Texas Geothermal Energy:

A Focus On Permian Basin And Trans-Pecos Regions

Professionals: Richard J. Erdlac, Jr., Robert C. Trentham, Linda Armour-Finch, & Robert Lee (Bruce C. Miller)

> Student Research Assistants: Michael W. Sorensen, Michael N. Matteucci, and Jordan Horton (Susan Primeaux & Chase Patton)

> > The University of Texas of the Permian Basin Center for Energy & Economic Diversification

* Which well is for natural gas? * * Which well is for geothermal? *

Research Funded By:

* DOE grant of \$194,458 to study deep Permian Basin geothermal energy (part of an anticipated 3-year Congressional appropriation) (# DE-FG36-05GO 85023).

* State Energy Conservation Office grant of \$40,000 to help study deep Permian Basin geothermal energy and to develop a state-wide geothermal program (# CIVI540).

Electric Power Production Equivalence

Geothermal energy and geothermal plants are described in MW (megawatt) deliverability.

Size range 10 to 250 MW.

One MW (8,760,000 kWh) of electricity will meet the needs of approx. 1,000 households (approximately 4,000 people).

> 1 bbl crude oil = 1,699 kWh electricity 1 mcf gas = 303 kWh electricity

A 250 MW generating plant requires 1,288,994 bbls of oil or 7,227,722 mcf of natural gas in one year.

Target Areas For Electrical Power Generation

If we look at Texas, with the idea of a new energy resource, we have to ask where are the target areas for this resource.... say for electrical power generation? **There are** five.

Texas Anadarko Basin

Delaware and Val Verde Basins

Trans-Pecos Region

> Geothermal Future For Deep Gas Wells

Geopressured Gulf Coast (Successful Demonstration Project)

East Texas HDR &

Geopressured Area

<u>1976 USGS/AAPG North American</u> <u>Geothermal Study</u>

Dark gray region = area where contoured isotherm is 150°C (302°F) <u>Geopressured Areas – Wallace, 1982,</u> <u>GSA Meeting</u>

Geopressured reservoir = sedimentary rock under higher than normal confining pressure (0.465 lb/in²/ft).

Permian Basin - Deep

University Lands Location Map Within Area Of Study Oil And Gas Lease Sale No. 107 April 20, 2005

Yellow = Leased Blue = Leased (Horizontally Severed) White = Unleased Green = Nominated Tracts

D)evonian	Porosity R Avg. Poros Fracture F Avg. Perm	ge meability Rang bility	je	2 to 25% 6 to 8% 1 to 2,840 m 10.5 md	d	
F	'usselman	Porosity Avg. Poros Fracture F Avg. Perm	3 to 11% 4 to 5% 2 to 26 md 8.5 md				
F	Cllenburger	Porosity Avg. Poros Fracture F Avg. Perm	sity Perm leal	, meability Rang bility	e	2 to 14% 4% 0.1 to 2,250 75 md	md
	360 MYA	Osagian			Mi	ssissippian Lime	
	December	Kinderhookian Upper		Woodford		Woodford	
	408 MYA	Lower		Devonian	~	Devonian	
	Silurian	Upper		Silurian		Silurian	
	438 MYA	Lower		Fusselman		Fusselman	
		Upper		Montoya		Montoya	
			₽	Bromide	dn	Bromide	
			ŝ	Tulip Creek	ŝ	Tulip Creek	
	Ordovician	Middle	5	McLish	5	McLish	
	DUG INTA		sdu	Oil Creek	sdu	Oil Creek	
			i.	Joins	sir	Joins	
		Lower		Ellenburger		Ellenburger	
Cambrian 570 MYA		Upper		Wilberns		Wilberns	

