Paleoenvironmental reconstruction from chemical and isotopic compositions of Permo-Pennsylvanian pedogenic minerals

NEIL JOHN TABOR, ISABEL P. MONTANEZ and RANALD J. SOUTHARD

1 Department of Geology, University of California, One Shields Avenue, Davis, CA 95616, USA
2 Department of Land, Air, and Water Resources, University of California, Davis, CA 95616, USA

(Received July 24, 2001; accepted in revised form February 22, 2002)

Abstract—Mineralogical and chemical analysis of Late Pennsylvanian and Early Permian paleosols from the eastern shelf of the Midland basin, north-central Texas, USA, are used to test hypothesized climate change in Late Paleozoic western equatorial Pangea, previously defined independently on the bases of sedimentologic and paleontologic proxies and climate models. The <0.2-μm size phyllosilicate fraction in the studied paleosols exhibits down-profile trends in mineralogy and chemical composition that are consistent with modern weathering profiles suggesting a dominantly pedogenic origin. A stratigraphic trend from kaolinite-dominated profiles in Upper Pennsylvanian paleosols to profiles dominated by smectite and hydroxy-interlayered 2:1 phyllosilicates in Lower Permian paleosols indicates a relatively rapid decrease in soil weathering and leaching in the latest Pennsylvanian followed by a more gradual decrease in leaching throughout the Early Permian. The chemical composition (cation ratios and exchange capacity) of these phyllosilicates further corroborates this shift toward less intensive leaching, presumably in response to climate change from humid to progressively more arid conditions.

The phyllosilicates in the <0.2-μm size fraction and contemporaneous pedogenic calcites from the Permo-Pennsylvanian paleosols exhibit a long-term stratigraphic increase in their δ18O values of as much as ~3.2‰ and ~5.2‰, respectively. This long-term trend is consistent with a transition throughout the latest Pennsylvanian through Early Permian toward progressively more evaporatively enriched soil waters. Superimposed on the long-term trend is an apparent rapid enrichment (1.5 to 2‰) in phyllosilicate δ18O values immediately above the Pennsylvanian–Permian boundary. Observed oxygen isotope fractionation between the phyllosilicates and calcites within individual paleosols indicate isotopic disequilibrium between mineral pairs. This is attributed to a minor detrital component in the pedogenic clay-dominated phyllosilicate fraction coupled with the effects of seasonality of mineral formation. Inferred δ18O compositions of Late Paleozoic meteoric water (−2‰ to +4‰) are compatible with less intensive soil leaching under conditions of increasing aridity, possibly coupled with a shift in local precipitation from a continental source to a marine source.

Copyright © 2002 Elsevier Science Ltd

1. INTRODUCTION

Soils are strongly influenced by the climate under which they form and can be useful proxies of weathering and climate conditions. The mineralogical and chemical composition of pedogenic phyllosilicates, which form in a soil through alteration of detrital clays or by primary precipitation, are strongly controlled by the chemical activity of the soil solution, which in turn is influenced by the amount and seasonality of rainfall (Sparks, 1995; Buol et al., 1997). Soil weathering often produces changes in clay mineralogy from weathered micas to smectites, kaolinites, and iron-oxyhydroxides, a trend reflected in a decrease in Si:Al ratios and cation exchange capacity (of residual minerals) with increasing duration and intensity of pedogenesis. The intensity of pedogenesis is related to climatic conditions affecting temperature and the amount and distribution of precipitation. Pedogenic phyllosilicates (kaolinite, smectite) (Lawrence and Taylor, 1971, 1972) and coexisting pedogenic carbonates (Stern et al., 1997) have been shown to precipitate in isotopic equilibrium with the soil water in which they form and thus to record the δ18O composition of soil water. Studies have suggested that the δ18O composition of these pedogenic minerals can be related to the δ18O composition of local meteoric water (Cerling and Quade, 1993; Lui et al., 1995; Amundson et al., 1996; Elliot et al., 1997; Stern et al., 1997; Deutz et al., 2001). The soil water, however, may not be isotopically identical to local precipitation because of the effects of fluid–rock interaction, evaporation, and transpiration on soil water δ18O values (Hsieh et al., 1998; Savin and Hsieh, 1998).

The mineralogic, chemical, and isotopic composition of pedogenic minerals from paleosols are thus potentially powerful proxies of paleoenvironmental and paleoclimatic conditions. In contrast to the application of pedogenic carbonates to paleoclimate reconstructions, the mineralogic and geochemical composition of pedogenic phyllosilicates as paleoclimate proxies has been relatively little studied (e.g., Bird and Chivas, 1988, 1989; Stern et al., 1997; Giral-Kacmarcik et al., 1999). This in part reflects that the fine phyllosilicate fraction in paleosols can be a mixture of pedogenic clays, detrital and burial authigenic clays, and diagenetically altered pedogenic clays. To infer paleoclimate conditions from pedogenic phyllosilicates, it is necessary to document that they have not undergone extensive diagenetic alteration. Further, it is necessary to either isolate a pure pedogenic and preferably monominerotic phyllosilicate fraction or to characterize the effect...
of nonpedogenic clays on measured values and inferred soil conditions.

In this study, we present the mineralologic, chemical, and oxygen isotope compositions of paired pedogenic phyllosilicates and calcites from Upper Pennsylvanian through Early Permian paleosols of north-central Texas, USA, and use these values to test hypothesized models of climate conditions and atmospheric circulation over western equatorial Pangea during Late Paleozoic time.

The dominantly terrestrial Upper Pennsylvanian and Lower Permian succession of north-central Texas was deposited in three broad depositional belts (lower and upper coastal plain, and piedmont facies) distributed across the low-sloping eastern shelf of the Midland basin. The succession comprises ~800 m of upward fining fluvoaaualluvial cycles (Fig. 2; Hentz, 1988) and contains well-developed paleosols. The paleosols analyzed in this study are developed within lithic-dominated, clay-rich siltstones and claystones of overbank-floodplain deposits. The study area remained in the western equatorial region of Pangea, between the equator and 10° N throughout the Permian (Scotese, 1984; Van der Voo et al., 1984).

Multiple fusilinid-bearing limestones (black units on Fig. 2) and regionally extensive fluvial sandstone sets (SS units on Fig. 2; Hentz, 1988) are intercalated throughout the succession and define a high-resolution stratigraphic framework for correlation throughout the study region. Two stratigraphic boundaries are well defined within the succession and provide the only absolute age control for this interval. The Pennsylvanian–Permian boundary (301 ± 2 Ma; Rasbury et al., 1998) occurs within the uppermost Markley Formation of the Bowie Group (Dunbar et al., 1960). The Wolfcampian–Leonardian boundary (283 ± 2 Ma; Ross et al., 1994) within the Lower Permian is defined by the fusilinid-bearing Elk City Limestone, which occurs in the lowermost Petrolia Formation of the Wichita Group (Fig. 2).

