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NONCOOPERATIVE N-PERSON GAME THEORY (N = 2) USING EXPECTED
RELATIVE DESIRABILITY CRITERION

John E. Walsh Grace J. Kelleher
Southern Methodist University* University of Texas at Arlington

ABSTRACT

Considered is noncooperative discrete N-person game theory for N 2 2
(where the players choose their strategies separately and independently).
Payoffs can be of a very general nature and are not necessarily numbers.
However, each player is able to quantitatively specify the relative de-
sirability of the possible game outcomes (N-dimensional, a payoff to each
player) according to his preferences. That is, he specifies a positive
number for each outcome and these numbers are such that their ratios
quantitatively represent the relatively desirability of the corresponding
outcomes to this player. For each player, the criterion is the expected
relative desirability to him of what occurs for the game, and an optimum
mixed strategy maximizes the minimum value of this criterion over all
possible mixed strategies that could be used by the other players. An
optimum solution is obtained by use of classical minimax game theory.
Practical implications of applying this N-person game theory are examined.
Also, a possible approach for developing quantitative functions to provide

the relative desirability numbers is outlined.

*Research partially supported by Mobil Research and Development Corpora-
tion. Also associated with ONR Contract NO001l4-68-A-0515 and NASA Grant
NGR 44-007-028.



INTRODUCTION AND DISCUSSION

Considered is the case of N players (N 2 2) with finite numbers of
strategies. A player chooses his strategy separately and independently
of the strategy choice by the other player(s). The players use mixed
strategies. That is, each player specifies selection probabilities (sum
to unity, with a unit probability possible) for his possible strategies
and randomly selects the strategy he uses according to these probabilities.
Optimization of a mixed strategy involves optimum choice of the probability
values in the mixed strategy. (See, for example, ref. 1 for a more thorough
discussion of concepts in discrete game theory.)

A combination of N payoffs, one to each player, occurs for every
possible combination of a choice of a strategy by the players. These
combinations of N payoffs are possible game outcomes. The number of possible
strategy combinations is

r(i),
1

==z

i
where r(i) 2 2 is the number of strategies for player i, (i = 1,...,N).
The payoffs can be of an extremely general nature. In fact, some
payoffs might not be numbers (could identify categories, etc.). However,
the ocutcomes are such that each player, according to his preferences, is
able to quantitatively state the relative desirability of the possible
game outcomes. That is, he can specify a positive number for each out-
come such that the ratios of these numbers quantitatively represent the

relative desirability of the corresponding outcomes. These numbers, one



for each possible outcome, provide the basis for the solution to the
game .

Determination of the positive numbers that quantitatively establish
the relative desirability of the outcomes to a player should often be
achievable through use of paired comparisons. That is, for each two
outcomes a player quantitatively states the ratio of how much he prefers
one ocutcome compared to the other. This needs to be done so that there
is consistency among ratios. The paired comparison approach can require
huge effort, in the number of comparisons to be made and in establishing
consistency among the ratios.

Substantial application effort can be avoided if a suitable numerical
function of the N payoffs can be developed. That is, this function furnishes
a positive number for each possible ocutcome and these numbers establish
relative desirability for the player considered. However, development of
a satisfactory function of this nature can be exceedingly difficult., One
possible approach to such a development, which occurs as two steps, is
outlined in the final section. The first step consists of developing a
suitable numerical function for ranking the outcomes according to increasing
desirability. An appropriaté increasing fuhction of the ranking function
provides the function that yields the positive numbers being sought.

To be emphasized is the fact that quantitative relative evaluation
of the desirability of outcomes not only considers the payoff to the player
doing the evaluation but also considers the corresponding payoffs to the

other players. Thus, for each player, his evaluation quantitatively measures



the relative desirability of what can happen for the game, including what
occurs for the other players.

A suitable criterion for each player would be the expected desirabil-
ity of what occurs for the game (after a mixed strategy choice by every
pPlayer) . Only relative desirability is determined, but expected desir-
ability equals some fixed (unknown) positive constant multiplied times
expected relative desirability. Thus, a mixed strategy that is optimum
with respect to expected relative desirability is also optimum for expected
desirability. Consequently, the criterion used by each player is the
expected value (over the random choice involved in using mixed strategies)
of the relative desirability for what occurs in the game.

An optimum mixed strategy for a player is one that maximizes the
minimum value of his expected relaﬁive desirability over the possible
mixed strategies that could be used by the other players (or player).

When cooperation does not occur, this is the best that can be assured by
a Player on the basis of the criterion used. A way of determining optimum
mixed strategies with the required property is described in the next section.