Precambrian

Precambrian

Precambrian

PERIOD	SERIES	VAL VERDE & S. DELAWARE BASIN			NORTHERN DELAWARE BASIN			
Quaternary	Recent			AI	luvium 🕇			
1.8 MYA	Pleistocene							
Tertiary 67 MYA	Pliocent To Eocene			0	galalla 🕹			
	Gulfian	\sim			~~~~~			
Cretaceous	Comanchean			Fr	edricksburg Ls.			
	comarcinean			1	rinity Paluxy			
$\sim\sim\sim$	$\sim\sim\sim$	\sim	$\sim\sim\sim\sim$	\sim	~~~~~			
250 MYA	Upper		🗲 Santa Rosa		🗲 Santa Rosa			
$\sim\sim\sim$	$\sim\sim\sim$	\sim	$\sim\sim\sim\sim$	~				
			Dewey Lake		Dewey Lake			
	Ochoan	5			Rustler			
				-	Salado			
			and the second second second	Castile				
		\sim	\sim	no	Lamar Bell Capyop			
		-	Seven Rivers	Ō	Bell Canyon			
Permian	Guadalunian		Queen	Ē	Cherry Canyon			
288.5 MYA	Guadalupian		Grayburg	are	charly callyon			
			San Andres	elaw	Bruchy Camuon			
		-	Delaware Sands	ŏ	Brushy Canyon			
			Upper Leonard	ing	First Sand			
	Leonardian	-		Spi	Second Sand			
			Wichita-Albany	one				
		-		8	Third Sand			
	Wolfcampian		Wolfcamp		Wolfcamp			
	Virgilian	ľ	~~~~~	\sim				
	Missourian	~	\sim	$\sim\sim\sim\sim$				
Pennsylvanian 320 MYA	Desmolnesian		Strawn	Strawn				
520 1114	Atokan			Atoka				
	Morrowan			Morrow				
	Chesterian	\sim	$\sim\sim\sim$	\sim	Barnett			
Mississippian	Meramecian	Ba	arnett - Miss. Shale	м	eejeejnnian Luna			
JOU MTA	Osagian							
	Kinderhookian		Woodford		Woodford			
408 MYA	Lower	\sim	Devopian	~	Devopian			
Charles .	Upper		Silurian		Silurian			
438 MYA	Lower		Fuscelman		Fusselman			
	Upper		Montova		Montova			
		8	Bromide	8	Bromide			
		Stot	Tulip Creek	rou	Tulip Creek			
Ordovician	Middle	u o	McLish	u u	McLish			
DO4 MYA		sdu	Oil Creek	bsdu	Oil Creek			
1		Sir	Joins	Sin	Joins			
	Lower	Ellenburger			Ellenburger			
570 MYA	Upper		Wilberns		Wilberns			

The Delaware and Val Verde Basins represent the deepest and hottest subbasins of the entire Permian Basin.

Tectonics and structure must be integrated into subsurface maps to determine relation of structures and temperature data.

There are many wells to use in this analysis.

2,242 Wells From 12,000 to Basement.

GDS data with Topographic Mapping Company grid. Petra Software.

