The University of North Dakota NORTH DAKOTA GEOTHERMAL PROJECTS WILL GOSNOLD

Geothermal Energy Utilization Associated with Oil and Gas Development Southern Methodist University, Dallas, Texas June 13-15, 2011

OUTLINE

ND and Williston Basin

- Project and Partners
- Phase I tasks
 - Energy conversion systems
 - Economics, electrical power concepts
- Other prospects in the basin
 - Geology, fields, fluids, temperatures

WILLISTON BASIN BINARY POWER PROJECT SITES

PRO FACTORS FOR BINARY POWER FROM CO-PRODUCED FLUIDS IN WILLISTON BASIN

- Future need for power
- High temperatures in producing formations
- Cool climate yields high ΔT for air cooling
- Extensive drilling:
 - 19,711 wells drilled
 - 5,031 TA or shut-in wells
 - 450 multi-well pads

CON FACTORS FOR BINARY POWER FROM CO-PRODUCED FLUIDS IN WILLISTON BASIN

- Lack of water for water cooling
- Low water production (2-5 X oil production)
- High TDS in water east of Cedar Creek Anticline
- Low price of electricity

GROSS POWER OUTPUT AS A FUNCTION OF AVERAGE MONTHLY TEMPERATURE

res & Well History

1				

WB WATER PRODUCTION

- Water production in Williston Basin is low compared to other oil producing basins
- Formations pumped for water yield 20 to 200 times as much water as those pumped for oil

	BARRELS OF	BARRELS OF	MAX. TEMP
FORMATION	OIL	WATER	С
Spearfish	582,601	320,626	120+
Spearfish/Madison/Charles	52,923,055	81,138,008	120+
Tyler	17,279,723	9,616,114	120+
Madison	1,003,859,751	2,266,631,018	132
Bakken (Sanish)	43,079,616	4,876,685	135+
Birdbear (Nisku)	16,532,269	19,875,577	135+
Duperow	48,360,560	51,290,164	135+
Souris River	58,090	61,886	140+
Dawson Bay	3,985,365	1,191,086	145+
Winnipegosis	8,853,724	6,663,034	145+
Interlake	62,397,829	140,808,361	145+
Stonewall	14,699,878	5,134,309	145+
Winnipegosis	8,853,724	6,663,034	145+
Red River	162,448,927	162,167,866	150+
Winnipeg/Deadwood	168,170	256,474	150+
Total	1,602,219,737	2,927,676,055	

PROJECTS AND PARTNERS

Low Temperature Fluids

• Cedar Creek Field - Water Flood – Bowman, County, ND

- 210 °F, 875 gpm, low TDS water from the Lodgepole Fm.
- One of five wells total available water 1,750 gp

Partners

- Continental Resources, Inc.
- Calnetix, Inc.

MARMARTH, ND LOW-TEMPERATURE SITE

CO-PRODUCED FLUIDS

- Eland Lodgepole Field Dickinson, ND
 - 210 °F, 470 gpm, high TDS water from Lodgepole Fm.
 - 12 wells in unitized field
 - Patterson Lake potential water cooling source
- Denbury, Inc.

DICKINSON, ND CO-PRODUCED SITE

ENERGY CONVERSION EVALUATION

Feature	Ormat	Pratt & Whitney	Deluge	Recurrent	Electratherm	Calnetix
Output (kW)	350	430	1750	845	235	550
Net kW	300	407	1487.5	750	191	495
Footprint (sq. ft.)		420	2800	124	3406	100
Remote operation	yes	yes	yes			yes
Cooling	air	air	not provided	I not provided	Forced air	Forced air
No. machines	1	2	7	1	5	2
Working fluid	R245fa	R245fa	liquid CO ₂	$H_2O \& NH_3$	R245fa	R245fa
Delivery	10 mos	4 mos	4 to 7 mos	10 mos	4 mos	9 mos
Cost	\$1,600,000	\$1,175,000	\$4,165,000	\$1,926,500	\$965,665	\$1,475,000
Extra Infrastructure	none	Building	Building	Building	Building	none
Extra costs for cooling	0	\$565,000	\$350,000	\$565,000	\$250,000	0
Warranty	1 yr.	1 yr,	1 yr.	1 yr.	ext 5 y., included	18/12
Outdoor/Indoor	Outdoor	Indoor	Indoor	Indoor	Indoor	Outdoor

ENERGY CONVERSION EVALUATION

Feature	Ormat	Pratt & Whitney	Deluge	Recurrent	Electratherm	Calnetix
Output voltage	480	480	480	480	480	350 -500
Shipping	we pay	yes				we pay
Performance guarantee	yes			yes		yes
Insulation for HE and Pipe	yes					
Connection to grid	no	yes	no	no	no	yes
Transportation to site	yes	yes	unknown	unknown	yes	no
Special	no pad req.	Turnkey install.	pad req.	no pad req.	pad req.	no pad req.
Infrastructure	\$10,000	\$60,000	\$60,000	\$60,000	\$60,000	\$10,000
Total Cost	\$1,610,000	\$1,800,000	\$4,575,000	\$2,551,500	\$1,275,665	\$1,485,000
Cost per kW	\$5,367	\$4,423	\$3,076	\$3,402	\$6,679	\$3,000
Yearly sales \$.05/kWh	\$124,912	\$169,464	\$619,356	\$312,280	\$79,527	\$206,105
Years to cover investment	12.9	10.6	7.4	8.2	16.0	7.2

