

Baseline System Costs for 50.0 MW Enhanced Geothermal System -- A Function of: Working Fluid, Technology, and Location, Location, Location --

SMU

FAIRBANKS MORSE ENGINE an EnPro Industries company

Presented By: Paul Dunn (PI), COO

Gas Equipment Engineering Corp.

Impact Technologies LLC

Gas Equipment Engineering Corporation SMU Briefing DOE Energy Efficiency and Renewable Energy: Geothermal Technologies Program

15 June 2011, Page 1

50 MW EGS Design Based Cost Analysis (DOE Grant DE-EE0002742)

- Goal: Answer key questions regarding the economic viability of EGS
 - Find out to what extent we really can achieve the vision of EGS anywhere
 - Starting with a 50 MW plant in Chicopee, MA!!
- Four part Statement of Project Objectives (SOPO):
 - SOPO 1: 50 MW Water
 EGS Cost Model
 - SOPO 2: CO2 EGS Cost Model
 - SOPO 3: Impact of Technology (CO2 & drilling)
 - SOPO 4: Impact of Location

- Ten part cost Work Breakdown Structure (WBS):
- 1. ID / Qualify / Quantify
- 2. Develop Reservoir
- 3. Generate / Manage Fluids
- 4. Make Power
- 5. Local Hook Up / Distribution

- 6. Grid Hook Up / Distribution
- 7. Top Side Facilities / Equipment
- 8. Land Acquisition / Royalty
- 9. Permits / Approvals
- **10. Management and Operation**

Gas Equipment Engineering Corporation SMU Briefing DOE Energy Efficiency and Renewable Energy: Geothermal Technologies Program

٠

What Does This Mean?

- Last time we were at this conference, DOE announced this grant award (thank you)
- Today, we will tell you the preliminary results, for 50 MW EGS Cost in a <u>really</u> challenging environment (Western MA)
 - 50 MW Net Water-EGS (70 MW Gross)
 - 50 MW Water-EGS Diesel / CNG Hybrid (20 MW Water Pumps)
 - 50 MW CO2 EGS Today's Cost --- No Magic
 - 50 MW CO2 EGS Cost with reasonable application of CO2 Generation and Drilling Technology
- We will also tell you what other (reasonable) locations we will study
 - We expect a final report to be produced later this year

Gas Equipment Engineering Corporation SMU Briefing DOE Energy Efficiency and Renewable Energy: Geothermal Technologies Program

15 June 2011, Page 4

EGS Working Fluid: High Pressure Water or Carbon Dioxide?

High Pressure Water

- Well understood
- Reacts with bedrock
 - Direct use of steam problematic
- Mobility low and pressure drop high at depth
 - Viscosity / Density not favorable
- Very high pumping power
 - Could be ~40% of gross power
- High specific heat
- Temperature loss up-hole can be low (heat transfer driven)
- Cheap (working fluid price)
 - At least locally

In CO2 vs. Water EGS, the yellows and greens are interesting, but the big issues are the huge cycle efficiency advantage for CO2 (confirmed by analysis), and the barrier, with a big "B", created by the purchase price of CO2

Super Critical Carbon Dioxide

- Not as well understood
- Reacts with bedrock, but for the most part favorably
 - After development, direct use of working fluid in machinery may be possible
- Mobility higher and pressure drop lower than water at depth
 - Viscosity / Density favorable
 - "Negative" pumping power
 - Strong thermal siphon
 - Lower specific heat than water
 - But more than compensated by flow rate
 - Temperature loss up-hole more complex
 - Think isentropic expansion
 - "Lost" CO2 in the process is sequestered in deep rock (carbonates)
 - And that by itself is good
- Very high purchase price
 - And carbon credits are currently trading at low values

Gas Equipment Engineering Corporation SMU Briefing DOE Energy Efficiency and Renewable Energy: Geothermal Technologies Program

EGS by CO₂ Direct Expansion... Turning ORC Upside Down!