Data Base In Pecos County

M	Microsoft Excel - DOEGEOTHERMALPROJECT_PecosCounty 2.xls																
[환] Eile Edit View Insert Format Iools Data Window Help Acrobat																	
	൙ 🔛	AB	a 🖤 🐰 🖻 🖸	20-	CH + 🛍 🖉	Arial			• 9	• B I	U		5 %	+.0 .00 •.+ 00.	- 3	• <u>A</u> •	»» •
	03			D	E	E	Ċ.	Ц			-	1	5.4	N	0	D	
1	A Entry #	D Doy #		Liold	Operator	F Moll Namo	G	п	Locs	J			IVI	IN IN	0	P	-
2	Enay#	004 77	AFTHUMBO	TICIU	(on log)	(including #)	Block	Tn	Sec	Survey		Driller's	s'ranno I	Date		Temp	
3	-				(on log)	(including #)	DIOCK	1.15	500	Jury		depth	depth	Date		- Comp	
4										j.					(F)	(C)	-
44	40	181		Oates NE	Humble	Eichenhofer #1	3		156	T&PRR		15897					-
45	41	110	42-371-11074	NE Oates	OIL & REFIN	B.W Vallat #1	3		157	T&PRR		13730	13,723	06/01/68	212.00	100.00	
46	42	110	42-371-30440	Oates	en Oil Corpora	choffer-State #1	3		158	T&PRR		15000	15,003	12/27/70	162.00	72.22	
47	43	110	42 371 106820	Wildcat	Gregg Oil Co.	Kennedy #1	3		165	T&PRR		5130	5,128	02/28/61	106.00	41.11	
48	44	110	42 371 01140	Wildcat	Bond Oil Co.	1.R. Kennedy #	3		168	T&PRR		5026	5,037	03/25/61	100.00	37.78	_
49	45	110	42 371 33181	Wildcat	Texaco	anzanita Unit #	3		169	T&PRR		17050	5,010	11/01/80	107.00	41.67	_
50	46	110	42 371 11188	Oates NE	Sinclair	VVofford #1	3		179	T&PRR		15500	15,516	08/21/68	255.00	123.89	_
51	4/	110	42 3/1 1115/	Uates NE	Humple	Mitchell #1	3	-	180	T&PRR	_	15106	15,104	08/04/68	225.00	107.22	_
53	48	110	42 271 22051	Optoc ME	Saxer	Dates A #1	3		101	TOPOD	_	900	12.062	10/04/90	250.00	404.44	-
54	49	110	42 371 33031	Oates NE	Humble	Dates G U 4 #1	3		181	TLPPP	-	1/375	15,802	12/07/67	131.00	55.00	-
55	51	110	42 371 10671	Oates NE	Humble	Smith #1	3		182	T&PRR		13725	5.887	10/19/65	98.00	36.67	-
56	52	110	42 371 00583	Wildcat	Comer	Oates #1	3		183	T&PRR		4512	4,506	01/11/61	104.00	40.00	-
57	53	110		Oates NE	Humble	Davis #1	3		183	T&PRR		13950	13,960	10/02/68	310.00	154.44	-
58	54	110	42 371 10860	Oates NE	Humble	Belding #1	3		184	T&PRR		15050	6,118	03/31/67	109.00	42.78	
59	55	110	8	Oates NE	Great Westerr	Oates #1	3		195	T&PRR		2274	2,274	01/16/53	94.00	34.44	
60	56	110	42 371 30032	Oates NE	Humble	Shell #1	3		196	T&PRR		13859	13,859	06/23/69	295.00	146.11	
61	57	110	42 371 10929	Oates NE	Humble	tes Gas Unit 2	3		197	T&PRR		14700	14,307	11/11/67	229.00	109.44	
62	58	110		Oates NE	mbers & Keni	ntic Eichenhofe	3		197	T&PRR	-	14800	14,795	06/13/68	235.00	112.78	
63	59	110	42 371 11077	Oates NE	mbers & Kenr	ntic Eichenhofe	3		198	T&PRR	_	14600	14,792	06/11/68		-	_
64	60	110	10.071.00575	Oates NE	vestern Natur	Dulaney #1	3		199	T&PRR		15123	15,131	01/14/70	242.00	116.67	_
60 CC	61	110	42 371 30575	VVIIdcat		ownsend Est#	3	-	208	1&PRR		14,972	4 64.0	4.0/4.7/5.0	00	20.07	-
67	62	TL (05/E2	42-371-01084	VILDCAT)		University #2.1	10	-	2	UTLande		7,400	7.252	12/17/09	80	20.07	-
68	64	IT Landa	42-371-10955	hs (DEVOI		niversity #3-1	16	-	3	UT Lands	8	7,230	7,200	12/04/07		49,00	-
69	65	UT Lands	42-371-30003	bs (DEVOI	WESTERN DE	iversity "16-3"	16	-	3	UTLands	3		8	2			-
70	66	TL/95/F2	42-371-30512	HAYES (C	PETROLEUM	Universitv #1	16		4	UTLands	8	6.285	6.271	06/04/71			-
71	67	UT Lands	42-371-30512	HAYES (C	PETROLEUM	University #1	16		4	UT Lands	8						-
72	68	JT Lands	42-371-36396	DEVOI	PETROLEUM	University "4" #1	16		4	UT Lands	š			-		-	
73	69	UT Lands	42-371-36506	DEVOID 20	PETROLEUM	University "4" #1	16		4	UT Lands							-
		general / I	Basic (DSTs) temp :	s (enginee	ring / Pecos C	iounty / Tops /	Sheet1 ,	(•						•	
Dra	w + 🐼	🕝 🛛 Auto	Shapes 🔹 🔨 🍾 🕻		4 🗕 🔌	• 🥖 • 🗛 •		₽		7.							
Rea	dv										14.5	Sum=24	4252		NEM		-

