GEOTHERMAL RESOURCES AT NPR-3

Mark Milliken

March 2006

Rocky Mountain Oilfield Testing

The Naval Petroleum Reserves

NPR-3 LOCATION

NPR-3

Salt Creek Anticline Trend

WHY CONSIDER GEOTHERMAL ASSETS IN A STRIPPER OIL FIELD? RMOTC will partner with industry and academia to provide a test site for technologies that to reduce energy-related operational costs.

- Energy efficiency
- Energy conservation
- Alternative energy sources

KEY CHALLENGES

- Acceptance by Industry
- Creation of a Joint Industry Partnership (JIP)
- Consensus on best technologies
- Funding for infrastructure support
- Funding of Projects

Wyoming Depositional Basin Settings

UPPER CRETACEOUS

WELL 1-G-10, 1952

LOWER CRETACEOUS

JURASSIC

TRIASSIC CHUGWATER

PERMIAN GOOSE EGG

PENNSYLVANIAN TENSLEEP

MISSISSIPPIAN MADSION LS

CAMBRIAN SS

PRECAMBRIAN BASEMENT

NPR-3 SEISMIC

Interpretation by Mark Milliken, November 2005

UPPER CRETACEOUS

WELL 1-G-10, 1952

LOWER CRETACEOUS

JURASSIC

TRIASSIC CHUGWATER

PERMIAN GOOSE EGG

PENNSYLVANIAN

MISSISSIPPIAN MADSION LS

CAMBRIAN SS

PRECAMBRIAN BASEMENT

Fractured Precambrian Granite

UPPER CRETACEOUS

WELL 1-G-10, 1952

LOWER CRETACEOUS

JURASSIC

TRIASSIC CHUGWATER

PERMIAN GOOSE EGG

PENNSYLVANIAN

MISSISSIPPIAN MADSION LS

CAMBRIAN SS

PRECAMBRIAN BASEMENT

Fractured Cambrian Sandstone

UPPER CRETACEOUS

WELL 1-G-10, 1952

LOWER CRETACEOUS

JURASSIC

TRIASSIC CHUGWATER

PERMIAN GOOSE EGG

PENNSYLVANIAN

MISSISSIPPIAN MADSION LS

CAMBRIAN SS

PRECAMBRIAN BASEMENT

Fractured Madison Limestone

UPPER CRETACEOUS

WELL 1-G-10, 1952

LOWER CRETACEOUS

JURASSIC

TRIASSIC CHUGWATER

PERMIAN GOOSE EGG

PENNSYLVANIAN TENSLEEP

MISSISSIPPIAN MADSION LS

CAMBRIAN SS

PRECAMBRIAN BASEMENT

Pennsylvanian Tensleep Sandstone

BASEMENT STRUCTURE

NPR-3 RECHARGE SYSTEM

NPR-3 MADISON AQUIFER

OPECHE SHALE

MADISON LIMESTONE

TENSLEEP SANDSTONE

GEOTHERMAL WATER **MOVEMENT**

Basement

POSSIBLE GEOTHERMAL SUPPLY WELL LOCATIONS

17-WX-21 Madison and Tensleep Possibly 35 MBWPD flowing

57-WX-3 Madison and Tensleep Possibly 10 MBWPD flowing

TENSLEEP PRODUCING AREA

OTHER POSSIBLE TENSLEEP SOURCE WELLS AND DEEPENING CANDIDATES

GEOTHERMAL TEMPERATURE COMPARISON SOUTHERN POWDER RIVER BASIN

*Projected from Tensleep data

**WGS data, 1986

GEOTHERMAL GRADIENT COMPARISON SOUTHERN POWDER RIVER BASIN

*Projected from Tensleep data

**WGS data, 1986

MADISON WATER QUALITY

17-WX-21

DISSOLVED SOLIDS Cations Sodium, Na (Calc.) Calcium, Ca Magnesium, Mg	mg/l 1,758 316 51	meq/l 76.44 15.80 4.20	RESULTS AS as NaCl as CaCO ₃ as CaCO ₃	COMPOUNDS mg/l 790 210
Barium, Ba	02,125	0 96.44	as BaSO4	0
Anions Chloride, Cl Sulfate, SO ₄ Carbonate, CO ₃ Bicarbonate, HCO ₃	1,032 1,352 0 2,391	29.10 28.12 0 39.22	as NaCl as Na ₂ SO ₄ as CaCO ₃ as CaCO ₃	1,700 2,000 0 1,960
Anions Total	4,775	96.44		
Total Dissolved Solids (Calc.) Total Iron, Fe Acidity to Phenolphthalein, CO ₂ Dissolved Oxygen Sulfide, as H ₂ S	6,900 19.5 145 0.1 12.5		as Fe	19.5 330

CONTRACTOR OF

POTENTIAL WATER PRODUCTION RATES

POTENTIAL NEW WATER PRODUCTION

WELL	ZONE	RATE MBWPD		COMMENTS
		LOW	HIGH	
17-WX-21	MADISON	20	25	FLOWING
17-WX-21	TENSLEEP	42	10	FLOWING, MUST BE PERFORATED
41-2-X-3	TENSLEEP			FLOWING, TIGHT FORMATION
41-2-X-3	MADISON		12	FLOWING, NEEDS DEEPENING
48-X-28	TENSLEEP	2	- 6	FLOWING, TOO SMALL TO DEEPEN
61-2-X-15	MADISON	6		
	TENSLEEP	2		
57-WX-3	MADISON	2	6	FLOWING, REQUIRES ACIDIZATION
TOTAL NEW FLOWIN	G PRODUCTION	43	80	
TOTAL NEW PUMPIN		86	160	
ALL OTHER	TENSLEEP	40	50	PUT ALL CURRENT WELLS ON PUMP

TOTAL POTENTIAL WATER

210

NPR-3 GEOTHERMAL HEAT POTENTIAL

Assumptions

- 1. 130 MBWPD
- 2. 220° F surface temperature of water
- 3. 48° Mean ambient temperature (WGS data)
- 4. 53 MBTU/°F BWPD

Heat content

Total heat content = (53,000)(220 – 48) X 130,000 = **1.18 x 10¹² BTUs per day**

Power potential

1 MW can be extracted from 1.7 MBWPD at 200° F (SMU data) For 130 MBWPD, power = 130/1.7 = 76 MW

POSSIBLE FUTURE GEOTHERMAL DEVELOPMENT AREAS

Madison – Tensleep potential

Fractured basement potential

Questions?