The effort needed to apply the game theory of this paper can be very
large. First, N payoffs are to be evaluated for each possible combination
of strategies. The number of such combinations can be huge even when all
of N,r(l),...,r(N) have moderate sizes. For example, let N = 8 and
r(l) = ... = r(N) = 10. Then, there are 10° strategy combinations and 10°
payoffs are to be evaluated. Second, determining the positive numbers
for quantitatively establishing relative desirability of outcomes can

also require huge effort. However, this effort is greatly reduced when



a suitable function is developed for providing these numbers, although
development of such a function can require appreciable effort. Third,
solution of a game can require much time and expense, due to the huge
number of strategy combinations involved. In summary, much of the appli-
cation difficulty is due to the massivcness of the number of possible
. outcomes, but substantial difficulty can arise in obtaining the positive
numbers for establishing quantitative relative desirability.

A description of a procedure for determining optimum mixed strategies
is given in the next section. A discussion of an approach toward develop-

ment of relative desirability functions with quantitative properties occurs

in the final section.

SOLUTION PROCEDURE

The same method of solution is used for all players and is stated for
player i. Given for player i is a positive number for every possible game
outcome, where the ratios of these numbers quantitatively represent the
relative desirability (to player i) of the corresponding outcomes. That
is, one of these positive numbers occurs for each possible strategy combi-
nation.

Expression of these numbers for player i in matrix form, according to
the corresponding strategy combinations, is useful in stating the solution
procedure. Here, the rows represent the strategies for player i and the

columns represent the combinations of strategies for the other players.



For definiteness, in the combinations the strategy for the other zlayer
with lowest designation number occurs first,..., the strategy for the other
player with the highest designation number occurs last. The resulting
matrix is called the desirability matrix for player i.

Player i desires to maximize the expected value of the number in his
desirability matrix that occurs when all players have chosen mixed strategies.
More specifically, playervi wishes to determine a mixéd strategy for his
use that maximizes fhe minimum of the expected values of this number over
all possible mixed strategies for the other players.

Optimum mixed strategies with this property can be determined by
direct use of results that have been developed for two-person zero-sum
game theory with,an expected value basis (for example, see the results
for this case in ref. 1) . This is accomplished by considering the desir-
ability matrix of player i to be his payoff matrix in a two-person zero-
sum game with an expected value basié. An optimum strategy for player i
in this two—personvgame has the required property of maximizing the
minimum value of the criterion used over all possible mixed strategies
for the other plavers.

A potential application difficulty is that the number of columns in
the desirability matrix for player i, which equals

N
I ri,
j=1
j7i

may be too large for use of existing computer programs for solution of



two-person zero-sum games.

DESIRABILITY FUNCTION DEVELOPMENT

Nearly complete freedom is available to player i in selecting the
positive numbers on which his quantitative relative desirability for the
game outcomes is based. However, this does not imply that any choice made
for these numbers is necessarily satisfactory. On the contrary, great
care is required to determine a suitable set of these numbers. To have
so much freedom is a valuable asset, but only if a careful and wise choice
is made.

Development of a quantitative relative desirability function can be
approached in two steps, the first of which is not so difficult. The first
step is to develop a suitable preference function for ordering the outcomes
according to increasing desirability. The values of this preference
function are real numbers expressed in the same unit. The second step
is to develop an increasing function of the values of the preference
function. This second function yields the positive numbers that are sought,
Of course, all increasing functions of a preference function are equivalent
preference functions, but the functiop sought has the additional property
that ratios of its values provide a quantitative measure of the relative
desirability of the ocutcomes furnishing these values.

The preference functions considered are of an elementary nature and
like those given in ref. 2 for noncooperative N-person game theory based on

a percentile criterion. Only a preference function is needed for applying



N-person percentile game theory, which is a strong application advantage.
However, more information would seem to be encompassed in use of a crite-
rion based on expected relative desirability for the game outcomes.

Four examples of elementary preference functions are given to
illustrate considerations in development of suitable preference functions.
As a standardization, the preference function for player 1 is considered
in all the examples. This function is written QL(pi,...,pN), where
(El,...,pN) denotes a general ocutcome. Increasing value of this function
represents increasing desirability to player 1 (equal value represents
equal desirability).

Without great loss of generality, and for simplicity, values of the
payoff p; to player i are expressed as real numbers in the same unit.
Thes; numbers are such that increasing values of p; represent nondecreasing
(usually increasing) desirability to player i. The forms considered for
Ql(pi,...,pN) are always such that, in their use, any differences in the
types of units used for the payoffs cause no difficulties in the statement
Dl(pl,...,pN).