A	В	C	DE	F (G H	4	JK	L	M N	0	P Q	R	S T	U	V W	X	Y
	Pecos		Pecos - UT	Lands	Terrell		Terrell- Mik	e's work	Terrell - U1	Lands	Crockett	· · · · · · · · · · · · · · · · · · ·	Val Verde		Brewster		1
depth	# wells	mean	# wells	mean	# wells	mean	# wells	mean	# wells	mean	# wells	mean	# wells	mean	# wells	mean	
	w temps	temp	w temps	temp	w temps	temp	w temps	temp	w temps	temp	w temps	temp	w temps	temp	w temps	temp	
2,000	178	95.99	34	94.26	2	100.00	2	96.50			3	92.66					1
3,000	140	103.01	12	97.17	2	113.50	3	92.00			2	163.5?					
4,000	138	107.48	3	101.00	3	111.67	10	109.00			5	116.20			5	107.00	
5,000	320	112.29	18	115.33	2	150.50	11	105.45	4	112.50	5	138.20			3	129.00	
6,000	124	119.62	7	123.14	9	135.89	16	117.19	1	error	10	166.80			3	111.33	
7,000	106	129.19	16	125.56	13	145.69	25	141.16	4	139.00	11	173.27			1	138.00	
8,000	83	139.25	5	131.20	7	155.00	27	154.44	15	155.20	3	180.67			1	148.00	
9,000	106	145.51	3	146.33	22	190.63	34	179.91	8	165.50	2	211.50			4	172.75	
10,000	153	161.75	6	159.83	39	163.21	39	177.74	1	165.00	2	223.50			1	230.00	
11,000	121	170.12	3	176.67	21	207.29	39	196.21	12	191.50							
12,000	85	186.95	3	188.33	16	205.38	48	232.88	11	189.00	5	236.60			1	205.00	
13,000	76	216.20			10	227.00	18	220.00	0		9	287.22					
14,000	59	229.24	1	193.00	71	252.39	52	238.33	5	208.20	28	279.61			1		1
15,000	76	230.33	2	265.50	18	247.83	18	241.83	2	248.50	8	288.50					
16,000	38	256.08	1	230.00	8	250.13	5	221.00	1	243.00			1	281	1	275.00	
17,000	22	256.68			6	268.67	8	252.38	1	254.00	1	334.00	1	295			
18,000	22	275.68	4	268.25	8	301.75	10	287.40					100				
19,000	9	280.11	2	287.00	1	251.00	1	251.00					1	310			
20,000	24	296.33	2	300.67	3	329.67	2	322.50							2	315.00	
20,500	(12)	297.75			-				1								
21,000	38	314.05	1	296.00	1	268.00											1
21,500	(30)	316.37	8												1		
22,000	99	323.05	2,1 error	320.00	2	355.00	1	332.00					955				1
22,500	(66)	232.14						_					100				
23,000	13	347.69															
23,500	3	335.33															
24,000	5	360.60					1	330.00	()				0				
24,500	4	363.75	2	364.5	1	330.00				1	-				_		1
3440 we	ls						537 data po	oints	7	0.0	10	00	0.	00 0	01	0.1 0	
2039 we	lls with data	9					441 with te	mps		AA A	A AL	AD A	AF	AG A	A	AJ A	1
									Presidio		Hudspeth		Culperson		Reeves		LO
							-		# wells	mean	# Wells	mean	# Wells	mean	# Wells	mean	# V

Average BHT within each 1,000 foot depth interval.

