

Southern Methodist University

Geothermal Laboratory

"Bringing The Earth's Energy Into Your Community"

Geothermal Energy and Waste Heat to Power: Utilizing Oil and Gas Plays

Energy Production with Mixed Hydrocarbons and Geopressured Integrated Hybrid Systems

March 13-14, 2013 Conference, SMU Campus, Dallas, TX

"Nonconventional" geothermal power

- Unique and successful set of project developments:
 - utilization of <u>co-produced fluids</u>
 - geo-pressured hybrid technology including waste heat to power
 - increasing technology transfer to the oil and gas industry
- First commercial use of ORC on "un-separated mixed hydrocarbons" - mid-stream oil production facility in CA
- Developing geopressured hybrid geothermal
 - low-moderate temperature geo-pressured fluids
 - recover the waste heat from the engine exhaust and jacket water
 - from burning entrained naturally occurring solution gas assets

- "Major's" Problem statement:
 - Develop a waste heat recovery project
 - Using binary turbine technology
 - Convert waste heat into electricity
 - Hydrocarbon-water-multi-phase
 - Prior to separation
 - Mid-stream processing facility

Constituent	C#
Methane	C-1
Ethane	C-2
Propane	C-3
Natural Gas Fraction	
Butanes	C-4
Pentanes	C-5
Hexanes	C-6
Gasoline Fraction	
Heptanes	C-7
Octanes	C-8
Nonanes	C-9
Gasoline Fraction	
Decanes	C-10
Undecanes	C-11
Dodecanes	C-12
Kerosene Fraction	
Tridecanes	C-13
Tetradecanes	C-14

Oxygen/Argon C	2/Ar
Nitrogen	N2
Carbon Dioxide	CO2
Carbon Monoxid	e CO
Methane	C-1
Ethane	C-2
Propane	C-3
Iso-Butane	C-4
N-Butane	C-4
Neo Pentane	C-5
Iso-Pentane	C-5
N-Pentane	C-5
Hexanes Plus C	-6 (+)
Hydrogen	H2
Hydrogen Sulfid	e H ₂ S

Vapor Flow Rates	Total	MSCFD
		lb/hr
Gas		MSCFD
		lb/hr
Steam		BSPD
		lb/hr

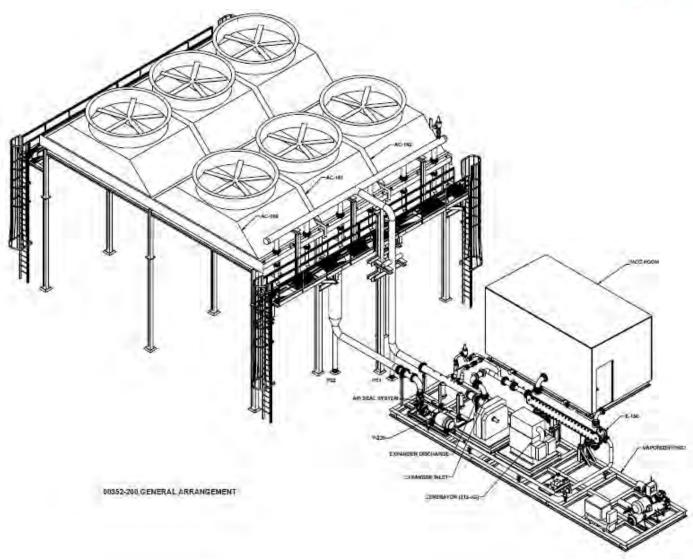
Physical Data

BTU cu.ft. ideal =

BTU cu.ft. real =

BTU/lb, ideal =

(Density) Sp. Gr. Ideal =


(Density) Sp. Gr. Real =

Density Ibm/(1000 ft³) =

Dew Point (Water Content) Calculation.
ASTM D 1142
(14.7 pola 80°F Bace)

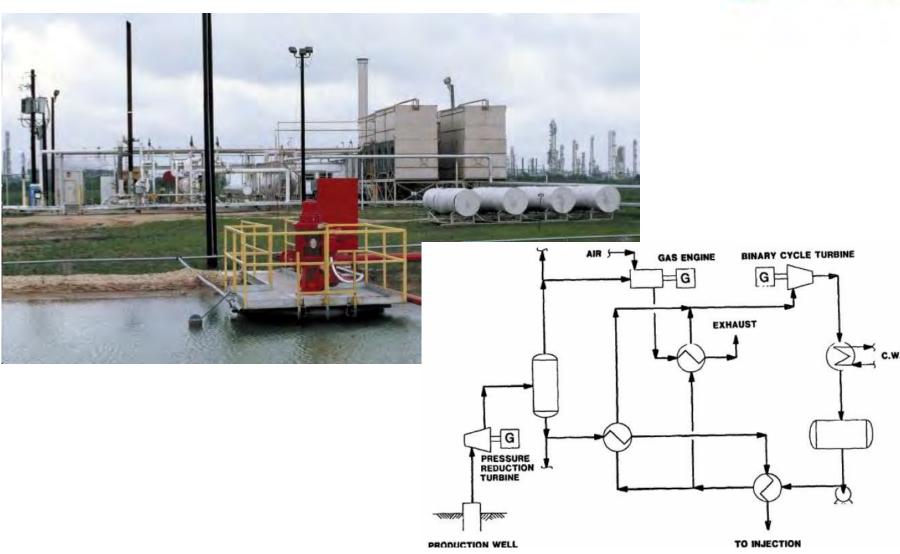
C-H-O-N-S
% Carbon =
% Hydrogen =
% Oxygen =
% Nitrogen =
% Sulfur =
Total =

"Geopressured Hybrid"

- Been there Done that....
 - Late 1980s, Ben Holt Co. designed, built, and operated a demo plant
 - Pleasant Bayou geopressured resource
- The power plant operated successfully...
 - Electricity could be generated from geopressured resources
 - With high reliability, using standard materials of construction
- Using a hybrid cycle...
 - Electricity generated by burning entrained gas in engines
 - heat from the gas engine exhaust supplements heat from the brine
 - improve efficiency of the binary cycle
- The project was co-funded by the U.S. Department of Energy and the Electric Power Research Institute.

"Geopressured Hybrid"

SUCCESS!!!


- Nominal 1.0 MW hybrid cycle (10,000 BPD)
- Multiple energy streams running on brine and gas

The hybrid cycle power plant demonstrated that **there are no technical obstacles** to electricity generation.

The hybrid power system demonstration at Pleasant Bayou was successful in all respects.

"Geopressured Hybrid"

"Geopressured Integrated Hybrid"

TAS ENERGY – Developments in the Gulf Coast Region...

- Binary w/ "Un-separated mixed hydrocarbons" HEX
- Recover waste heat from engine exhaust & jacket water
- Substantial efficiency improvements
- Nominal 3.5 MW Integrated Hybrid Cycle (25,000 BPD)

Conclusion

Generating electricity from multiple energy streams

- Reduces overall project expenses
- Reduces or eliminates CO2 emissions
- Decreases operator dependency on the local grid
- May qualify for Renewable Energy Credits
- Combining surface & reservoir sources of thermal energy maximizes the opportunity for Return on Investment.

Questions

Thank You!

Halley Dickey hdickey@tas.com

+1 909-838-6235

+1 713-877-8700

www.tas.com