Paleosols are an important stratigraphic component of the Upper Pennsylvanian and Lower Permian succession of north-central Texas (Tabor and Montañez, unpublished data). Tabor and Montañez defined eight pedotypes (cf. Retallack, 1994) on the basis of macro- and micromorphologic characteristics of the paleosols. They interpreted the stratigraphic distribution of pedotypes to record a relatively rapid transition from humid conditions typical of the Late Pennsylvanian to significantly drier conditions in the earliest Permian. A climate trend toward increasingly drier conditions is recorded throughout the Lower Permian paleosols. Moreover, the paleosols proximal to the Pennsylvanian–Permian boundary record a rapid onset of sea-

losilicate fraction in the Permo-Pennsylvanian paleosol profiles are consistent with modern soil weathering patterns, indicating that these phyllosilicates are dominated by pedogenic clays and therefore have paleoenvironmental and paleoclimatic significance. We subsequently present the chemical and δ18O composition of the <0.2-μm size phyllosilicate fraction from B-horizons in the Permo-Pennsylvanian paleosols. Finally, we evaluate the utility of these chemical and isotopic properties as proxies for the composition of paleosoil water and paleoprecipitation and for interpreting changes in paleatmospheric circulation over western equatorial Pangea during Late Paleozoic time.

The dominantly terrestrial Upper Pennsylvanian and Lower Permian succession of north-central Texas was deposited in three broad depositional belts (lower and upper coastal plain, and piedmont facies) distributed across the low-sloping eastern shelf of the Midland basin. The succession comprises ~800 m of upward fining fluvoaaualluvial cycles (Fig. 2; Hentz, 1988) and contains well-developed paleosols. The paleosols analyzed in this study are developed within lithic-dominated, clay-rich siltstones and claystones of overbank-floodplain deposits. The study area remained in the western equatorial region of Pangea, between the equator and 10° N throughout the Permian (Scotese, 1984; Van der Voo et al., 1984).

Multiple fusilinid-bearing limestones (black units on Fig. 2) and regionally extensive fluvial sandstone sets (SS units on Fig. 2; Hentz, 1988) are intercalated throughout the succession and define a high-resolution stratigraphic framework for correlation throughout the study region. Two stratigraphic boundaries are well defined within the succession and provide the only absolute age control for this interval. The Pennsylvanian–Permian boundary (301 ± 2 Ma; Rasbury et al., 1998) occurs within the uppermost Markley Formation of the Bowie Group (Dunbar et al., 1960). The Wolfcampian–Leonardian boundary (283 ± 2 Ma; Ross et al., 1994) within the Lower Permian is defined by the fusilinid-bearing Elk City Limestone, which occurs in the lowermost Petrolia Formation of the Wichita Group (Fig. 2).

Paleosols are an important stratigraphic component of the Upper Pennsylvanian and Lower Permian succession of north-central Texas (Tabor and Montañez, unpublished data). Tabor and Montañez defined eight pedotypes (cf. Retallack, 1994) on the basis of macro- and micromorphologic characteristics of the paleosols. They interpreted the stratigraphic distribution of pedotypes to record a relatively rapid transition from humid conditions typical of the Late Pennsylvanian to significantly drier conditions in the earliest Permian. A climate trend toward increasingly drier conditions is recorded throughout the Lower Permian paleosols. Moreover, the paleosols proximal to the Pennsylvanian–Permian boundary record a rapid onset of sea-

Fig. 2. (A) Uppermost Pennsylvanian (Virgilian) and Lower Permian succession across a southwest-to-northeast trending section from the Eastern Shelf of the Midland Basin. White = mudrocks; light stipple = fluvial sandstone sets; dark gray = marine limestones; black = mappable coals. Modified from Hentz (1988). The black dots correspond to samples 1 to 12, from bottom to top, in Tables 1 and 2 and in Fig. 10. Open circles correspond to locations where only calcite δ18O data are presented in Table 2 and Fig. 9 except for two sampling sites at 782 and 840 m in the Clear Fork Group, which are not shown. The northeastern end of the succession represents the northern extent of Permo-Pennsylvanian surficial outcrop in the study area (i.e., the Red River and Cretaceous overlap), whereas the southern end of the succession roughly corresponds to the 33°N latitude line in (B). (B) A regional geologic map of northern Texas, USA; inset map of Texas gives approximate location of study area. The black dots correspond to samples 1 to 12 in Tables 1 and 2 and Fig. 10. White dots correspond to locations where only calcite δ18O data are presented in Table 2 and Fig. 9.
sonality in precipitation coincident with the transition to drier conditions.

2. MATERIALS AND METHODS

2.1. Paleosol Phyllosilicates

Paleosols were logged and described in the field according to the methods of Retallack (1988). To avoid recent weathering products not associated with Permo-Pennsylvanian pedogenesis, outcrop faces were dug back minimally 60 cm to provide a fresh surface for describing and sampling the paleosols. Approximately 500 g of paleosol matrix was collected from each paleosol horizon and stored in either canvas or plastic bags. Bulk paleosol matrix samples were initially dispersed in deionized water and shaken overnight. Both the <2-μm and <0.2-μm size fractions were isolated from the bulk paleosol matrix by centrifugation. For X-ray diffraction (XRD) analysis of the <2-μm size fraction, clays were exchange-saturated with K or Mg on filter membranes and transferred to glass slides as oriented aggregates. Duplicate Mg-saturated clays were also prepared with glycerol. Oriented aggregates of all Mg treatments were analyzed at 25°C, the K-saturated treatments were analyzed at 25°C, 300°C, and 500°C after 2 h of heating at their respective temperatures. Step scan analyses were performed with a Diano 8500 X-ray diffractometer with CuKα radiation between 2 and 30° 2θ with a step size of 0.04° 2θ and count time of 1 s. Mineralogical composition of the samples was determined following the methods of Moore and Reynolds (1997). The <0.2-μm size fraction was subsequently treated in a series of selective dissolution procedures to remove contaminants that may complicate interpretation of δ18O values. Chemical pretreatments were, in the order of application, as follows: (1) 0.5 mol/L NaOAc to remove carbonates (Savin and Epstein, 1970; Lawrence and Taylor, 1971); (2) sodium hypochlorite (Clorox) solution (100°C, 1 h) buffer at pH 9.0 to remove occluded organic matter (Anderson, 1963), and (3) sodium citrate–bicarbonate–dithionite solution (80°C) to remove adsorbed secondary iron oxyhydroxides (Jackson, 1979). The <0.2-μm fraction was isolated from the bulk material for chemical and isotopic analysis given that previous work has shown authigenic clays dominate the <0.2-μm fraction (cf. Stern et al., 1997). XRD analyses of the <0.2-μm phyllosilicate fraction was performed in the same manner as described for the <2-μm fraction.