Pump not required

•

•

٠

•

- Down hole compression provides preheat
- Up hole expansion results in loss of temperature, but not enthalpy
- Lots of pressure available to make power directly topside

Condenser Ideal cycle Real cycle dwnd ت 100 75 G 1600 -1400 -1200 -1000 -800 s [.J/ka-K] Expander Evaporator 3

"Earth Cycle Efficiency" --Technical Observations -- Surprises

			Heat	Earth	
			Extracted	Cycle	
Summary for 50 MW Net Power	Depth	Massflow	from Earth	Efficiency	
	(kft)	(lbm/sec)	MMBTU/hr	%	
Water Baseline	20	4000.3	2702.6	6.3%	
CO2 ORC	30	9238.7	2706.5	6.2%	1
CO2 Topside Turbine (no ORC)	20	5815.4	1119.9	15.2%	
	30	2698.4	799.2	21.3%	2
CO2 ORC with Topside Turbine	30	3499.9	1167.2	14.6%	
CO2 Bottom Turbo Expander (no ORC)	20	5670.5	1092.0	15.6%	2
	30	2596.8	769.1	22.2%	3

- 1. Traditional CO2 ORC appears to be a loser (compared to water, in MA)
 - No pumps, but much deeper holes, plus cost of CO2!! (8)
- 2. CO2 Turbo expander (direct turbine generator) looks very good ③
 - Higher cycle efficiency and <u>lowest</u> machinery / auxiliary costs
- 3. "Clever" CO2 cycles probably not so bright
 - Not really better, or hugely complex / risky (turbines 5 miles below surface)

A Subset of the Variants Considered (All Western MA)

Case	Gross Power (MW)	Depth	Heat Removal Rate (MMBTU/HR)	# & Dia Injectors	# & Dia Producers (DC)	Massflow (lbm/sec)
H2O	70	21kft	2703	16 10"	25 8"	4000
H2O (Hybrid)	50	21kft	1931	12 – 10"	20 – 8"	2857
CO2 (\$)	50	30kft	799	6 – 10"	12 – 8" (SS)	2698
CO2 (Gen)	50	21kft	1120	8 – 10"	15 – 10" (Cladded)	5800

SOPO 1.0 Summary Result Sheet: Baseline H2O EGS

 Even with unrealistically cheap money (4%), the conventional EGS does not look good in Western, MA

- No huge surprise
- The hybrid diesel pump version (next page) is better than all electric pumps
 - Lower capital cost
 - Better ROI

Parameters:	Water E	GS	Comment
Gross Power	70	MW	Geothermal Gross Power, Not Plant
Net Power	50	MW	
Water Pump Power	20	MW	(from WBS 3)
Cost of Electricity (retail)	\$167	\$/MW-hr	(US DOE EIS 2008 MA)
Cost of Electricity (wholesale)	\$81	\$/MW-hr	(ISO NE 2008 Hub Price)
MA Renewable Market Class 1 RPS	\$13	\$/MW-hr	
Capital Cost	\$1,162,460,446	(roll up)	(from capital sheet)
Cost of Capital	4.0%	(high)	(variable)
Annual Capital Cost	\$67,225,203	(30 year)	(calculation)
O&M Cost	1.0%	(of capital \$)	(guess)
Availability	99.5%	(uptime)	(guess)
Cost Item	<u>\$</u>		
Annual Capital Cost	\$67,225,203		Escalation Rate (%/year)
O&M Cost	\$11,624,604		2.0%
O&M Cost Engines	\$240,960		
Purchased Costs (Fuel / Electricity)	\$827,206		1.811361584 (30 year)
Total Annual Cost	\$79,917,973		
	<u>Revenue (1st Year)</u>		<u>Revenue (30th Year)</u>
		Percent	Impact of Escalation in Electric Costs
Offset of Retail Electricity	\$36,390,135	50.0%	\$65,915,693
Wholesale Electricity	\$17,650,305	50.0%	\$31,971,084
MA Renewable Market Class 1 RPS	\$5,665,530		\$5,665,530
Renewable Investment Tax Credit	\$8,716,200		(Zero After 10 Years)
Total Revenue	\$68,422,170		\$103,552,307
Profit / Loss	(\$11,495,803)		\$23,634,334

SOPO 1.0: H2O EGS with Diesel (CNG) Water Pumps

Diesel water pumps enable the maximum use of renewable credits and lowers the size of the reservoir

