

The Role of Geothermal in Enhancing Energy Diversity and Security in the Western US

Roger Hill Technical Director of GeoPowering the West

USDOE Energy Efficiency and Renewable Energy Geothermal Technologies Program

The Role of Geothermal in Enhancing Energy Diversity and Security in the Western US

A Mean-Variance Portfolio Optimization of the Region's Generating Mix to 2013

Prepared for Sandia National Labs

Roger Hill Contract Officer

By Shimon Awerbuch, Ph.D. Tyndall Centre Visiting Fellow - SPRU-University of Sussex s.awerbuch@sussex.ac.uk

Jaap C. Jansen & Luuk Beurskens ECN - Energy Research Centre of the Netherlands

Thomas Drennen, Ph.D. Hobart College and Sandia National Labs

February 28, 2005

Electricity Generation

Source: Renewable Energy Atlas

Western US: Load Growth

Source: Renewable Energy Atlas

Regional Power Plant Emissions

Power Plant Emissions, 2000

Each bar represents the location of a power plant regulated under the EPA \odot Acid Rain Program (Title IV). The height of the bars is scaled to reßect the emissions levels for each plant. Because CO₂ emissions are so much higher than either SO₂ or NO_x, different scaling factors were used to determine the height of the bars.

Plants, 2000			
	tons		
Sulfur Dioxide (SO ₂)	506,662		
Nitrogen Oxide (NO _X)	547,754		
Carbon Dioxide (CO ₂)	316,774,136		

Data source: EPA Acid Rain Program (Title IV) Emissions Scorecard, 2000

Source: Renewable Energy Atlas

Optimization Defines Four Bands for New Geothermal Based on Resource Accessibility

Geothermal Potential and Cost					
	Resource Availability	Generating Cost			
Band	MW	2003	2013		
Existing	2,543	\$.062	\$.062		
Geothermal-1	2,457	\$.047	\$.045		
Geothermal-2	2,500	\$.052	\$.049		
Geothermal-3	2,500	\$.057	\$.054		
Geothermal-4	20,000	\$.071	\$.067		
Total	30,000	-	-		

EIA 2003 and 2013 Generating Mixes

Generating Cost Inputs: Constant 2002 \$/kWh*

US Western Region Portfolio Analysis Real Technology Cost Inputs (2002 \$/kWh)						
	2003		2013			
Technology	Existing	New		Existing	New	
Coal	\$0.036	\$0.047		\$0.037	\$0.051	
Gas	\$0.047	\$0.036		\$0.056	\$0.050	
Nuclear	\$0.014	\$0.060		\$0.014	\$0.060	
Wind	\$0.042	\$0.046		\$0.042	\$0.046	
Hydro	\$0.045	\$0.045		\$0.045	\$0.045	
Geothermal	\$0.062			\$0.062		
New Geo 1		\$0.047			\$0.045	
New Geo 2		\$0.052			\$0.049	
New Geo 3		\$0.057			\$0.054	
New Geo 4		\$0.071			\$0.067	

Source: US-EIA and Sandia National Laboratories

*pre-tax

Generating Cost Inputs: Nominal \$/kWh

US Western Region Portfolio analysis Nominal Technology Cost Inputs Assuming 3% Inflation							
(Nominal \$/kWh)							
	2003			2013			
Technology	Existing	New		Existing	New		
Coal	\$0.037	\$0.049		\$0.049	\$0.068		
Gas	\$0.048	\$0.037		\$0.075	\$0.067		
Nuclear	\$0.014	\$0.062		\$0.018	\$0.081		
Wind	\$0.043	\$0.047		\$0.056	\$0.062		
Hydro	\$0.046	\$0.046		\$0.060	\$0.060		
Geothermal	\$0.064			\$0.083			
New Geo 1		\$0.049			\$0.060		
New Geo 2		\$0.053			\$0.066		
New Geo 3		\$0.058			\$0.072		
New Geo 4		\$0.073			\$0.090		
Based on US-EIA and Sandia National Laboratories cost estimates, adjusted for 3% inflation							

Understanding Risk

- Portfolio optimization locates generating mixes with minimum expected cost and risk
- For each technology, risk is the year-to-year variability (standard deviation) of the three generating cost inputs: fuel, O&M and capital (construction period risk)
 - Fossil fuel standard deviations are estimated from historic US data
 - e.g. standard deviation for natural gas over the last 10 years is 0.30
 - Standard deviations for capital and O&M are estimated using proxy procedures (see Awerbuch and Berger, IEA, 2003)
- The construction period risk for embedded technologies is 0.0
- 'New' technologies are therefore riskier than embedded ones
 - e.g. new coal is riskier than 'old' coal

2003 EIA Technology Generating Costs and Estimated Technology Risk

2013 EIA Technology Generating Costs and Estimated Technology Risk

Western Region Generating Cost-Risk Trends

2013 EIA Mix has higher cost and risk relative to 2003

- Driven by 32% demand increase, decommissioning existing plant, resource shortages and limitations on available options
- Move to larger gas/coal shares adds to portfolio cost and risk
 - Increases year-to-year expected generating cost volatility

2013 Baseline Portfolio Optimization

A Mean-Variance Portfolio Optimization of the Western Region's Generating Mix to 2013

- Portfolio optimization locates generating mixes with lowestexpected cost at every level of risk
 - Risk is the year-to-year variability of technology generating costs
- EIA (NEMS) projected generating mixes serve as a benchmark or starting point;
 - Detailed decommissioning date assumptions using World Electricity Power Plant Database age of existing plants
- The optimal results generally indicate that compared to EIA target mixes, there exist generating mixes with larger geothermal shares at no greater expected cost or risk
 - There exist mixes with larger geothermal shares that exhibit lower expected cost and risk

A Vision for the Future

- Ready Access to Land
- Thoroughly Mapped and Developed Resources
- Cost Competitive Technology