The <0.2-μm size fraction was split into two aliquots for chemical and stable isotope analysis. The first of these two aliquots was fused into a glass at high temperature (~1200°C) on molybdenum strips in an Ar atmosphere following the methods of Brown (1977). Samples were analyzed for major and minor elemental compositions with a Cameca SX 50 microprobe in the Department of Geology at the University of California–Davis. It is important to note that all of the phyllosilicate samples were stored in 2 M NaCl solution and subsequently washed to remove excess NaCl before chemical analysis, so all of the exchange sites in these phyllosilicates should be occupied by Na+ and furthermore should be reflected in the elemental chemical data. The second aliquot of the <0.2-μm fraction was analyzed for δ18O with BrF5 at ~560°C following the methods of Clayton and Mayeda (1963). Analysis was carried out on a Finnigan MAT Delta E mass spectrometer in the Department of Geology at the Southern Methodist University. Oxygen isotopic compositions are reported relative to the Vienna standard mean ocean water (VSMOW) standard (Gonfiantini, 1984) with an analytical uncertainty, based on replicate analyses of samples and quartz standard NBS 28, of ± 0.2‰.

2.2. Paleosol Carbonates

Carbonates were collected near the base of each pedogenic carbonate horizon within paleosols. Doubly polished thin sections were analyzed petrographically to differentiate pedogenic carbonate fabrics from diagenetic calcite cements (Deutz et al., 2001). Microrocks were obtained from pedogenic micrite in carbonate nodules and rhizoliths; replacement of micrite and micropar or sparry calcite cements was avoided. Samples were drilled from thin sections or matching billets with a hand-held dental drill equipped with faceted 100-μm diamond bits. Approximately 50 μg of carbonate powder were roasted at 375°C for 3 h to remove organics. δ13C and δ18O analysis was carried out on a Fisons-Optima infrared gas source mass spectrometer in the Department of Geology at UC Davis. Carbonate isotope values are given relative to the standard PDB (Craig 1957) and interpreted meteoric water values are given relative to the standard VSMOW (Gonfiantini, 1984). Replicate analysis of NBS 19 yielded δ13C values of −2.07 ± 0.15 (n = 39) over the period of analysis.

2.3. Soil Phyllosilicates

As a means of comparing phyllosilicates in a modern soil profile with those contained in the studied Permo-Pennsylvanian paleosols, we separated and analyzed by XRD the <2-μm fraction from a soil sampled in Butte County in the northern Sierra Nevada foothills of California. Similar methods of separation and chemical treatment for phyllosilicates in the Permo-Pennsylvanian paleosols were applied to the collection of the <2-μm fraction in this soil. This soil is classified as a fine-loamy, mixed, superactive, thermic Utlc Haploxeralf (refer to Soil Survey Staff, 1998). These soils occur at an elevation of 400 m, on a 12% slope that receives 1000 mm mean annual precipitation. The profile is underlain by quartz diorite and the vegetation is mostly blue oak (Quercus douglasii), interior live oak (Quercus wislizenii), and annual grasses.

3. RESULTS

3.1. Phyllosilicate Mineralogy and Stratigraphic Distribution

There are two distinctly different suites of phyllosilicate minerals in the paleosol profiles; the stratigraphic separation between the two suites is just below the Permo-Pennsylvanian boundary. The majority of <2-μm size fraction samples from upper Pennsylvania paleosol profiles exhibit sharp and intense 7 Å XRD peaks (Fig. 3). These peaks decompose upon K saturation and heating to 500°C, indicating the dominance of kaolinite. In addition, there is a relatively minor and broad XRD peak at 13 to 15 Å that is unaffected by Mg saturation and glycerol treatment. This peak could be either very fine grained vermiculite or an hydroxy-interlayered 2:1 mineral (the general category of these minerals is referred to as HIM) of unknown identity. Finally, a minor but persistent peak or “shoulder” at 10 Å indicates the presence of weathered mica such as biotite or muscovite.

Samples of the <2-μm and <0.2-μm size fractions of phyllosilicates from the uppermost Pennsylvania through Lower Permian paleosols exhibit a distinctly different pattern of XRD peaks from similar size fractions in the older Upper Pennsylvanian paleosols. Although the 7- and 3.5-Å peaks are also present in the X-ray diffractograms of lower Permian paleosols (Figs. 4, 5), their relative intensities are much lower than equivalent peaks in the older upper Pennsylvania samples (Fig. 3). In addition, the 13- to 15.5-Å peaks are of increased intensity relative to the Pennsylvania phyllosilicates, indicating that smectite, rather than kaolinite, dominates the phyllosilicate mineralogy in the Lower Permian paleosols (Figs. 4, 5). Furthermore, some of these smectites do not collapse, or only partially collapsed, to 10 Å upon K saturation and heating to 550°C (Figs. 4, 5), suggesting that the interlayer spaces of these phyllosilicates are filled, thereby preventing collapse, and therefore indicates the presence of HIM. A 14- to 15 Å Mg-saturated peak present in many samples shifts to 17.5 to 18 Å upon treatment with glycerol (Fig. 4), further confirming the presence of smectite in Lower Permian paleosols.

A minor but persistent peak or shoulder at 10 Å indicates the
minor occurrence of a weathered mica mineral in most of the B-horizons of both Late Pennsylvanian and Early Permian samples (Figs. 3–7). This phase is probably a relict detrital phase because there is no characteristic XRD evidence for diagenetic illitization of the <0.2-μm size fraction such as illite-smectite superstructures or stable ordering of illite and smectite layers within the same crystal lattice (Moore and Reynolds, 1997).

3.2. Distribution of Phyllosilicates within Paleosol and Soil Profiles

Systematic intraprofile variation in the relative proportion of phyllosilicate minerals is observed throughout each of the Upper Pennsylvanian and Lower Permian paleosols. In each paleosol profile the 7-Å kaolinite peak decreases in intensity downward from the interpreted paleosol surface (Figs. 6, 7). In several of the Lower Permian paleosol profiles the relative proportion of HIM increases in the upper horizons of the paleosol profile, as indicated by their greater intensity of the 14-Å peak (Fig. 7). Early Permian paleosol profiles also exhibit a broadening of the expandable 2:1 phyllosilicate (001) 14 to 18 Å peak, which increases the breadth of the (001) peak upward through the profile (Fig. 7). This broadening may be attributable to a number of factors such as crystal size and crystal defects, variable isomorphic substitution, or nonpreferred grain orientation as a result of intercalated organics that may not have been entirely removed by Na-hypochlorite treatment. This effect is similar to observations made in many modern soils (Fig. 8; Frye et al., 1968; Moore and Reynolds, 1997; Wilson, 1999). Moreover, in many of the paleosol profiles the smectite peak at 17 to 18 Å and the HIM (001) peak at 14 to 16 Å exhibit increasing intensity upward through the profile at the expense of the 10-Å weathered mica minerals (001) (Fig. 7). X-ray diffractograms of the modern soil from
California (Fig. 8) exhibit patterns similar to those observed in the Permian paleosol profiles. These trends include an increase in the down-profile intensity of the smectite (001) 18.5 Å peak at the expense of the 10-Å mica peak as well as increased intensity of the halloysite (001) 7.4 Å peak near the surface of the profile (Fig. 8). This trend in modern soils is interpreted to be a result of more intense weathering of primary minerals upward through the profile. By analogy, similar down-profile trends observed in the mineralogy of the Pennsylvanian and Permian paleosols is inferred to record pedogenic alteration of detrital micaceous minerals to authigenic kaolinite, HIM, and smectite. Finally, although XRD patterns reveal that quartz and weathered micas are largely absent from the <0.2-μm Permian-Pennsylvanian size fractions, their mineralogy is remarkably similar to the corresponding <2-μm size fraction.

