The Kinetic Energy Potential of Pressurized Natural Gas Wells

Robert D. Hunt

Founder and Chief Scientist for

Kinetic Energy equals one-half of the mass times the velocity squared.

Written as: $KE = \frac{1}{2}mv^2$

for Producing MW	's of Electricit	ty			
omputation of the ideal power produced by pre	ssurized gas M	ethane (M=16	kg/kmol)		
	High Pressure Gas Wells				
Enter Flowrate in Mcfd	10,000	6,000	2,000		
Volumetric flow rate in cfs:	115.7	69.4	23.1		
Enter Pressure in psig:	7000	5000	3000		
Pressure ratio for expansion to 15 psig	0.0021	0.0030	0.0050		
Enter Temperature in degrees Fahrenheit:	150	150	0		
Temperature in degrees Kelvin	338.6	338.6	255.2		
Equals Power Produced in Megawatts (MW)	359	150	33		
Equals MW Hours Per Year	2,988,395	1,247,621	272,496		
Equals Annual Profits @ 2.5-cents/kWh	\$149,419,771	\$62,381,026	\$13,624,814		
<pre>kpected Temperature w/ isentropic expansion turbine</pre>	82.32	88.94	75.41		
Expected Temperature in degrees Fahrenheit	-311.23	-299.30	-323.65		
ldeal work (kJ/kg)	577.56	562.62	405.29		
volumetric rate in m^3/s	3.28	1.97	0.66		
mass flow rate in kg/s	888.21	380.66	100.99		
mass flow rate in lb/s	1954.06	837.45	222.18		
power produced in kW	512,994	214,169	40,930		
power produced in hp	687,660	287,090	54,866		
Enter turbine efficiency	0.7	0.7	0.8		
power produced in kW, with above efficiency	359,096	149,918	32,744		
power produced in hp, with above efficiency	481,362	200,963	43,893		
repared by Professor Stathis Michaelides of Tulane	Jniversity, New	Orleans, LA			

Three high-pressure, high flow rate natural gas wells of the magnitude of the well presented in Column One has the kinetic energy potential to generate as much power as a nuclear power plant that would cost billions of dollars to build!

Problems Associated with the use of Rotating Equipment in regard to Harnessing the Potential Energy of Natural Gas Wells are:

Pressure Changes of the Kinetic Energy Resource

Centrifugal Forces try to Rip the Equipment Apart

End Thrust

Inability to Process Dual-Phase Working Fluids

Three components comprise the linear power equipment used to harness the kinetic energy of natural gas wells: (1) a linear alternator that is driven back-and-forth by a pneumatic ram in order to generate 60 Hz AC electrical power; and, (2) a pneumatic ram prime mover, being a movable piston and rod within a cylinder that is actuated by a (3) driver that controls the flow of high-pressure natural gas into the cylinder of the ram and directs the exhaust flow from the cylinder.

Ram

Driver

Linear Alternator

Movable Coil of Alternator

Unit Under Construction by Linear Power, Ltd.

Propane Gas-lift Kinetic Energy

Bench Test of Unit

Linear Power is Developing a wide range of Linear Power Equipment Capable of Harnessing Kinetic Energy Resources