(Z	AA	A AC	AD	A AF	AG	A AL	AJ	A AL	AM	A AO	AP A	AR	AS	A' AU	AV	AW	A
Presidio		Hudspeth		Culberson	-	Reeves		Loving		Winkler		Ward				County	
# wells	mean	# wells	mean	# wells	mean	# wells	mean	# wells	mean	# wells	mean	# wells	mean	# wells	mean	Name	1
w temps	temp	w temps	temp	w temps	temp	w temps	temp	w temps	temp	w temps	temp	w temps	temp	w temps	temp	5	1
						30	93.87			2	86	3	87				1
			-			48	99.4			13	104.92	3	94.33				1
2	143.50	4	127.50			74	102.32	2	102	4	110.25	5	96.00				1
-		6	120.83			81	105.85	42	102.24	9	111	10	99.90				1
5	149.00	1	108.00	3	116.67	23	120.91	3	106.67	0	1	37*	114.62				1
2	160.50	3	136.67	4	144.25	3	119.33			4	123.75	8	124.00				1
5		3	143.00	3	150.00	5	140.2			3	121	5	122.60		168	El Paso	1
2	211.00			3	159.33	7	166.57	1	182	2	128.5	4	141.50				
2	213.00			3	186.00	14	159.5			1	141	14	138.50				
2	241.00			1	212.00	20	183.3	5	164.6	8	152.25	70	145.89				
3	225.67			2	202.50	21	222.14	4	170.5	2	185	27	167.63		262	El Paso	
				1	238.00	29	215.24			4	153	25	147.72				
						13	226.46			0	1 I	18	193.33				
1	285.00					29	240.55	1	188	0	(*)	19	214.74				
						24	238.46			2	192	17	213.76				
						29	248.28	3	232.66	2	268	22	223.68		278	El Paso	
>6000', s	everal	accurate?				14	269.86	4	259.2	1	268	21	233.67				
anomalies	s - both					12	282.83	1	300	0		8	254.25				
-						8	287.75	1	268	4	264.25	13	275.92				
<u> </u>						14	310.79			0		4	281.00				
											<u> </u>	<u> </u>				-	
1				1						1	296	2	307.50				
								<u> </u>			· · · · · · · · · · · · · · · · · · ·						
												-				-	
						a											
		a		-				-									
				_									_	_			
										just what l	ve gotten	*33>6500					
				1						1	1						
				-	-			-		-							
	7.0							-		-			1			-	
N NA Cha	att / sh	ant? (shoot?	1														

BHT Data Points: Pecos = 2,559; Reeves = 834; Terrell = 196; Loving = 36

Data originally compiled by West Texas Earth Resources Institute.

Temperature gradient appears to be lognormal.

Loving = 36

Reeves = 834

Pecos = 2,559

Terrell = 196

Pecos County @ 18,000 – 19,000 ft

Pecos County @ 21,000 – 22,000 ft

Pecos County @ 20,000 – 21,000 ft

48-9

50-9

309F

50-10 338F

- White a

BLK

T B Pitas"

5328F

106

GCA

т в

309F

BLA 13

203

UNIV

28

Pecos County @ 22,000 – 23,000 ft

Trans-Pecos Region

The "Texas **Renewable Energy Resource** Assessment" map by Virtus saw a hydrothermal potential for the **Trans-Pecos**, but did not include these temperatures within the realm of electricity generation. Maps developed for the **DOE** show a thermal gradient similar

to the Gulf Coast, but with a heat flux in the north part of the region at 80 mW/m² and up, much higher than the 60-70 mW/m² found in the Gulf Coast. The temperatures and heat leaflux do appear to support electric generation. Texas Map adapted by R.J. Erdlac, Jr.

Two straight lines are defined in the normal-normal plot and one logarithmic curve for the lognormal plot. In the first plot, the shallow line gives $dT/dz = 21.5^{\circ}C/km$ with the deep line having $dT/dz = 44.5^{\circ}C/km$, over twice the shallow value. The log-normal curve gives a better statistical fit.

Note proximity of Trans-Pecos wells and those in Delaware Basin, especially in Pecos County.