3.3. Elemental Composition of the <0.2-μm Size Fraction

Table 1 lists the elemental composition of the <0.2-μm fraction from paleosol B-horizons. The <0.2-μm phyllosilicate fraction was used for chemical and stable isotope analysis because other workers have demonstrated that this size fraction in soils and paleosols is dominated by an authigenic phase (Stern et al., 1997). A mass balance of mineral components was not made because the concentration of individual phyllosilicate minerals within these mixtures cannot be directly measured by XRD. However, the chemical composition of these phyllosilicate mixtures provides insight to the relative concentration of certain minerals and allows for evaluation of stratigraphic trends.

There is an apparent temporal trend of increasing Si/Al ratios in the <0.2-μm pedogenic phyllosilicate fraction from average Si/Al ratios of 0.88 in the Late Pennsylvanian to 1.05 in the Early Permian samples. Relatively low potassium (K₂O) concentrations likely reflects the minor component of detrital weathered micas, indicated by the 10-Å (001) peaks observed in B-horizon XRD patterns. Sodium (Na₂O) likely reflects the presence of Na⁺ in 2:1 exchange sites of expansible phyllosilicates, which were chemically pretreated to occupy 2:1 phyllosilicate exchange sites with Na⁺. Sodium is not likely to occur in structural sites other than interlayer exchangeable sites. In this regard, the elemental chemical data reconfirms conclusions made from XRD data: the Pennsylvanian samples are dominated by kaolinite with extremely low cation exchange.

Fig. 5. XRD patterns of oriented <0.2-μm size fraction from the B-horizon of a paleosol between marine limestone marker beds ls3 and ls2 in the Early Permian Waggoner Ranch Formation. The sample is dominated by smectite with some hydroxy-interlayered minerals.

Fig. 6. Down-profile XRD patterns of Mg-saturated clays from the <2-μm size fraction of two paleosols underlying the SS12 marker bed in the Late Pennsylvanian Markley Formation. Measured section to the left shows stacked paleosols. Paleosol tops are indicated by wavy lines. Symbols are as follows: Fe-oxides = half-filled ovals; pedogenic slickensides = arcuate lines; rooting structures = vermicular patterns; C = clay; S = silt; f, m, c = fine, medium, and coarse sand. The XRD patterns demonstrate the increase up-profile in the relative intensity of the kaolinite (001) peak (7 Å) through the two paleosols.
capacity, the Permian samples are dominated by smectite with much higher exchange capacity, and all of the samples contain a minor fraction of detrital mica. No other trends in cation ratios were observed.

3.4. δ¹⁸O Values of Pedogenic Phyllosilicates and Carbonates

Table 2 and Figure 9 present the δ¹⁸O values of pedogenic calcites (n = 114) and phyllosilicates in the <0.2-μm size fraction (n = 12) from the paleosols. The δ¹⁸O values of pedogenic calcites are presented as the mean value, ± 1σ, for individual paleosol profiles or compound sets of paleosol profiles that represent no more than 10 m of stratigraphic thickness (except for the Leuders Formation, which is 20 m thick). The δ¹⁸O_PDB values of pedogenic carbonate show a range of ~5.4‰ from the most depleted values of ~4.0‰ (26.8‰ _SMOW_) in the lower Nocona Formation (Wolfcampian) to the most enriched values of +1.4‰ (32.4‰ _SMOW_) in the upper Petrolia Formation (Leonardian; Fig. 9). Moreover, the δ¹⁸O_PDB values of pedogenic calcites exhibit a generally progressive enrichment from the oldest Wolfcampian carbonate-bearing paleosols in the study area to stratigraphically higher and younger Leonardian paleosols. Superimposed upon the long-term increase in δ¹⁸O values are several shorter-term shifts of ~2.0 to 4.0‰ (Fig. 9).

The δ¹⁸O_SMOW values of pedogenic phyllosilicate minerals range from ~19.6‰ in the upper Pennsylvanian and lowest Permian (Archer City Formation) paleosols to values as enriched as ~22.7‰ in the lower Permian (Leonardian) paleosols (Table 2; Fig. 9). The phyllosilicate δ¹⁸O values, however, do not reveal short-term isotopic fluctuations analogous to those defined by the δ¹⁸O values of pedogenic carbonates. However, there is a relatively abrupt shift in the δ¹⁸O composition of the phyllosilicates near the Pennsylvanian–Permian boundary (Fig. 9) from ~19.5 to 20.5‰ in the Pennsylvanian to 20.8 to 22.7‰ in the Early Permian. The observed oxygen isotope fractionation between penecontemporaneously formed calcite and
smectite (presented as Δ^{18}O$_{SMOW}$phyllol-carb in Table 2) varies from 4.6°e to 9.7°e.

4. DISCUSSION

4.1. Diagenesis

To infer paleoenvironmental and paleoclimatic conditions from the mineralogical, chemical, and isotopic composition of paleopedogenic minerals, it must be demonstrated that their compositions have not been diagenetically altered. Maximum burial temperatures to which Permo-Pennsylvania strata of the eastern shelf of the Midland Basin were exposed are likely $<50^\circ$C (Ruppel and Hovorka, 1995). Furthermore, phyllosilicates in the <0.2-µm size fraction from these paleosol profiles exhibit mineralogical trends that are analogous to those observed in modern soil profiles, such as a decrease in the proportion of 2:1 expandable phyllosilicates and kaolinite and an increase in 2:1 nonexpandable phyllosilicates downward within individual profiles. Finally, the δ^{18}O values of pedogenic phyllosilicates and calcites exhibit a similar stratigraphic pattern relative to one another. This pattern would not be expected if diagenesis had played an active role in the alteration