But, it still loses money, even at 4%

	Parameters:	Water	GS	Comment
	Gross Power	50	MW	Geothermal Gross Power, Not Plant Total
	Net Power	50	MW	
	Water Pump Power	20	MW	(from WBS 3)
	Cost of Electricity (retail)	\$167	\$/MW-hr	(US DOE EIS 2008 MA)
	Cost of Electricity (wholesale)	\$81	\$/MW-hr	(ISO NE 2008 Hub Price)
	MA Renewable Market Class 1 RPS	\$13	\$/MW-hr	
	Capital Cost	\$962,071,235	(roll up)	(from capital sheet)
	Cost of Capital	4.0%	(high)	(variable)
	Annual Capital Cost	\$55,636,675	(30 year)	(calculation)
	O&M Cost	1.0%	(of capital \$)	(guess)
	Availability	99.5%	(uptime)	(guess)
_				
d	Cost Item	<u>\$</u>		
	Annual Capital Cost	\$55,636,675		Escalation Rate (%/year)
	O&M Cost	\$9,620,712		2.0%
	O&M Cost Engines	\$2,273,504		
	Purchased Costs (Fuel / Electricity)	\$7,435,621		1.811361584 (30 year)
	Total Annual Cost	\$74,966,512		
		<u>Revenue (1st Year)</u>		<u>Revenue (30th Year)</u>
			Percent	Impact of Escalation in Electric Costs
	Offset of Retail Electricity	\$36,390,135	50.0%	\$65,915,693
ı.	Wholesale Electricity	\$17,650,305	50.0%	\$31,971,084
	MA Renewable Market Class 1 RPS	\$5,665,530		\$5,665,530
	Renewable Investment Tax Credit	\$8,716,200		(Zero After 10 Years)
	Total Revenue	\$68,422,170		\$103,552,307
	Profit / Loss	(\$6,544,342)		\$28,585,795

Gas Equipment Engineering Corporation SMU Briefing DOE Energy Efficiency and Renewable Energy: Geothermal Technologies Program

15 June 2011, Page 10

SOPO 1.0 (H2O Baseline) Capital Cost Tab

							1
NBS		Capital Cost		WBS Element	New	375	0
		70 MW Gross	50 MW Gross (GT)		Design		
		50 MW Net	20 MW Hybrid Pum	p	21,000 ft	5.00	0
		Electric Drive	Diesel Drive		7-7/8"	5,00	D
	1.0	\$3,710,000	\$3,710,000	Resource ID / A		4.00	a
	2.0	\$890,540,446	\$699,109,235	Reservoir Deve		2,00	0
	3.0	\$11,070,000	\$38,512,000	Fluid Managem		ogies	
	4.0	\$187,400,000	\$151,000,000	Power generati		GE	E
	5.0	\$3,500,000	\$3,500,000	Integration / Dis		Interval Length	AND DATES
	6.0	\$18,000,000	\$18,000,000	Integration / Dis	New	3 750	
	7.0	\$10,430,000	\$10,430,000	Topside Structur	Well Design	0,100	
	8.0	\$15,430,000	\$15,430,000	Land Acquisition	21,000 ft	5,000	
	9.0	\$4,130,000	\$4,130,000	Permits / Approv	10-1/4"	5,000	
	10.0	\$18,250,000	\$18,250,000	Project Manager		4,000	
						2,000	1
Total		\$1,162,460,446	\$962,071,235			impact blogies	

Gas Equipment Engineering Corporation SMU Briefing DOE Energy Efficiency and Renewable Energy: Geothermal Technologies Program

