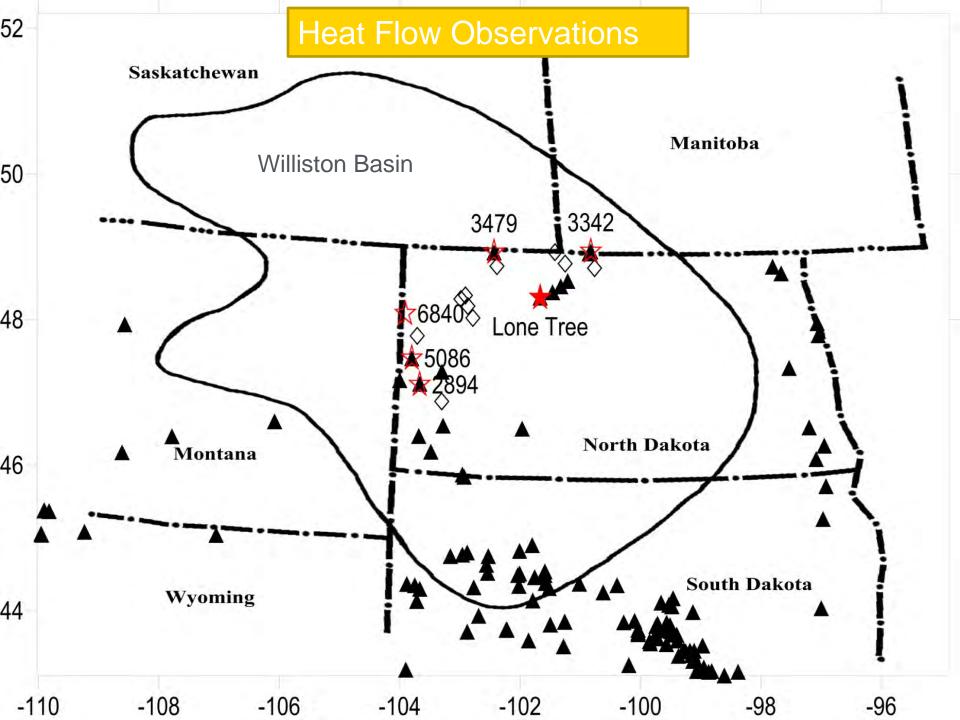
Scientific/Technical Approach DE-EE002731 Co-Produced