<table>
<thead>
<tr>
<th>Sample</th>
<th>Age</th>
<th>Formation</th>
<th>Na_2O^b</th>
<th>MgO</th>
<th>Al$_2$O$_3$</th>
<th>SiO$_2$</th>
<th>P$_2$O$_5$</th>
<th>K$_2$O</th>
<th>CaO</th>
<th>TiO$_2$</th>
<th>MnO</th>
<th>Fe$_2$O$_3$</th>
<th>SrO</th>
<th>Total</th>
<th>Si/Al</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Virgilian</td>
<td>Markley (middle)</td>
<td>0.66</td>
<td>0.58</td>
<td>31.39</td>
<td>62.65</td>
<td>0.03</td>
<td>1.66</td>
<td>0.06</td>
<td>0.97</td>
<td>0.03</td>
<td>1.94</td>
<td>0.23</td>
<td>100.19</td>
<td>1.04</td>
<td></td>
</tr>
<tr>
<td>2 Virgilian</td>
<td>Markley (upper)</td>
<td>0.79</td>
<td>0.82</td>
<td>36.83</td>
<td>54.17</td>
<td>0.06</td>
<td>1.66</td>
<td>0.09</td>
<td>0.73</td>
<td>0.01</td>
<td>2.73</td>
<td>0.22</td>
<td>98.12</td>
<td>0.77</td>
<td></td>
</tr>
<tr>
<td>3 Virgilian</td>
<td>Markley (upper)</td>
<td>8.35</td>
<td>0.95</td>
<td>34.06</td>
<td>54.92</td>
<td>0.05</td>
<td>6.00</td>
<td>0.02</td>
<td>0.34</td>
<td>0.02</td>
<td>1.20</td>
<td>0.22</td>
<td>100.73</td>
<td>0.84</td>
<td></td>
</tr>
<tr>
<td>4 Wolfcampian</td>
<td>Archer City (lower)</td>
<td>6.67</td>
<td>4.22</td>
<td>26.03</td>
<td>56.49</td>
<td>0.07</td>
<td>1.03</td>
<td>0.24</td>
<td>0.78</td>
<td>0.04</td>
<td>5.44</td>
<td>0.25</td>
<td>101.24</td>
<td>1.13</td>
<td></td>
</tr>
<tr>
<td>5 Wolfcampian</td>
<td>Archer City (middle)</td>
<td>6.88</td>
<td>1.90</td>
<td>30.99</td>
<td>56.16</td>
<td>0.02</td>
<td>0.76</td>
<td>0.03</td>
<td>0.36</td>
<td>0.03</td>
<td>3.82</td>
<td>0.22</td>
<td>101.17</td>
<td>0.94</td>
<td></td>
</tr>
<tr>
<td>6 Wolfcampian</td>
<td>Nocona (lower)</td>
<td>2.78</td>
<td>2.54</td>
<td>29.35</td>
<td>55.04</td>
<td>0.04</td>
<td>3.56</td>
<td>0.02</td>
<td>0.56</td>
<td>0.02</td>
<td>5.49</td>
<td>0.25</td>
<td>99.67</td>
<td>0.98</td>
<td></td>
</tr>
<tr>
<td>7 Wolfcampian</td>
<td>Nocona (middle)</td>
<td>4.98</td>
<td>2.50</td>
<td>24.34</td>
<td>57.91</td>
<td>0.03</td>
<td>2.06</td>
<td>0.03</td>
<td>0.73</td>
<td>0.02</td>
<td>7.38</td>
<td>0.23</td>
<td>100.20</td>
<td>1.24</td>
<td></td>
</tr>
<tr>
<td>8 Wolfcampian</td>
<td>Nocona (upper)</td>
<td>5.58</td>
<td>3.32</td>
<td>27.57</td>
<td>55.81</td>
<td>0.04</td>
<td>1.96</td>
<td>0.04</td>
<td>0.37</td>
<td>0.02</td>
<td>5.23</td>
<td>0.22</td>
<td>100.16</td>
<td>1.05</td>
<td></td>
</tr>
<tr>
<td>9 Leonardian</td>
<td>Petrolia (lower)</td>
<td>2.74</td>
<td>2.84</td>
<td>29.58</td>
<td>55.22</td>
<td>0.03</td>
<td>3.08</td>
<td>0.02</td>
<td>0.41</td>
<td>0.03</td>
<td>5.27</td>
<td>0.23</td>
<td>99.44</td>
<td>0.97</td>
<td></td>
</tr>
<tr>
<td>10 Leonardian</td>
<td>Petrolia (middle)</td>
<td>5.93</td>
<td>3.68</td>
<td>28.91</td>
<td>55.82</td>
<td>0.02</td>
<td>0.81</td>
<td>0.05</td>
<td>0.46</td>
<td>0.02</td>
<td>4.86</td>
<td>0.23</td>
<td>100.79</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>11 Leonardian</td>
<td>Wagoner Ranch (upper)</td>
<td>4.60</td>
<td>4.01</td>
<td>26.52</td>
<td>56.82</td>
<td>0.02</td>
<td>1.87</td>
<td>0.03</td>
<td>0.58</td>
<td>0.03</td>
<td>5.96</td>
<td>0.25</td>
<td>100.42</td>
<td>1.12</td>
<td></td>
</tr>
<tr>
<td>12 Leonardian</td>
<td>Clear Fork (lower)</td>
<td>2.42</td>
<td>3.49</td>
<td>28.71</td>
<td>54.60</td>
<td>0.03</td>
<td>4.53</td>
<td>0.01</td>
<td>0.30</td>
<td>0.02</td>
<td>5.37</td>
<td>0.23</td>
<td>99.71</td>
<td>0.99</td>
<td></td>
</tr>
</tbody>
</table>

* Chemical data are presented as the mean of 15 data individual analyses for each sample.
* Sodium data are the least reliable values using this technique (Brown, 1977). However, the maximum standard deviation for Na_2O is 0.53 wt % for sample 8, and the mean standard deviation for Na_2O in all sample is 0.22 wt %.