15 June 2011, Page 11

WBS2 (Drilling for Water EGS) ----1st Level Down in WBS Structure

WBS	7	0 MW Gross		number	unit cost (\$)	unit
2	2.0	\$890,540,446	Reservoir Development	Learning C	urve	
				Mult Fac	# @ 91	# @ 82
2	2.1	\$1,000,000	Reservoir Planning	0.837	3	13
2	2.2	\$1,000,000	Reservoir Model Development (integrate test bore results)	0.831	3	22
2	2.3	\$361,681,079	Injection Well Drilling	16	\$27,011,283	/well
2	2.4	\$460,659,367	Production Well Drilling	25	\$22,179,074	/well
2	2.5	\$32,000,000	Hydraulic stimulation	16	\$2,000,000	/well
WBS		50 MW Gross				
	2.0	\$699,109,235	Reservoir Development	Learning	Curve	
				Mult Fac	#@91	#@82
	2.1	\$1,000,000	Reservoir Planning	0.843	3	9
	2.2	\$1,000,000	Reservoir Model Development (integrate test bore results)	0.834	3	17
	2.3	\$273,084,071	Injection Well Drilling	12	\$27,011,283	/well
	2.4	\$369,725,164	Production Well Drilling	20	\$22,179,074	/well
	2.5	\$24,000,000	Hydraulic stimulation	12	\$2,000,000	/well
	2.6	(included)	Intangible Drilling Costs (Mud / Temporary Equipment / Removal)			
	2.7	(included)	Special Sand / Fluid Injection (Hold Fractures Open)			
	2.8	(included)	Special Sealing Fluid Injection (probably more for CO2 system)			
	2.9	\$12,000,000	Production pumps	20	\$600,000	/well
2	2.10	\$6,000,000	Specialized logging	8	\$750,000	/well
2	2.11	\$6,000,000	Coring and leak-off testing	8	\$750,000	/well
2	2.12	\$3,200,000	Post-completion testing	32	\$100,000	/well
2	2.13	\$3,000,000	System circulation testing prior to plant start-up	4	\$750,000	/module
2	2.14	\$100,000	Water Well Drilling	4	\$25,000	/well

SOPO 2.0: Impact of CO2

CO2 EGS, without any technology tricks, will require stacks of money

> Mostly driven by TRL9 decision on corrosion control

 Nothing proven (and inexpensive) is out there now...

Parameters:	CO2 E	GS	Comment
Geothermal Power (Net)	50	MW	Geothermal Net Power
Total Net Power	50	MW	Yearly Total (Not Including Filling)
CO2 System Net Power (extra to be sold)	0	MW	(from WBS 3)
Cost of Electricity (retail)	\$167	\$/MW-hr	(US DOE EIS 2008 MA)
Cost of Electricity (wholesale)	\$81	\$/MW-hr	(ISO NE 2008 Hub Price)
MA Renewable Market Class 1 RPS	\$13	\$/MW-hr	
Capital Cost	\$1,454,099,373	(roll up)	(from capital sheet)
Cost of Capital	4.0%	(high)	(variable)
Annual Capital Cost	\$84,090,711	(30 year)	(calculation)
O&M Cost	1.0%	(of capital \$)	(guess)
Availability	99.5%	(uptime)	(guess)
Cost Item	\$		
Annual Capital Cost	\$84,090,711		Escalation Rate (%/year)
O&M Cost	\$14,540,994		2.0%
O&M Cost Engines	\$240,960		
Purchased Costs (Fuel / CO2)	\$8,127,206		1.811361584 (30 year)
Total Annual Cost	\$106,999,871		
	Revenue (1st Full Y	ear)	Revenue (30th Year)
		Percent	Impact of Escalation in Electric Costs
Offset of Retail Electricity	\$36.390.135	50.0%	\$65.915.693
Wholesale Electricity	\$17.650.305	50.0%	\$31.971.084
MA Renewable Market Class 1 RPS	\$5,665.530		\$5,665,530
Renewable Investment Tax Credit	\$8,716.200		(Zero After 10 Years)
Total Revenue	\$68,422,170		\$103,552,307
Profit / Loss	(\$38,577,701)		(\$3,447,564)

SOPO 2.0: **CO2 EGS Capital Cost Tab**

- The CO2 EGS • reservoir is substantially smaller (30kft design), but the reservoir development cost is substantially higher!!
 - Stainless liners

WBS	Capital Cost	WBS Element
	50 MW Net	
1.0	\$3,710,000	Resource ID / Analysis
2.0	\$1,132,274,373	Reservoir Development
3.0	\$183,770,000	Fluid Management & CO2 (filling)
4.0	\$70,000,000	Power generation
5.0	\$3,500,000	Integration / Distribution (local)
6.0	\$18,000,000	Integration / Distribution (grid)
7.0	\$12,630,000	Topside Structures
8.0	\$7,015,000	Land Acquisition / Land Use
9.0	\$4,930,000	Permits / Approvals
10.0	\$18,270,000	Project Management
Total	\$1,454,099,373	

SOPO 2.0 WBS3: Price of CO2 (and topside fluid management)

 Though not the driver as shown, the CO2 is pricey, but the biggest deal here is risk

