Qpxfsfe.Cz.Q fppf

Results of the Demonstration Power Plant on the Pleasant Bayou Geopressured Resource *Richard G. Campbell*

Qpxfafe.C.z.D fforth

*

Overview:

* Nominal 1 MW hybrid cycle power plant

Pleasant Bayou Power Plant

- Built in late 1980s to run on brine and gas from Pleasant Bayou Well No. 2
- * Start-up & testing Oct-Dec 1989
 - Demonstration run Jan-May '90

Overview: (cont.) 10,000 BBL/day brine at 290 F * 22 SCF/BBL gas (87% CH4, balance mostly CO₂) Half the total flow of the well * Generated 980 kW total (690 * kW from gas engines + 535 kW from binary cycle turbine - 270 kW parasitic load)

Participants:

- Funding by US DOE and EPRI
- Well drilling and rework by Eaton Operating Company
- Fluid handling by Institute of Gas Technology
- Power plant by Ben Holt Company

Hybrid Cycle Flow Diagram

Hybrid Cycle:

- Operates on two different fuels
- Integrated operation to get optimum use of both fuel sources
- Studies funded by EPRI show that efficiencies for optimized hybrid cycles are much higher than for power plants operating on the two fuels independently

Major Equipment

Gas Engines

Accumulator

Isobutane Circulating Pump

Heat Exchangers

Exhaust Gas-to-Isobutane Boiler, E-3-N

Turbine-Generator

Condensers

Major Technical Concerns at Time of Design:

Corrosive brine (1000 mils/yr)
Scaling (130,000 ppm TDS)

*

*

*

- Engine operation on impure gas
- Turbine reliability (had failures at DCHX)
 - Differential thermal expansion in exhaust gas to isobutane heat exchanger

Discussion of Major Technical Concerns:

- Corrosion inhibitors worked: no failures in 16 Ga. carbon steel tubes.
 - Scaling inhibitors worked well

*

*

- Engines operated well, next slide shows fouling due to carbon deposits
- Binary cycle turbine had no wheel failures (used Finite Element Analysis)
 - Split channel in E-3-N solved differential thermal expansion problem

*

*

*

Pleasant Bayou Power Plant

Overall Results:

- 97.5% Availability
- * Effective demonstration of hybrid cycle
 - Effective demonstration of power generation on geopressured resource
 - No major technical problems
 - Only significant operating problem was carbon deposit in exhaust gas heat exchanger—easily removed

DOE Program Discussion:

 Currently talk of DOE geothermal program being eliminated in 2007
 This power plant shows the value of DOE program because it demonstrated that a power plant could be successfully operated on a resource with unknowns such as scaling and corrosion

DOE Program Discussion (cont.):

 Private contractors, banks, and developers are reluctant to take such risks, but with DOE's involvement the risks were shown to be small
 This is a major contribution DOE has made and can continue to make
 It would be a BIG mistake for the DOE geothermal program to be eliminated

Overall View from Fire Water Pond

Qpxfsfe!Cz!Q fppf

