
Karsten Pruess

Earth Sciences Division
Lawrence Berkeley National Laboratory

Presented at Geothermal Energy Utilization Conference
Southern Methodist University, Dallas, TX, June 17–18, 2008
U.S. Geothermal Resources are Huge

Heat content in subsurface rocks to 6 km depth, relative to ambient temperature (Dave Blackwell, SMU)

- \(T > 200 \, ^\circ C \): 296,000 EJ*
- \(T > 125 \, ^\circ C \): 2,410,000 EJ

(* EJ = ExaJoule; 1 EJ = 10^{18} J)

(Map c/o INL Geothermal Program)

- total primary energy consumption: \(\approx 100 \) EJ
- total U.S. geothermal energy use: 0.31 EJ (\(\approx 0.3 \, \% \) of primary)
Why is Geothermal Energy Contribution so Small?

- Geothermal energy extraction is currently limited to hydrothermal systems (the “low-hanging fruit”).
- There is a vast store of geothermal heat that is difficult to recover (hot rocks lacking fluid and permeability).
- How can the essentially inexhaustible heat in deep geologic formations be tapped and transferred to the land surface for human use?

Source: Geothermal Education Office (GEO)
http://www.geothermal.marin.org/
Enhanced Geothermal Systems (EGS)

- Artificially create permeability through hydraulic and chemical stimulation.
- Transfer heat to the land surface by circulating water through a system of injection and production boreholes.
- Experimental projects in U.S., U.K., France, Japan, Australia, Sweden, Switzerland, Germany.
- EGS is currently not economically viable; the chief obstacles are:
 - dissolution and precipitation of rock minerals, that may cause anything from short-circuiting flows to formation plugging
 - large “parasitic” power requirements for keeping water circulating
 - water losses from the circulation system
 - inadequate reservoir size - heat transfer limitations
 - high cost of deep boreholes (≈ 5 km)
How about using \(\text{CO}_2 \) as Heat Transmission Fluid?

<table>
<thead>
<tr>
<th>property</th>
<th>(\text{CO}_2)</th>
<th>water</th>
</tr>
</thead>
<tbody>
<tr>
<td>chemistry</td>
<td>poor solvent for rock minerals</td>
<td>powerful solvent for rock minerals: lots of potential for dissolution and precipitation</td>
</tr>
<tr>
<td>fluid circulation in wellbores</td>
<td>highly compressible and larger expansivity</td>
<td>low compressibility, modest expansivity</td>
</tr>
<tr>
<td></td>
<td>(\implies \text{more buoyancy, lower parasitic power consumption})</td>
<td>(\implies \text{less buoyancy})</td>
</tr>
<tr>
<td>ease of flow in reservoir</td>
<td>lower viscosity, lower density</td>
<td>higher viscosity, higher density</td>
</tr>
<tr>
<td>heat transmission</td>
<td>smaller specific heat</td>
<td>larger specific heat</td>
</tr>
<tr>
<td>fluid losses</td>
<td>earn credits for storing greenhouse gases</td>
<td>costly</td>
</tr>
</tbody>
</table>

Favorable properties are shown **bold-faced**.
EGS-CO$_2$ Issues

- Effectiveness of CO$_2$ as a heat transfer medium.
- Other processes induced by CO$_2$, that may affect feasibility and sustainability of EGS with CO$_2$ (chemical reactions, corrosion).
- Can we make an EGS-CO$_2$ reservoir? (Circulate CO$_2$ to remove the water.)
- Energy conversion system (binary plant w/ heat exchanger; directly using CO$_2$ on the turbines)
- Economics.
- Fluid lost = fluid stored?
General Makeup of a CO₂-Based EGS Reservoir

Zone 1
Central zone and core of EGS system, where most of the fluid circulation and heat extraction is taking place. This zone contains supercritical CO₂; all water has been removed by dissolution into the flowing CO₂.

Zone 2
An intermediate region with weaker fluid circulation and heat extraction, which contains a two-phase mixture of CO₂ and water.

Zone 3
The outer region affected by EGS activities. The fluid is a single aqueous phase with dissolved CO₂.
Comparing Operating Fluids for EGS: CO$_2$ vs. Water

- monitor mass flow, heat extraction rates

- fractured reservoir
 - $T_{\text{res}} = 200$ °C
 - $P_{\text{res}} = 100 - 500$ bar

- pore fluid
 - all CO$_2$
 - all water

- injection
 - $P_{\text{res}+10 \text{ bar}}$

- production
 - $P_{\text{res}-10 \text{ bar}}$
Reference Case

\[T_{res} = 200 \, ^\circ C, \quad P_{res} = 500 \, \text{bar}, \quad T_{inj} = 20 \, ^\circ C \]

Heat extraction

Mass flow
Simulation Results for Different Reservoir Pressures at $T = 200 \, ^\circ\text{C}$