If porosity estimate is off by factor of 3 you are out another >\$0.5B

WBS	Cost	Item	Basis / Co	mment		
3.0	\$183,770,000	CO2	MT Requi	red		
3.1	\$175,200,000	Filling CO2	0.73			
3.2		Price / Ton (In Massive Quantity)	240			
3.3						
3.4	\$2,000,000	Electric Blower to Start Thermal Siphon?				
		1000 hp multi-stage compressor, electric drive (Sola	ar Turbines	5)		
3.5	\$3,580,000	Diesel Genset for Backup Power	ROM			
		Details (for backup genset as well)				
Co	st of 1 OP Dual I	uel Engine & Generator plus Auxiliaries & Controls	1790000			
		Power Level	1506	kWe = 100)% rated lo	ad
		Specific Fuel Consumption	6400	BTU/hp-h	r @ 100% l	oad
		Fuel Price (\$/mmBTU)	4	Current co	ost of natu	ral gas
			2	Backup Ge	enset	
		Hours of operation per year	8000	Assumes	97% availa	bility
3.6	\$400,000	Filtration	ROM			
3.7	\$90,000	Freeze Protection	ROM			
3.8	\$2,500,000	CO2 Compression (Local Dewar, LP Transfer Pump,	HP Liquid F	Pump)		
20	¢9 127 206	Fuel & CO2 Top Off				
5.9	20,127,200 6027 206	NG Fuel Costs (Not Summed Above)		irad		
	\$827,200 \$7 200 000	Por Year (O2 Ten Off Costs (Not Summed Above)	FD Requ	lieu		
	\$7,500,000	Price / Ten (Not In Massive Quantity)	200			
	\$240.060	Engines Maintenance Costs (Net Summed Above)	0.01			
	Ş 240,900		0.01			

SOPO 3.0 (CO2, Plus CO2 Generation and Drilling Technology) Summary Result

ng)

osts

- CO2 EGS rocks!!
 - Revenue Up
 - Cost Down
- Semi-Closed Cycle diesel top off system generates extra power / revenue
- Semi-Closed Cycle turbine filling system generates power at retail offset (during development phase of project)

······································				
Geothermal Power (Net)	50	MW	Geothermal Net Power	
Total Net Power	63	MW	Yearly Total (Not Includi	ng Filli
CO2 System Net Power (extra to be sold)	13	MW	(from WBS 3)	
Cost of Electricity (retail)	\$167	\$/MW-hr	(US DOE EIS 2008 MA)	
Cost of Electricity (wholesale)	\$81	\$/MW-hr	(ISO NE 2008 Hub Price)	
MA Renewable Market Class 1 RPS	\$13	\$/MW-hr		
Capital Cost	\$950,537,614	(roll up)	(from capital sheet)	
Retail / Wholesale Split Filling System (defau	ılt 100% retail)	100.0%	Retail %	
One Time Power Generated (filling system)	443858	MW-hr	(from WBS 3)	
Capital Cost Adjustment, One Time Power	\$74,124,324	Filling Sys.	(Retail Portion)	
Capital Cost Adjustment, One Time Power	\$0	Filling Sys.	(Wholesale Portion)	
Adjusted Capital Cost (Minus Filling Income)	\$876,413,290			
Cost of Capital	4.0%	(high)	(variable)	
Annual Capital Cost	\$50,683,067	(30 year)	(calculation)	
O&M Cost	1.0%	(of capital \$)	(guess)	
Availability	99.5%	(uptime)	(guess)	
<u>Cost Item</u>	<u>\$</u>			
Annual Capital Cost	\$50,683,067		Escalation Rate (%/year)	
O&M Cost	\$9,505,376		2.0%	
O&M Cost Engines	\$1,076,512			
Purchased Costs (Fuel / CO2)	\$3,511,009		1.811361584 (30 year
Total Annual Cost	\$64,775,965			
	Revenue (1st Full Y	<u>ear)</u>	Revenue (30th Year)	
		Percent	Impact of Escalation in El	ectric C
Offset of Retail Electricity	\$45,517,719	50.0%	\$82,449,047	
Wholesale Electricity	\$22,077,456	50.0%	\$39,990,257	
MA Renewable Market Class 1 RPS	\$7,086,591		\$7,086,591	
Renewable Investment Tax Credit	\$10,902,448		(Zero After 10 Years)	
Total Revenue	\$85,584,214		\$129,525,895	
Profit / Loss	\$20,808,249		\$64,749,930	