Resource Amount – Harder To Gage At Present Time

Gulf Coast

(General Land Office of Texas 1979)

0

Table 2

ASSUMED VALUES OF FAIRWAY PARAMETERS: **OPTIMISTIC WITH DEEP REINJECTION SCENARIOS**

			Fairway	
Map 1	Paramuter	Brazoria	Matagorda	Corpus Christ
POTENTIAL GEOPRESSURED-GEOTHERMAL FAIRWAYS, FRID FORMATION, GULF COAST OF TEXAS	Reservoir Characteristics	350 ⁰ F	350 ⁰ F	350 ⁰ F
True of	Porosity Permeability (millidarcies) Percent fluid recovery (with deep	22% 50	20% 5	205
And the second the second	reinjection) Gas content (SCF/bbl)	45%	15% 50	15% 50
and have	Fraction of fairway producible	100%	100%	100%
Anne Tran Martin	<u>Wells</u> Success ratio in drilling producible wells	50%	50%	50%
	Use of unsuccessful production wells for disposal wells	100%	100%	100%
	Support area per well (square miles)	11.45	4.01	4.01
BRAZORIA FAIRWAY	Fuel and Electric Generating Plants Life of facilities (years) No. production wells per plant	60 3	60 9	60 9
MATAGORDA FAIRMATS	No. disposal wells per plant Electrical generating capacity per	6	18	18
- Contraction	plant (megawatts) Gas flow capacity per plant (SCF/yr)	48.3 7.05X10 ⁹	12.3 1.80X10 ⁹	1.80X10 ⁹
	Fairway Development No. plants:			•
-T	Per fairway Per fairway fed by wells on PFSL Production wells:	6	4	8
<u>/</u>	Per fairway	48	54	72
	Adjacent to PFSL No. disposal wells per fairway	10 96	6** 108	17 144
ARMSTRONG FAIRWAY	(megawatts) Gas flow capacity per fairway (SCF/yr)	773.03 1.13X1011	73.78 1.08X10 ¹⁰	98.38 1.44X10 ¹⁰
HIDALGO FAIRWAY	* Of 16 wells, 9 are assumed to be in eastern **Of 6 wells, 2 are assumed to be in eastern p	portion, and	7 in wester in western	n portion. portion.

D.G. Bebout et al., 1978, <u>Frio Sandstone Reservoirs in the</u> Deep Subsurface Along the <u>Texas Gulf Coast</u>, Report of Investigations No. 91, <u>Bureau of Economic Geology</u>, The ource: University of Texas at Austin.

> Source: C.D. Zinn. 1977. Operations Research and Systems Analysis of Geothermal-Geopressured Resources in Texas - Final Report. Research Report No. 10, Center for Energy Studies. The University of Texas at Austin.

Gulf Coast – calculations based upon defined fairways and Pleasant Bayou #2

Donomotor		Totol		
rarameter	Brazoria	Matagorda	Corpus Christi	TOTAL
Fairway extent (sq mi.)	908	353	632	1893
Fraction of fairway			1251 945	
producible (%)	100	100	100	XXX
Production wells per				
fairway	48	54	72	174
Estimated rating on heat	25-10-1	and weather	Section States	
alone (1.1 MW/well)	52.8	59.4	79.2	191.4
Estimated rating on heat			1. A. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	
alone (1 MW/well)	48	54	72	174
TREAM AND AND		a plant		122
Estimated rating on heat			State of the second	
alone (0.9 MW/well)	43.2	48.6	64.8	\156.6

These calculations do not include the rest of the Gulf Coast!

Based upon single pay zone.

Delaware Basin – calculations based upon defined fairways in Gulf Coast that are for sandstone reservoirs and not limestone or clolostone reservoirs.

	Estimated Well	Fairway Model								
Area	Rating From	Brazoria - 48	Matagorda - 54	Corpus Christi - 72						
Sachtra	Heat Only	wells / 908 mi ²	wells / 353 mi ²	wells / 632 mi ²						
	1.1 MW	322 MW	933 MW)	695 MW						
5,544 mi ²	1.0 MW	293 MW	848 MW	632 MW						
	0.9 MW	(264 MW)	763 MW	568 MW						

Lovy

High

Values will increase if well rating is higher

Does not include multiple pay zones.

CONCLUSIONS

"The future of the Texas oil and gas industry is tied to The future of a Texas geothermal industry."

- Companies have the opportunity to use existing and develop new infrastructures towards geothermal development.
- > This will require the same entrepreneurial spirit that created the oil and gas industry to rise and inaugurate a new energy evolution in the Permian Basin.
- > This means creating an energy triad oil gas and geothermal combined.

* Which well is for natural gas? * * Which well is for geothermal? *

Fo Be Continued