Energy Efficiency & Renewable Energy

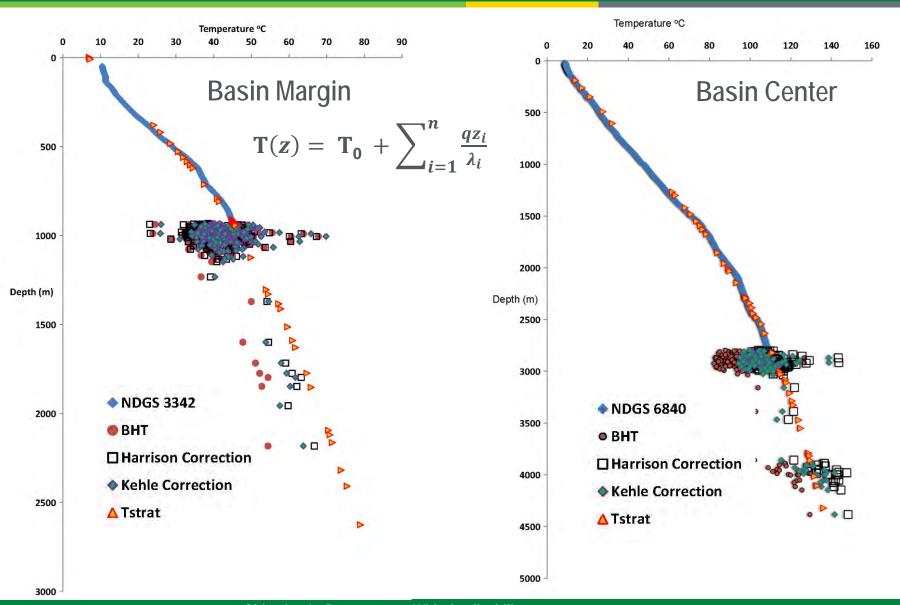
5 | US DOE Geothermal Office

Objective 1: Demonstrate Feasibility


eere.energy.gov

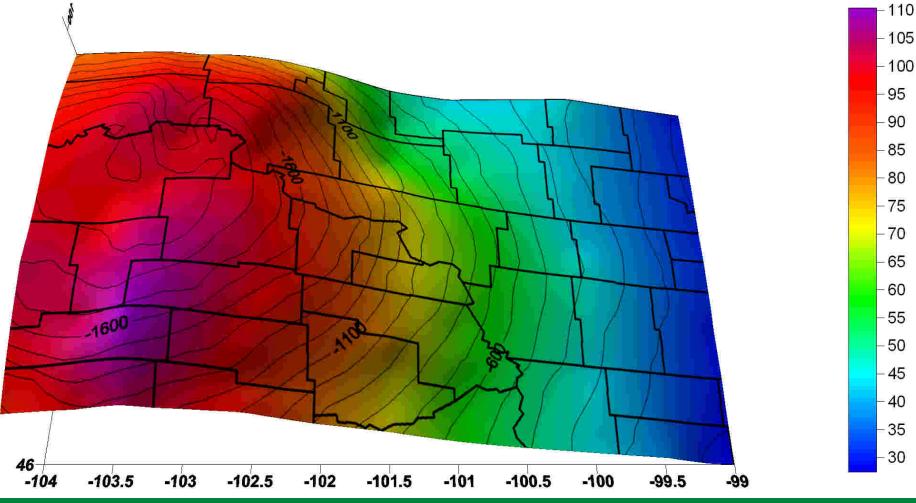

Scientific/Technical Approach Identify resource and document temperatures **ENERGY**

Energy Efficiency & Renewable Energy


7 | US DOE Geothermal Office

Objective 2: Demonstrate Wide Applicability

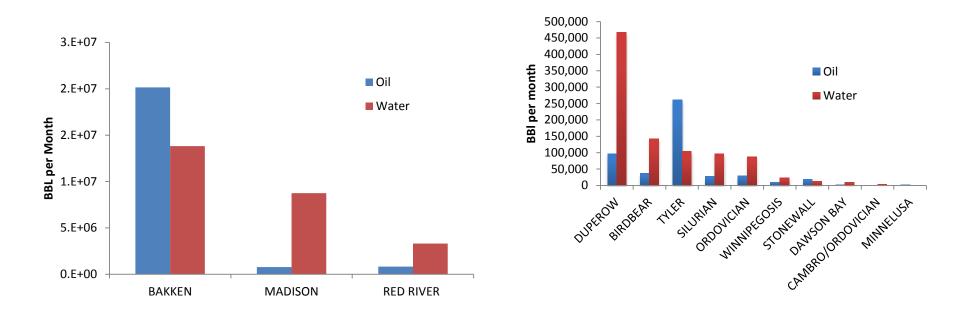
Scientific/Technical Approach Identify resource and document temperatures **ENERGY**


Energy Efficiency & Renewable Energy

The ultimate goal is to produce accurate temperature data for geothermal aquifers on a basin-wide scale.

ENERGY Energy Efficiency & Renewable Energy

This is an example of temperature contours (color) and structure contours for the Madison formation


Scientific/Technical Approach Identify main water producing formations

• The main oil and water producing formations in the Williston Basin are:

Pool	BBLS Oil	BBLS Water	WOR Ratio	BBI oil/well	BBI water/well
BAKKEN	20,046,962	13,818,929	0.7	4,163	2,869
RED RIVER	829,559	3,305,592	4.0	1,659	6,611
MADISON	699,470	8,119,405	11.6	366	4,253

Numbers are BBLS per month for 2012

U.S. DEPARTMENT OF EI

The top producing oil wells in the Madison – Lodgepole formation do not yield sufficient water to be economic as a co-produced system. If the wells were produced solely for water at rates water wells in the Lodgepole are known to produce, the power production would be significant.