Table 1. Electron microprobe data for selected Permi-Pennsylvanian phyllosilicates.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Age</th>
<th>Formation</th>
<th>δ^{18}O$_{SMOW}$</th>
<th>δ^{18}O${OCC{PDB}}$</th>
<th>δ^{18}O$_{SMOW}$</th>
<th>Δ^{18}O$_{SMOW}$phyllol-carb</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Markley</td>
<td>135</td>
<td>20.5</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>6.6</td>
<td></td>
</tr>
<tr>
<td>Markley</td>
<td>180</td>
<td>19.6</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>7.5</td>
<td></td>
</tr>
<tr>
<td>Archer City</td>
<td>230</td>
<td>19.5</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>7.6</td>
<td></td>
</tr>
<tr>
<td>Archer City</td>
<td>265</td>
<td>20.8</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>6.3</td>
<td></td>
</tr>
<tr>
<td>Archer City</td>
<td>315</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>3.1</td>
<td></td>
</tr>
<tr>
<td>Nocona</td>
<td>325</td>
<td>21.1</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>5.7</td>
<td></td>
</tr>
<tr>
<td>Nocona</td>
<td>365</td>
<td>21.1</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>7.1</td>
<td></td>
</tr>
<tr>
<td>Nocona</td>
<td>395</td>
<td>21.8</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>8.1</td>
<td></td>
</tr>
<tr>
<td>Petrolia</td>
<td>415</td>
<td>21.2</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>9.7</td>
<td></td>
</tr>
<tr>
<td>Petrolia</td>
<td>475</td>
<td>22.7</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>4.6</td>
<td></td>
</tr>
<tr>
<td>Petrolia</td>
<td>525</td>
<td>21.1</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>7.2</td>
<td></td>
</tr>
<tr>
<td>Petrolia</td>
<td>535</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>6.9</td>
<td></td>
</tr>
<tr>
<td>Petrolia</td>
<td>538</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>4.2</td>
<td></td>
</tr>
<tr>
<td>Wagoner Ranch</td>
<td>585</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>4.8</td>
<td></td>
</tr>
<tr>
<td>Wagoner Ranch</td>
<td>615</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>Wagoner Ranch</td>
<td>620</td>
<td>22.6</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>4.8</td>
<td></td>
</tr>
<tr>
<td>Wagoner Ranch</td>
<td>625</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>8.8</td>
<td></td>
</tr>
<tr>
<td>Wagoner Ranch</td>
<td>630</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>6.8</td>
<td></td>
</tr>
<tr>
<td>Wagoner Ranch</td>
<td>635</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>4.6</td>
<td></td>
</tr>
<tr>
<td>Wagoner Ranch</td>
<td>645</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>Wagoner Ranch</td>
<td>665</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>Wagoner Ranch</td>
<td>710</td>
<td>22.0</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>5.8</td>
<td></td>
</tr>
<tr>
<td>Wagoner Ranch</td>
<td>782</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>6.8</td>
<td></td>
</tr>
<tr>
<td>Wagoner Ranch</td>
<td>840</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>5.8</td>
<td></td>
</tr>
</tbody>
</table>

* Meter levels are calculated as the stratigraphic distance above the base of the Pennsylvanian Markley Formation.

1-12 Numbers 1 to 12 correspond to phyllosilicate sample designations in Table 1 and Figure 10.

The Δ^{18}O$_{SMOW}$phyllol-carb values are calculated from the δ^{18}O$_{SMOW}$phyllol and the average δ^{18}O$_{SMOW}$ from each corresponding horizon. The average δ^{18}O$_{SMOW}$ value from horizon 4 was used to calculate Δ^{18}O$_{SMOW}$phyllol-carb for horizons 1 to 3 because no calcite was found associated with these horizons.
of these minerals because it is unlikely that smectite, kaolinite, and calcite would undergo similar amounts of oxygen isotope exchange during diagenesis as a result of their greatly differing chemical stability, solubility, and crystal sizes (Stern et al., 1997). We therefore conclude that diagenesis has minimally affected the phyllosilicate and carbonate mineralogy or their oxygen isotopic compositions.

4.2. Clay Mineralogy

Paleosols from the Upper Pennsylvanian and Lower Permian strata of north-central Texas exhibit changes in their clay mineralogy that are similar to trends observed in modern weathering profiles. The up-profile change in kaolinite content at the expense of detrital nonexpandable 2:1 phyllosilicates (mica) coupled with increased broadening of the 2:1 phyllosilicate (001) peak seen within individual paleosols (Figs. 6, 7) is analogous to that observed in the modern soil profile and in previously studied soils (Frye et al., 1968; Wilson, 1999). These results support the hypothesis of a dominantly pedogenic origin for the phyllosilicates in the <0.2-μm size fraction of the Pennsylvanian and Permian paleosols. The long-term trend in paleosol B-horizon mineralogy from kaolinite dominated to smectite dominated, in conjunction with an increase in Si/Al ratios from Upper Pennsylvanian to Lower Permian phyllosilicates, suggests a shift from relatively humid to semiarid and seasonal climatic conditions during this time period. These results thus corroborate a paleoclimate trend of a progressive shift to increased aridity previously delineated from paleosol morphologies (Tabor and Montanez, personal communication).

Although there is some evidence for kaolinite genesis in cold and wet climates (Bird and Chivas, 1989), kaolinite formation in soil profiles is typically associated with intense weathering of stable landscapes under warm, humid conditions (Chamley, 1989; Wilson, 1999). The dominance of kaolinite in upper Pennsylvanian paleosols is thus interpreted to reflect pedogenesis under warm humid climate conditions. In contrast, vermiculite and HIV are typically found in well-drained soil profiles within subtropical and temperate zones (April et al., 1986; Bain et al., 1990; Moore and Reynolds, 1997; Wilson, 1999). Although these 2:1 phyllosilicates occur as an auxiliary mineral phase in some tropical soils (Moniz et al., 1982), they generally do not occur in modern humid tropical soils, given that intense chemical weathering often results in direct transformation of micas to kaolinite (Wilson, 1999). The presence of HIM in Lower Permian paleosols likely records decreased soil moisture conditions in the Early Permian, conditions entirely consistent with a trend toward more dry and arid conditions (Tabor and Montanez, personal communication).
The presence of pedogenic smectite in these Early Permian paleosols is compatible with formation under tropical or subtropical conditions, but only if soils formed in poorly drained landscapes or under a seasonal (e.g., monsoonal) climate. Formation of smectite is typically associated with soils that develop in low-lying topography, with poor drainage and base-rich parent material, leading to favorable chemical conditions characterized by high pH, high silica activity and an abundance of basic cations. These conditions would be typical of floodplain environments in virtually all temperate and many tropical climates with a naturally high water table (Allen and Hajek, 1989). However, most of the studied soils probably were not poorly drained in the Early Permian, given that paleosol morphologies are characterized by well developed soil structure, extensive rooting systems and colors that are consistent with well drained modern soils (Tabor and Montanez, personal communication). These results indicate a mineralogical suite that is consistent with humid tropical settings in the Late Pennsylvanian changing to a subhumid to semi-arid seasonal, or monsoonal, climatic setting by early Permian time.

4.3. Mineral and Meteoric Water Isotope Systematics

The isotopic composition of precipitation and meteoric water has been shown to vary systematically with geographical position (Dansgaard, 1964; Rozanski et al., 1993). Thus, the natural range of oxygen isotope values in modern precipitation varies from $-0\%e$ to $-40\%e$. This large range of values reflects the effects of Rayleigh distillation during progressive rainout over continental interiors and highlands. The isotopic composition of coastal precipitation averages $-0\%e$, reflecting minimal Rayleigh distillation. More depleted $\delta^{18}O$ values are found in continental interiors and high latitudes as a result of progressive rainout of ^{18}O from the original air mass. Highly depleted meteoric water values ($\leq -10\%e$) in tropical and midlatitudes may also reflect a significant loss of water vapor from clouds as weather systems pass over prominent orographic features such as the present-day Cordilleran system and the Himalayan-Tibetan Plateau of central Asia (Rozanski et al., 1993; Sheppard, 1986). The isotopic composition of first-formed water vapor in a cloud, however, will reflect the isotopic composition of seawater. Therefore, the effect of fluctuations in the $\delta^{18}O$ composition of seawater, of potentially up to $8\%e$ (Hudson and Anderson, 1989; Veizer, 1999), on the composition of meteoric water must be considered. However, others have argued that the $\delta^{18}O$ value of seawater may have remained at approximately $0\%e \pm 2\%e$ throughout the Phanerozoic as a result of buffering by hydrothermal exchange at mid-ocean ridges and continental weathering (Holland, 1984; Lecuyer and Allemand, 1999).

