From Hot Water to Hydrogen Bringing Geothermal Power to Alaska

Presented by: Bernie Karl SMU Geothermal Conference June 12th, 2007

Chena Hot Springs

Chena Hot Springs

Semi remote site
Electric Power 30¢/kWhr
Load 180kW-380kW

Chena Hot Springs

Semi remote site
Electric Power 30¢/kWhr
Load 180kW-380kW

\$1000/day in diesel fuel at \$2.50 per gallon \$365,000 per year in fuel costs at today's price

Chena Hot Springs VISION:

To become a self-sustaining community in terms of energy, food, heating and fuel to the greatest possible extent

Chena Hot Springs MISSION:

To encourage renewable energy and sustainable community development throughout Alaska

To make Alaska a leader in renewable energy development

Forming Partnerships with:

- University of Alaska (Horticulture, Geophysical Institute, Mining, Geology)
- Southern Methodist University
- Department of Energy
- Alaska Energy Authority
- Denali Commission
- United Technologies Corporation
- Golden Valley Electric Association
- REAP (Renewable Energy Alaska Project)

Energy Use at Chena Hot Springs (total 850 kW_{eq})

- Electricity
- □ Transportation
- Refrigeration
- □ Supplemental Heating
- Baseload Heating

District Heating

First geothermal well drilled in March 1998

District Heating

 First geothermal well drilled in March 1998

 All buildings on property are heated geothermally using
 ~300gpm of 165°F water

Estimated yearly savings of \$183,000 in heating fuel coats

Moose Lodge, 20,000ft² heated solely with geothermal district heating system

Greenhouse & Gardens

First greenhouse established in
 2004 as a joint project between
 Chena Hot Springs and UAF

Producing crops for onsite use on a year-round basis

Greenhouse & Gardens

First greenhouse established in
 2004 as a joint project between
 Chena Hot Springs and UAF

Producing crops for onsite use on a year-round basis

New 5000ft greenhouse recently completed for 2006 season

Heated from geothermal wells but could operate off any waste heat source

Greenhouse & Gardens

Geothermally Heated Greenhouse #2 at Chena Hot Springs Resort

CHENA HOT SPRINGS ABSORPTION CHILLER

Approximately 15 tons of Refrigeration Required for Ice Museum (180,000 BTU per hour)

Conventional Wisdom for Absorption Chilling & Power Generation Cycles:

T 230°F

Conventional Wisdom for Absorption Chilling & Power Generation Cycles:

Conventional Wisdom for Absorption Chilling & Power Generation Cycles:

T 2 165°F

Chena Geothermal Power Plant

United Technologies

UTC Fire & Security Security & Fire Protection

Pratt & Whitney Aircraft Engines, Gas Turbines & Space Propulsion

Carrier Heating, Cooling & Refrigeration

Otis Elevators, Escalators & People Moving Systems

United Technologies Corporation (UTC)

UTC Research Center – Technology Advancement

UTC Power On-site & Transportation

Hamilton Sundstrand Aerospace & Industrial

Sikorsky Helicopters

United Technologies

Carrier Heating, Cooling & Refrigeration

Pure Cycle 200 Product Development

UTC Research Center – Technology Advancement

UTC Power On-site & Transportation

Chena Geothermal Power Plant

400kW net; installed in 2006
Uses 1060 gpm of 165°F water
Air and water cooled
Reduced local cost of power from 30¢ to 5¢
Total project cost \$2.2 million
Efficiency <10%

Carrier Chiller

Refrigeration Cycle

Carrier Turbine Generator

Cold Water Supply

Chena Hot Springs Cooling water Infiltration Gallery

Cold Water Supply

August 20th Official Opening – Chena Geothermal Power Plant

Project Awards and Recognition

2006 Green Power Leadership Award (EPA and DOE)

Project of the Year Renewable Energy Category Power Engineering Magazine PowerGen Conference 2006

Geothermal Energy is an ideal base load – doesn't depend on sun, wind, rainfall. 99% Availability is common.

Cannot respond quickly to load fluctuations

Battery and UPS System

UPS System (MGE)

Batteries 3MW Total

Battery and UPS System

Battery and UPS System

Project Expenses

- Power Plant Cost is \$1300/kW installed
- Infrastructure costs an additional \$1.8 million
- Big expenses included UPS system and 7000ft of pipeline
- Maintenance costs are expected to stay the same or decrease (currently ~\$50,000/year)
- Payback period calculated to be 4 to 5 years

Project Economics

- Offset \$160,000 of diesel fuel in 4 months of operation in 2006
- Has created 3 new skilled positions
- Has increased electric use onsite by 40% in the last Quarter of 2006
- Has operated with 95% availability

Carrier

Minor refrigerant leak in flex tube installed in bypass line (repaired in 36 hours)

Some freezeup and low water table problems during winter months with water cooled system

Chena Geothermal Power Plant

Chena Geothermal Power Plant

Chena Power Plant - Current

Chena Power Plant - Future

"There's a better way to do it... find it"

CHENA HOT SPRINGS RESORT

www.chenahotsprings.com Mile 56 Chena Hot Springs Rd, Fairbanks, AK (907) 451-8104

Bernie Karl Proprietor, Chena Hot Springs Resort *recycle@polarnet.com www.yourownpower.com* (907) 451-8104