DOE CREST MODEL RESULTS

Cost of Renewable Energy Spreadsheet Tool

CUMULATIVE CASH FLOW USING \$.05 PER KWH LEVELIZED COST OF ELECTRICITY

Calnetix ORC System

- Minimal on-site engineering
- Skid-mounted
- Direct electrical connect
- Top-mounted air cooling
- High efficiency

Net Metering Schematic

Standby Schematic

WILLISTON BASIN RESOURCE EVALUATION

- 10,989 BHTs
- Formation temperatures and depths for 5,031 abandoned or shut in wells
- Formation temperatures and depths for 5,922 active wells
- Water and oil production volumes and rates for 6,115 active wells
- 33 conventional heat flow measurements
- 303 heat flow estimates from bottom-hole temperatures
- 368 thermal conductivity measurements on core samples

Geothermal Map of North America, 2004

Dr Blackwell and M. Richards, Eds.,

Most of the complexities in heat flow variability in the sedimentary sections may be due to fluid flow.

MANITCIDA

ONTARIO

19,711 WELLS

PENNSYLVANIAN& MISSISSIPPIAN BHTS

DEVONIAN BHTS

SILURIAN BHTS

ORDOVICIAN BHTS

CAMBRIAN BHTS

$$q_R = \rho cad(T - T_{ref})$$

q_R is the resource base (J), **ρc** is volumetric specific heat of rock plus water (J m⁻³ K⁻¹), **a** is formation area (km²), and **d** is formation thickness (km)

90° -100°		Avg Thick	Area F	Rock Volume	H ₂ O Volume	Energy R.	Energy W.	
Fm or Sys	Porosity	km	km ²	km³	km³	Joules	Joules	
Mississippian	0.15	2.61	54,400.34	95,313.53	14,297.03	1.59E+19	2.39E+18	
Devonian	0.18	1.50	23,071.55	34,538.10	6,216.86	5.78E+18	1.04E+18	
Silurian	0.04	0.80	20,728.59	16,679.01	729.57	2.79E+18	1.22E+17	
Ordovician	0.08	1.13	34,281.26	38,864.32	3,225.74	6.50E+18	5.40E+17	
Deadwood	0.07	0.51	13,741.71	7,072.38	495.07	1.18E+18	8.28E+16	

90° -100°	Energy Fluid	110° - 120°	Energy Fluid	
Fm or Sys	Joules	Fm or Sys	Joules	
Mississippian	2.39E+18	Mississippian	3.16E+18	
Devonian	1.04E+18	Devonian	1.82E+18	
Silurian	1.22E+17	Silurian	1.53E+17	
Ordovician	5.40E+17	Ordovician	1.44E+18	
Cambrian	8.28E+16	Cambrian	2.76E+17	
100° -110°	Energy Fluid	120° - 130°	Energy Fluid	
Fm or Sys	Joules	Fm or Sys	Joules	
Mississippian	2.98E+18	Mississippian	1.17E+17	
Devonian	2.47E+18	Devonian	1.63E+18	
Silurian	2.48E+17	Silurian	2.17E+17	
Ordovician	9.78E+17	Ordovician	1.37E+18	
Cambrian	1.21E+17	Cambrian	3.51E+17	

130° - 140°	Energy Fluid
Fm or Sys	Joules
Mississippian	1.71E+18
Devonian	1.08E+18
Silurian	1.39E+17
Ordovician	1.30E+18
Cambrian	2.82E+17

T ≥ 150°			
Fm or Sys			
Devonian			
Silurian			
Ordovician			
Cambrian			

Energy Fluid Joules 1.15E+18 3.60E+16 7.73E+17 1.57E+17

140° - 150°	En
Fm or Sys	
Mississippian	1
Devonian	1
Silurian	1
Ordovician	8
Cambrian	2

nergy Fluid Joules 1.53E+16 1.08E+18 1.33E+17 8.81E+17 2.04E+17 Total Energy $1 EJ= 10^{18} J$ Rock 259 EJ Fluid 30.5 EJ 7.19 x 10^{13} kWh

ORC ON A SINGLE WELL

E=((Q*C*L)+(EEUR*P))*A)-I

EEUR in (bbls)

P=Oil Price (\$/bbl)

E=Net profit

Q=plant capacity (kW)

L=Lifetime of plant (hrs)

C=Wholesale Price of Electricity

A=Plant availability (%)

I=O&M costs

◆ With ORC • W/O ORC ▲ Cum. Diff.

Cumulative Revenue

The University of North Dakota

Faculty

Geol. and Geol. Engr.

Rich LeFever Geol. and Geol. Engr.

Mike Mann

Geol. Engr. Chemical Engr.

PhD Candidates

Mark McDonald Geol and Geol. Engr.

Dilojan Senanayake Geol. and Geol. Engr.

ayake Kirtipal Barse Engr. Chemical Engr.

Masters Students

James "Josh" Crowell Geol. and Geol. Engr.

Bailey Bubach Geol. and Geol. Engr.

Anna M. Crowell

Geol. and Geol. Engr.

Alexander Padgett Geol, and Geol. Engr. Geol, and Geol. Engr.

Rob Klenner

Geol, and Geol, Engr.

Preston Wahl Geol. and Geol. Engr. Binary Power System Selection

Basin Evaluation

Economics of Binary Power

Hossein Salehfar

Electrical Engr.

Electrical Engr.

Eric Zimny

Geol. and Geol. Engr.