Gas Equipment Engineering CorporationSMU BriefingDOE Energy Efficiency and Renewable Energy: Geothermal Technologies Program

SOPO 3.0: CO2 + Technology Capital Cost Tab

- WBS2 Costs are lower mostly as a result of clad liners vs. stainless – and lower price of CO2 enabled shallower depth design (21kft)
- WBS3 Costs are offset by \$74M of one time (filling revenue) & 125% of yearly revenue (top-off)
- Net result:
 - 60ish% of the costs
 - 125ish% of the revenue

WBS	Capital Cost	WBS Element
	50 MW Net	
1.0	\$3,710,000	Resource ID / Analysis
2.0	\$686,053,958	Reservoir Development
3.0	\$124,898,656	Fluid Management & CO2 (filling)
4.0	\$70,000,000	Power generation
5.0	\$3,500,000	Integration / Distribution (local)
6.0	\$18,000,000	Integration / Distribution (grid)
7.0	\$12,630,000	Topside Structures
8.0	\$8,545,000	Land Acquisition / Land Use
9.0	\$4,930,000	Permits / Approvals
10.0	\$18,270,000	Project Management
Total	\$950,537,614	

Turbines, Turbines, Turbines

- Plasma reservoir filling system uses Dresser Rand Model 1
 - Semi-closed combustion turbine with captured CO2
- Main power turbines by TAS

Gas Equipment Engineering Corporation SMU Briefing DOE Energy Efficiency and Renewable Energy: Geothermal Technologies Program

CO2 Top Off System: Semi-Closed Cycle Medium Speed Dual Fuel Diesel

- \$29.4M for 12.5 MW Net
- ~140 tons per day CO2 at 2200 psig
- System make up:
 - Two 16 cylinder FME 32/40 Generator Sets (5975 kW), modified for closed cycle
 - ~Two 100 TPD VPSA ASU's (926 kW each)
 - Two Ariel CO2 Compressors (69 TPD, 400 hp)
 - Two TAS 800 kW ORC (to cool diesel exhaust from 750 F)
 - ~40% cycle efficiency on CNG

Gas Equipment Engineering Corporation SMU Briefing DOE Energy Efficiency and Renewable Energy: Geothermal Technologies Program

SOPO 4.0 Locations (with Technology)

- Ft. Bliss will be a Water EGS
 - It might be a good site for CO2 sequestration, but not EGS!!
- Others will be CO2
- Net result is a range of locations, EGS designs, and costs

50 1

150 1

250 *0

300 *0

Gas Equipment Engineering CorporationSMU BriefingDOE Energy Efficiency and Renewable Energy: Geothermal Technologies Program

HE Page

Process Societto

OLD IRONSIDE

Ft. Bliss, El Paso, TX

(Water EGS - Hotter than MA @ 21,000 ft)

Summary

- Detailed WBS based EGS cost models have been developed as a result of a DOE Grant
- The baseline (50 MW Water EGS) in Massachusetts is untenably high cost (well over \$1B capital – 70+% of which is associated with reservoir development) and is not profitable, even with high electric rates, unless money is close to free!
- CO2 EGS (with direct turbine) operates at a much higher net cycle efficiency, resulting in a smaller reservoir (lower cost), but requires greater massflow (larger drill diameters, or closer spacing, fancy completions, and a corrosion program)
 - CO2 EGS is only practical in areas with locally available low cost CO2, or with CO2 generated on site (hybrid system) – until the CO2 rules change
- We are studying a wide range of other locations (CA, TX, ID) and electricity costs
 - We will complete and publish this year