- Heat extraction rate (MW) vs. time (years)
- Mass flow rate (Kg/s) vs. time (years)
Fluid Mobility
(density:viscosity; units of 10^6 s/m²)

CO₂

water
Injecting CO$_2$ into an Aqueous System

- At early time (≤ 0.1 year), produce single-phase water
- This is followed by a two-phase water-CO$_2$ mixture (0.1 - 2.5 yr)
- Total production rate during two-phase period is low due to phase interference
- Subsequently produce a single supercritical CO$_2$-rich phase with dissolved water
Rate and Composition of Produced CO₂

- Water is removed from fracture network fairly rapidly (about 4.4 % remaining after 5 years)
- The low-permeability rock matrix provides a long-term source of water, with almost half of initial inventory remaining after 36.5 years
Wellbore Flow: CO$_2$ vs. Water

Pressure difference between production and injection well

CO$_2$: $288.1 - 57.4 = 230.7$ bar

Water: $118.6 - 57.4 = 61.2$ bar

CO$_2$ generates much larger pressures in production well, facilitating fluid circulation.
CO₂ Storage Capacity

- Need a mass flow of approximately 20 tons of CO₂ per second, per GW electric power capacity.
- Expect a fluid loss rate of order 5%, or 1 ton per second of CO₂ per GW of installed EGS capacity.
- This is equivalent to CO₂ emissions from 3 GW of coal-fired power generation.
- The MIT report (2006) projects 100 GW of EGS electric power by 2050.
- 100 GW of EGS with CO₂ would store 3.2 Gt/yr of CO₂, approximately 40% of total current U.S. emissions.

➢ CO₂ lost = CO₂ stored?
Power Generation from CO$_2$-Based EGS

- One option is **binary conversion** technology, using similar equipment as water-based systems.
- Alternatively, it may be possible to **directly feed the produced CO$_2$** to the turbines. This may be possible because supercritical CO$_2$ without admixed liquid water is not corrosive to metals.
- Direct expansion of CO$_2$ in the turbines would avoid otherwise inevitable and irreversible heat losses in a heat exchanger.
- However, the produced **CO$_2$ stream** will need to be **dried** before entering the turbines, to avoid condensation of liquid water during decompression and cooling.
- Clarify the relative merits and thermodynamic efficiencies of different options for power generation.
- Need to **balance and optimize tradeoffs** between power generation and CO$_2$ storage.
Path Forward*

- Fluid-rock reaction experiments with supercritical CO$_2$
- Laboratory flow experiments for water-CO$_2$ mixtures and pure anhydrous CO$_2$
- Modeling of fluid flow, heat transfer and rock-fluid interactions (chemical/mechanical)
- Design studies for a field pilot test of EGS with CO$_2$

*cooperation with BRGM - French geological survey
Concluding Remarks

• Water-based enhanced geothermal systems (EGS) face difficult hurdles to (1) achieve adequate heat extraction rates, and (2) maintain injectivity and heat extraction performance in the face of strong rock-fluid interactions.

• CO₂ has attractive properties as a heat transmission fluid for EGS.
 - **Heat extraction** rates when using CO₂ are estimated to be approximately 50% larger than for water.
 - CO₂ is very favorable in terms of wellbore hydraulics.
 - Unavoidable **fluid losses** are costly for water, but could earn greenhouse gas storage credits when using CO₂.

• The fluid produced from an EGS operated with CO₂ will change from initially water (≈ 1 month), to a two-phase aqueous-CO₂ mixture (a few years), to scCO₂ with dissolved water of order 0.1 wt.-%.

• Use of CO₂ as heat transmission fluid for EGS looks promising and deserves more study (geochemistry/geomechanics!).

• We are aiming to develop the scientific basis for a field demonstration.

Supported by Contractor Supporting Research (CSR) funding from Berkeley Lab, through DOE Office of Science
Reactivity of Rocks for scCO₂

<table>
<thead>
<tr>
<th>Rock type</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>granite</td>
<td>- generally high in SiO₂, low in carbonates</td>
</tr>
<tr>
<td></td>
<td>- limited surface area and reactivity of mineral grains</td>
</tr>
<tr>
<td>sandstone</td>
<td>- may have carbonate cements</td>
</tr>
<tr>
<td>graywacke</td>
<td>- relatively low in carbonates</td>
</tr>
<tr>
<td>ignimbrite</td>
<td>- welded tuffs, lithophysal cavities</td>
</tr>
<tr>
<td>felsite</td>
<td></td>
</tr>
<tr>
<td>non-welded tuff</td>
<td>- more reactive</td>
</tr>
<tr>
<td></td>
<td>- zeolitized by water</td>
</tr>
<tr>
<td>marine sediments</td>
<td>- can be high in carbonates</td>
</tr>
<tr>
<td>basalt</td>
<td>- amorphous, highly reactive</td>
</tr>
</tbody>
</table>