Madison	100 °C		H ₂ O		Co-produced	Moderate	High
Oil bbl/day	y H₂O bbl/day	Fluid bbl/day	gpm	lb/hr	power (kW)	Rate (kW)	Rate (kW)
28	3511	3539	98	46809	110	2,200	22,000
92	3006	3099	84	40084	80	1,600	16,000
36	2722	2758	76	36287	73	1,460	14,600

Power Production from top Madison and Red River Units in Co-Production Scenario

2,351	2,282,671	117	262			
		11/	262	2,045	2,307	1,170
5,634	605,212	115	346	542	888	426
7,908	127,200	22	25	114	139	62
l bbl	Water bbl	No. Wells	Oil gpm	Water gpm	Total gpm	kWe
0,009	786,028	18	9	704	713	384
4,564	416,072	23	22	373	395	235
1,388	318,719	12	19	286	305	146
1	7,908 1 bbl 0,009 1,564 L,388	7,908 127,200 I bbl Water bbl 0,009 786,028 1,564 416,072 L,388 318,719	7,908127,200221 bblWater bblNo. Wells0,009786,028184,564416,072231,388318,71912	7,908127,20022251 bblWater bblNo. WellsOil gpm0,009786,0281894,564416,0722322	7,908127,20022251141 bblWater bblNo. WellsOil gpmWater gpm0,009786,0281897044,564416,07223223731,388318,7191219286	7,908127,20022251141391 bblWater bblNo. WellsOil gpmWater gpmTotal gpm0,009786,0281897047134,564416,07223223733951,388318,7191219286305

12 | US DOE Geothermal Office

Objective 2: Demonstrate Wide Applicability

 Temperatures were determined from corrected BHTs; production data from NDIC Oil & Gas web site

Pool	BBLS Oil	BBLS Water	Max T $^{\circ}\text{C}$ at 1 Σ	Min T °C at 1 Σ	Avg T °C
BAKKEN	20,046,962	13,818,929	128	116	122
RED RIVER	829,559	3,305,592	147	113	130
MADISON	768,496	8,691,561	118	92	105

Heat Source		Bakken	Red River	Madison	Cedar Hills
ORC Efficiency (20 F)	%	13.5%	14.4%	11.6%	11.0%
ORC Power Output (20 F)	kW	12,523	2,172	4,308	407
ORC Modules (20 F)	#	100	17	34	3
ORC Efficiency (40 F)	%	11.8%	12.7%	9.9%	9.2%
ORC Power Output (40 F)	kW	10,946	1,916	3,676	341
ORC Modules (40 F)	#	88	15	29	3
ORC Efficiency (70 F)	%	9.4%	10.3%	7.4%	6.7%
ORC Power Output (70 F)	kW	8,720	1,554	2,748	248
ORC Modules (70 F)	#	70	12	22	2

•	ments, Results, Progre MT ORC Module Product Speci	
 turbine and high e IPM utilizes magn yields high efficier gearbox and lubric 18 MW of capacity 	ncy and eliminates cation Power Electronics	Carefree TM MT IPM Vapor from Evaporator to Expander
Parameters	Thermapower™ MT ORC Module	
Power	125 kW Gross	
Voltage	3Ø, 400 to 480 V L-L (Nominal)	
Frequency	50/60 Hz	
Input Temperature	250 F (121 C) to 350 F (177 C)	
Organic Working Fluid	Closed Loop, Non-Ozone Depleting Refrigerant	Economizer
Module Weight (approx)	6,500 lbs (2,948 kg)	Variable Speed Pump Liquid from Pump to Evaporator
Module Dimensions	113 in (287 cm) x 50 in (127 cm) x 80 in (203 cm)	Vapor from Expander to Condenser

Accomplishments, Results, Progress

Thermapower[™] XLT ORC Module Product Specifications

Energy Efficiency & Renewable Energy

Patented IPM consisting of high speed Carefree[™] XLT IPM turbine and high efficiency generator **PLC and Magnetic Bearing Controller** IPM utilizes magnetic bearings – Receiver Tank Liquid from yields high efficiency and eliminates Condenser to **Power Electronics Receiver Tank** gearbox and lubrication New development Release expected Q4 - 2013 Thermapower[™] XLT ORC Module **Parameters** 125 kW Gross Power 3Ø, 400 to 480 V L-L (Nominal) Voltage 50/60 Hz Frequency Input Temperature 180 F (82 C) to 220 F (104 C) **Organic Working** Closed Loop, Non-Ozone Depleting Fluid Refrigerant Variable Speed Pump Module Weight 6,500 lbs (2,948 kg) Liquid from Pump to Evaporator (approx) Vapor from Expander to Condenser Module Dimensions 113 in (287 cm) x 50 in (127 cm) x 80 in (203 cm) Vapor from Evaporator to Expander