Pedogenic minerals inherit their oxygen isotope composition from soil water, which in turn can be correlated to the isotopic composition of meteoric precipitation (Savin and Epstein, 1970; Lawrence and Taylor, 1971; Hsieh, 1996; Savin and Hsieh, 1998). The $\delta^{18}O$ of pedogenic phyllosilicates, Fe-oxy-hydroxides, and carbonates exhibit a nearly 1:1 correlation with a consistent offset from the $\delta^{18}O$ composition of average local meteoric water (Lawrence and Taylor, 1971; Quade et al., 1989; Cerling and Quade, 1993; Yapp, 1993). However, soil water may undergo further isotopic fractionation as a result of evaporative enrichment or mineral weathering reactions within the soil profile leading to more enriched ($>0\%e$) $\delta^{18}O$ compositions in both soil water and pedogenic minerals (Hsieh, 1996).

Furthermore, when comparing the $\delta^{18}O$ values of “contemporaneous” pedogenic minerals from individual soils or paleosols, one must account for the possibility that the soil minerals formed from soil waters whose $\delta^{18}O$ composition varied seasonally. Thus, the mineral pair may not exhibit the anticipated equilibrium per mil fractionation. The latter was demonstrated in the Miocene paleosols of the Siwalik Himalayan Molasse by Stern et al. (1997) where the oxygen isotopic composition of pedogenic smectite and calcite differed significantly because of formation under different soil moisture regimes. Smectite formed in these soils when conditions were wet enough to dissolve primary silicates, whereas calcite formed under soil-evaporative conditions associated with dry intervals.

4.4. $\delta^{18}O$ Compositions

We interpret the $\delta^{18}O$ values of the $<0.2-\mu m$ clay fraction to record primarily pedogenic values given that (1) our $\delta^{18}O$ values for kaolinite samples ($+19.6\%e$ and $+20.5\%e$) from Upper Pennsylvanian paleosols are similar to previously published Upper Pennsylvanian paleopedogenic kaolinites from northern Texas (20.9%e and 19.2%e; Lawrence and Rashkes Meaux, 1993); and (2) the clay mineralogical trends suggest that pedogenic phyllosilicates dominate the $<0.2-\mu m$ fraction. Although the $\delta^{18}O$ values of the $<0.2-\mu m$ pedogenic phyllosilicates and contemporaneous calcites record similar long-term trends throughout the Upper Pennsylvanian and Lower Permian stratigraphic interval, they define an oxygen isotope fractionation ($\Delta^{18}O_{SMOW/phyllcryst}$ in Table 2) that varies from calculated equilibrium fractionation values of $<4\%e$ between smectite and coprecipitated calcite (Sheppard and Gilg, 1996; Kim and O’Neil, 1997; Stern et al., 1997). This apparent isotopic disequilibrium between these contemporaneous minerals may reflect a contribution from detrital phyllosilicate minerals of differing ^{18}O compositions, seasonal variation in the isotopic composition of the soil water from which they precipitated, or both.

The presence of a small 10-Å peak on XRD graphs indicate that all of the $<0.2-\mu m$ size phyllosilicate fraction from the paleosols contain a minor fraction of a detrital weathered mica. A minor component of mica can significantly alter the measured $\delta^{18}O$ composition of a heterogeneous phyllosilicate fraction (cf. Taylor and Sheppard, 1986; Sheppard and Gilg, 1996; Hoefs, 1997). Physical or chemical isolation of a phyllosilicate monomineralic fraction has proven to be difficult. If the relative contribution of oxygen from each mineral phase cannot be directly evaluated, then the interpretation of the stable isotope compositions of heterogeneous phyllosilicate fractions can be compromised. The issue is minimized, however, for mixes of kaolinite and smectite, such as those found in these paleosols, given that the temperature-dependent oxygen isotopic fractionation for these minerals is similar at Earth surface temperatures (Sheppard and Gilg, 1996). Micas (e.g., biotite or muscovite), however, have $\delta^{18}O$ compositions and $\delta^{18}O$ fractionation values that are significantly different from pedogenic clays such as smectite or kaolinite.
We developed a simple model to evaluate to what degree the observed oxygen isotopic disequilibrium between the phyllosilicate and calcite samples records the influence of detrital phyllosilicates and/or seasonal variation in soil water composition (Fig. 10). The δ¹⁸O composition of soil waters from which the pedogenic carbonates in the paleosols likely precipitated was calculated by using a tropical temperature range of 20 to 30°C and the empirically derived carbonate–water oxygen isotope fractionation of Kim and O’Neil (1997). By use of this estimated range of soil water δ¹⁸O compositions, the δ¹⁸O compositions of the monomineralic phyllosilicate component that would have precipitated from these waters was derived (“100% pedogenic” in Fig. 10). These estimates apply the thermodynamic equations of Sheppard and Gilg (1996) with a chemical composition equivalent to that of a sodium-saturated nontronite: Na₀.₃₂Fe₂Si₃.₆₇Al₀.₃₃O₁₀(OH)₂. Nontronite is a reasonable phyllosilicate to select for this exercise because many modern soil-formed smectites are Fe³⁺ rich and the elemental analysis of the fused minerals indicate a significant Fe content (Table 1).

The proportion of each sample made up of detrital micaceous minerals was calculated by assuming that all measured K²⁺ (reported in Table 1 as K₂O) occurs in a mica mineral such as biotite: K(Mg₁.₅Fe₁.₅AlSi₃O₁₀(OH))₂. Finally, the δ¹⁸O composition of the synthetic mixture of pedogenic nontronite and detrital mica was calculated by using mass balance considerations and a δ¹⁸O value of 5.5‰ for the detrital phase (“Biotite corrected” in Fig. 10; cf. Taylor, 1986; Hoefs, 1997). If the corrected values approach actual measured values then the apparent isotopic disequilibrium is likely attributable to the presence of allochthonous micas rather than to climatic phenomena such as seasonality. It should be pointed out that extrapolation to end-member δ¹⁸O values in these types of systems should use the mole fraction of oxygen from each constituent mineral phase, and not weight percent oxide (as reported in Table 1), as the compositional variable (cf. Yapp, 1990). However, both the calculated stoichiometric biotite and nontronite have nearly identical mole fractions of oxygen (0.45), and therefore the weight percent oxide will give equivalent δ¹⁸O values to that of mole fraction.