Ø	Capital C (all num)	Cost Tab; pers notion	Supporting	y WBS Tabs time)
/65 Ca	pltal Cost W	B5 Element		
1.0	\$4,300,000 Re	source ID / An	alvsis	
2.0	\$698,600,000 Re	se rvoir Devel	opment	
3.0	\$20 740 000 El	Id Manage me	nt (topside)	
40	\$41,250,000 Pc	wer generatio	on a company of	
5.0	\$5,500,000 Im	tegration / Dis	tribution (local)	
5.0	\$20 100 000 In	tegration / Dis	tribution (grid)	
7.0	\$12 500 000 To	oside Structur	es.	
80	\$10,700,000 1a	nd Acculation	/landlike	
90	\$77.051.900 Pe	mits / Ann	tis	1
10.0	630 999 309 Dr	ale of Manag	2.0 Reservoir Dave	lopment
10.0	320,663,736 PT	oje u ivianag		
			2.3 Reservoir Plan	ning In Standard and Andreas and
			2.3 Injection Well	Oriling
			2.4 Production We	II Drilling
			2.5 Presburing	
			2.5 Intergible Onli 2.7 Second Secol	ling Costs (Mud / Temporary Equipment / Removal)
			2.8 Special Sealing	Fluid Injection (probably more for CO2 system)
			2.9 Water Well Dr	illing

15 June 2011, Page 21

Acknowledgement

- This briefing material has been assembled from a number of sources generated by the team
 - We have an amazing team...
- We would also like to thank the DOE Geothermal Technology Program, in particular Ms. Arlene Anderson, for her support

Gas Equipment Engineering Corporation SMU Briefing DOE Energy Efficiency and Renewable Energy: Geothermal Technologies Program

BACKUP

Gas Equipment Engineering CorporationSMU BriefingDOE Energy Efficiency and Renewable Energy: Geothermal Technologies Program

Reservoir Size Implications...

The Size of the Reservoir, and Parameters, Such as Porosity and Access, Significantly Drive Cost Example Shown Below for \$240/ton Trucked In CO2 (Unaffordable!!)

SOPO 1.0 Water Bottom Depth 21,000 ft

- 70 MW Case (50 MW Net); 2703 MMBTU/hr heat removal rate
 - 25 Production Wells and 16 Injector Wells 0.5 mile spacing
 - 160 lbm/sec production well; small bores OK; dual completion
 - 250 lbm/sec injection well; big bores required
 - 3.2 km^3 reservoir volume
- 50 MW Case (Diesel driven pumps)
 - Proportionally lower heat removal rate and well count (5/7th)
 - 20 Production Wells and 12 Injector Wells 0.5 mile spacing
 - Same casing sizes, nominally the same per well flow rates
- Other than dual completion on production wells, this is conventional construction
 - Production pumps set in 16" diameter @ nominally 3,000 ft

SOPO 2.0 (CO2: Purchased, Existing Technology (SS))

- 50 MW requires 799 MMBTU/hr heat removal rate (@ 30kft)
- 12 Production Wells and 6 Injector Wells 0.45 mile spacing
 - System flow rate is down to 2700 lbm / sec (H2O was 4000 lbm/sec)
 - 450 lbm/sec per injector well
 - 225 lbm/sec per production well
 - Big Bore Injector Wells to 30,000 ft no exotic materials needed
 - Manageable pressure drop ~150 psig (nothing compared to siphon)
 - Small Bore Production Wells, Dual Completion, in STAINLESS!!
 - Manageable pressure drop ~700 psig (still ok compared to siphon)
- Reservoir Size 0.94 km^3 (vs. 3.2 km^3 for SOPO 1.0)
- At 44 lbm/ft^3 bottom (hot) density, this is 730,000 tons of CO2
 - 5% of reservoir is accessible to CO2 flow
 - 2% porosity in this area
 - \$175M delivered (initially!!) then that much again over time

SOPO 3.0 (CO2: Clad Casing, Hybrid Generated CO2)

- 50 MW requires 1120 MMBTU/hr heat removal rate (@ 20kft)
- 12 Production Wells and 8 Injector Wells 0.5 mile spacing
 - System flow rate is up to 5800 lbm / sec
 - 650 lbm/sec per injector well
 - 360 lbm/sec per production well
 - Big Bore Injector Wells to 21,000 ft no exotic materials needed
 - Manageable pressure drop ~460 psig (OK compared to siphon)
 - Big Bore Production Wells, Dual Completion, Cladded
 - Manageable pressure drop ~350 psig (OK compared to siphon)
- Reservoir Size 1.3 km^3 (vs. 3.2 km^3 for SOPO 1.0)
- At 44 lbm/ft^3 bottom (hot) density, this is 1 Mega Ton of CO2
 - 5% of reservoir is accessible to CO2 flow
 - 2% porosity in this area