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Efficiency of the Thermalpower[™] XLT ORC

Heat Source Supply Temp (F)	Theoretical Rankine Efficiency	Estimated Thermapower TM ORC Efficiency
280	17.2%	15.2%
275	17.0%	15.0%
270	16.7%	14.7%
265	16.4%	14.4%
260	16.1%	14.1%
255	15.8%	13.8%
250	15.5%	13.5%
245	15.2%	13.2%
240	14.9%	12.9%
235	14.6%	12.6%
230	14.3%	12.3%
225	13.9%	11.9%
220	13.6%	11.6%
215	13.3%	11.3%
210	13.0%	11.0%
205	12.6%	10.6%
200	12.3%	10.3%
195	12.0%	10.0%
190	11.6%	9.6%
185	11.3%	9.3%
180	10.9%	8.9%

Assumptions:

1) Ambient Temp 20 F

2) Evaporator Temp Pinch 10 F

3) Condenser Temp Pinch 20 F

Heat Source Supply Temp (F)	Theoretical Rankine Efficiency	Estimated Thermapower TM ORC Efficiency
280	15.6%	13.6%
275	15.3%	13.3%
270	15.0%	13.0%
265	14.7%	12.7%
260	14.4%	12.4%
255	14.1%	12.1%
250	13.8%	11.8%
245	13.5%	11.5%
240	13.2%	11.2%
235	12.9%	10.9%
230	12.6%	10.6%
225	12.2%	10.2%
220	11.9%	9.9%
215	11.6%	9.6%
210	11.2%	9.2%
205	10.9%	8.9%
200	10.6%	8.6%
195	10.2%	8.2%
190	9.9%	7.9%
185	9.5%	7.5%
180	9.1%	7.1%

Assumptions:

1) Ambient Temp 40 F

2) Evaporator Temp Pinch 10 F

3) Condenser Temp Pinch 20 F

Accomplishments, Results and Progress

Widely Disseminate the Results

 Faculty and students have produced 15 journal articles and 45 presentations at national and regional meetings. Two GRC presentations and one AGU presentation received awards for best paper in session.

Develop a Skilled a Work Force

 Thirty students (5 PhD, 9 MS and 16 BS) representing five different academic disciplines and six degree programs have participated in our geothermal projects. Ten of these have completed or are completing graduate degrees with geothermal thesis topics

Help Geothermal Entrepreneurs

 We have encouraged entrepreneurship through support for designing the Low-Temperature, High-Efficiency Access Energy ORC (Thermapower[™] XLT ORC) and collaboration with Advanced Aqua Group in testing a produced water clean-up system.

Future Directions

- Phase III, installation and monitoring of power production will begin during the summer of 2013 and continue through August 2015.
- The North Dakota Industrial Commission projects that the state will need at least an additional 500 MW of power to produce oil from the Bakken formation. This is a great opportunity to establish a network of distributed power systems with co-produced fluids from quad and larger drill pads.
- Three electric cooperatives in the oil patch have expressed interest in the project. Slope Electric Cooperative; West Plains Electric Cooperative; Rough Rider Electric Cooperative
- Cooperate with AAG to install produced water cleanup systems powered by a combination of geothermal ORCs and waste gas generators.
- Continue to publish and present information on the project at national, regional and local venues.

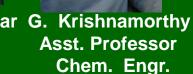
- We have compiled data and developed methods that have enabled us to reach a clear understanding of the geothermal potential of the Williston Basin.
- Power production from co-produced fluids is feasible and could be economic in unitized fields with multi-well drill pads.
- Distributed binary systems in unitized or watered-out fields could provide a significant power resource.
- The driver in development should be the electrical power industry. The petroleum industry has a low level of interest.
- The Access Energy XLT IPM ORC offers an increase in power production through greater efficiency.

The University of **PREEC** North Dakota Geothermal Energy Team

Will Gosnold Professor Geophysics

Officer

Rich LeFever Assoc. Professor Petrol. Geol.



Mike Mann Professor Chem. Engr.

Hossein Salehfar Professor Elec. Engr.

Lance Yarbrough Asst. Professor Geol. Engr.

Engineer