Most of the calculated monomineralic δ¹⁸O values of calculated mixtures of pedogenic and detrital phyllosilicate fractions show a shift from monomineralic pedogenic phyllosilicates toward the measured phyllosilicate δ¹⁸O values (Fig. 10). This
suggests that the observed oxygen isotopic disequilibrium records in part the presence of detrital phyllosilicates. However, most of the biotite-corrected δ¹⁸O values are still isotopically enriched by as much as 2 to 4‰ over the measured phyllosilicate samples relative to the δ¹⁸O phyllosilicate values from the studied paleosols. It is possible that this “residual” isotopic enrichment reflects precipitation of the pedogenic phyllosilicates from soil waters that were δ¹⁸O-depleted relative to carbonate-precipitating soil waters as a result of precipitation of these mineral suites during different seasons. In a study of contemporaneous pedogenic calcites and phyllosilicates from paleosols in the Miocene-age Himalayan Molasse, Stern et al. (1997) observed an oxygen isotopic fractionation between pedogenic calcites and smectites or kaolinites greater than

1. The presence of several shorter-term oscillations in δ¹⁸O values of ~2 to 4‰ (Fig. 9), which may have occurred over 10⁶ to 10⁷-yr timescales and are superimposed on the long-term trend (~30 My), is interpreted to record changes in the intensity of soil leaching regimes (i.e., moist–more intense to dry–less intense). Short-term shifts in soil leaching regimes of similar temporal scale to those inferred from the δ¹⁸O composition of the pedogenic minerals were previously and independently inferred from the stratigraphic distribution of polygenetic paleosols with anomalous positioning of carbonate-rich and clay-rich horizons (Tabor and Montanez, personal communication).

2. These estimated soil water δ¹⁸O values from Late Pennsylvanian through Early Permian paleosols (and by inference, paleoprecipitation) for western equatorial Pangea, however, are inconsistent with current models of Early Permian paleoprecipitation and paleoatmospheric circulation patterns over Pangea. Precipitation over western equatorial Pangea is currently modeled to have been isotopically depleted as a result of the effects of extensive rainout as Tethys-sourced waters migrated over Pangea (Crowley et al., 1993; Parrish, 1993, 1995; Rowley et al., 1995; Patzkowsky et al., 1999). Models of zonal circulation over Pangea require the migration of warm, moist air masses from the Tethys Ocean westward across Pangea, whereas models of monsoonal circulation diverted equatorial air masses from the Tethys Ocean to the midlatitude regions of the summer hemisphere (Fig. 1), leaving the Pangean equatorial latitudes relatively arid. Neither of these hypothesized circulation patterns sufficiently explains the anomalously heavy δ¹⁸O values of pedogenic minerals in Permian paleosols from north-central Texas. As air masses move across a continent from a marine source they progressively “rain out” heavier isotopes, leaving more depleted δ¹⁸O precipitation in the interiors and lee sides of continents (Dansgaard, 1964; Rozanski et al., 1993). This pattern is especially enhanced when air masses migrate over highlands or plateaus, such as the Himalayan-scale Alleghenian–Hercynian mountains that spanned equatorial Pangea during Late Pennsylvanian through Early Permian time (Fig. 1; Rowley et al., 1985; Crowley and Baum, 1992; Crowley et al., 1993; Crowley, 1994; Parrish, 1993, 1995; Ziegler et al., 1996). Thus, the δ¹⁸O compositions of Permian pedogenic phyllosilicates and calcites from the Permo–Pennsylvanian paleosols we studied suggest that soil waters, and by inference meteoric waters, were likely derived from more local sources, such as the Midland and Delaware basin located directly west of the study area.

5. SUMMARY

Mineralogical and chemical compositions of pedogenic calcite and the fine (<2 and <0.2 μm) size phyllosilicate fractions
of Upper Pennsylvanian and Lower Permian paleosols from north-central Texas define down-profile trends typical of modern weathering profiles, indicating that pedogenic clays dominate the phyllosilicate fractions in these paleosols. Although there is evidence for a minor detrital component in the <0.2-μm phyllosilicate fraction, the δ18O values of phyllosilicates and contemporaneous pedogenic carbonates from these paleosols exhibit a long-term enrichment that is consistent with a shift from more humid conditions during Late Pennsylvanian time to more arid conditions during Permian time. Estimated δ18O compositions of Late Pennsylvanian and Early Permian precipitation for this region is inconsistent with previously hypothesized zonal or monsoonal atmospheric circulation over western equatorial Pangea. We interpret the δ18O compositions of pedogenic minerals in the studied paleosols to record a local source of precipitation in this region, such as the Midland and Delaware Seas of the western coast of equatorial Pangea.

This study, in conjunction with previously published studies of the oxygen isotopic composition of pedogenic phyllosilicates, clearly demonstrates the potential of these minerals as proxies of paleoclimate and paleoenvironment. However, several aspects of the phyllosilicate fine fraction in paleosols, such as intermixture of different minerals, variable grain size that may represent different generations of crystal growth associated with isotopically distinct fluids, and variable chemical composition, presently limit their potential as paleoclimate proxies. These problems are minimized by analysis of “pure” mineralogical phases. Future studies should focus on isolation of pure mineralogical phases through separation techniques that use the distinctly different chemical and physical properties of phyllosilicate minerals, such as electrophoresis (Drever, 1969; Park and Lewis, 1969).

Acknowledgments—We are indebted to Bill DiMichele and Dan Chaney, Department of Paleobiology, Smithsonian Institution, for providing an introduction to the study area and a stratigraphic and paleoecologic framework. We also thank the Soil Science graduate pedology class at the University of California—Davis for allowing us to use XRD data collected from modern soils. D. G. McGahan provided graphical expertise. This research received support from an NSF IGERT “Nano-materials in the Environment, Agriculture, and Technology,” in addition to Grants-in-Aid to N. Tabor from the Geological Society of America, the American Association of Petroleum Geologists, the Society for Sedimentary Geology (SEPM), and Sigma Xi, as well as NSF grant EAR-9814640 to I. P. Montanez. We thank Martin Goldhaber and two anonymous reviewers for constructive reviews that considerably improved the manuscript.

Associate editor: M. B. Goldhaber

REFERENCES

Gregory R. R. (1991) Oxygen isotope history of seawater revisited: Timescales for boundary event changes in the oxygen isotope com-

Hoefs J. (1997) **Stable Isotope Geochemistry.** Springer-Verlag.

Quade J., Cerling T. E., and Bowman J. R. (1989) Systematic variations in the carbon and oxygen isotopic composition of pedogenic carbon-