The first example involves additive changes in the P, and the situ-
ation is such that an addition of A to 1= has the same desirability to
player 1 as the combination of an addition of eiwiai to p;.L for i=2,...,N.
Here, a; is positive, ei is 1 or -1 (depending on whether an increase or
decrease is to occur), w5 + ...+ w_ = 1with all wi =z 0, and A can be

N

positive or negative. The preference function

N
(a) =
D % (ByseasB) =P +A Y ep/a
i=2



should be suitable, since Dl(a)(p1 + 4, p2,...,pN)equa1s

N N
+ A4+ A .= + (p. + e, ,
pl Eeipi/al pl A Zel (Pl elwiai) /al
i=2 i=2
(a) .
+ cee
equals Dl (pl,p2 e2w2a2, ’ PN + erNaN) for all possible values

of Pl""’PN'

The second example involves multiplicative changes in the Pi and requires
that they all have positive values. The situation is such that multipli-

cation of Pl by the positive factor (1 + B) has the same desirability to

W.
player 1 as the combination of multiplying P, by the factor (1 + eivi) 1

for i =2, ...,N. Here, 0 < vi < 1, the value of B can be positive or
negative, ei = 1 or -1 (depending on whether an increase or decrease is

to occur), and v, + ...+ we o 1, with all w. 2 0. The preference function

N
(m) -
D, (Pyr--+sPy) = log  p. + iz=;{[loglo(1 + B)]/[loglo(l + eivi)]}loglopi

should be suitable, since D. ™ [(1 + B) PysPys---,P.] equals

1

N
lqglo(l + B) Py + D [loglo(l + B) ]/[loglo(l + eivi)]}loglo}_b:.L

i=2

W,

N
- 1
=log ,p; + Z{[loglo(l + B) ]/[10910(1 + eivi)]}loglo(l + eivi) p;

i=2

w w

(m) 2 N 11 positive values
equals D [pl,(l + e2v2) Pyreser 1+ eNVN) PN] for all posi

1

of Pl""’PN'



The third example involves both addition and multiplication, where

changes in Pysr...sp; are by addition and changes in pJ+1,...,pN are by

multiplication (with p

J+1,...,pN all positive). The situation is such

that an addition of A to pl has the same desirability to player 1 as the
combination of an addition of ejwjaj to pj for j = 2,...,J, and multi-

W, .
plication of pj by (1 + ejvj) J for j=J+ 1,...,N. Here, w2 + ...+ wN = 1

with all wj 2z 0, the value of A can be positive or negative, and the

ej,aj,vj have the same properties as for the first and second examples.

The preference function

J N
(am) - -1
“cee = .p./a. + . 1 .
D, (Pyre--sP) = Py f A E ejpj/aj + A E [log,, (1 ejVJ)] °910P5
B j=3+1
. . (ém)
should be suitable, since D1 (p1 + A, p2, ceer pN) equals

J N
-1
+ A+ A e.p./a, + A [1o L+ e.v.)] "lo .
Py E 393/ 3 z 910 55 glopj

j=2 §=3+1
J N w.
= p. + AZe.(p. + ew,a,)/a. + A r [log, (1 + e.v.)]~llog (1+e.v.) Jp.
1 33 333773 e 10 33 10 33 3
j=2 =341
w
(am) J+1
ceusp. + e.w.a, ons
equals D) IRy s, +oejupay e Ry Fegwiag, (L F eg Vo) TRy et
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w
N
+ ..
(1 eNVN) pN] for all permissible values of Pyre-erPye

The final example also involves both addition and multiplication,

but Py changes by multiplication. Again, as a standardization, the changes
in pz,..., pJ are by ad§1tlon and the changes in Pb+l""' pN are by
‘multiplication (with Pyr J+1""’PN all positive for this case). The
situation is such that multiplication of P, by the positive factor (1 + B)

has the same desirability to player 1 as the combination of an addition of
w.

ejwjaj to pj for j = 2, ..., J, and multiplication of p, by (1 + ejvj) ]
J

for 3y =J+1,...,N. Here, w2 + ... + wN = 1 with all wj 2 0, the

value of B can be positive or negative, and the ej, a., Vj have the same

properties as for the first two examples. The preference function

*
(ma) J
= + +
D (P re--sPy) = log, b1 + [log, (1 + B)] z:ejpj/aj
=2

N
+ z {[loglo(l + B)]/[loglo(l + ejvj)]} loglopj
j=g+1

should be suitable, since D (ma)[(l + B)pl,pz,...,pN] equals

1

J
log,, (1 + B)p; + [loglo(l + B)] Zejpj/aj
. 5=

11



N
Zl{[loglo(l + B 1/[109,,(1 + e v 1}log p
3=3+1

J
=1 1+
©9,0P1 + [lOglO( B) ] z:: (p + e wja )/a

N W,
1+ J
+ Z {[loglo( B)]/loglo(l + ejvj)]} leg lo(l + ejvj) pj
j=0+1

)wJ+l

Pyggre-er

l(ma)[pl, P, +ewa ,...,P.tewa ,(l+e

D
equals 228> SRR M | J+1VI+1

W
N . .
(1 + eNvN) pN] for all permissible values of PyresrPye

Development of a suitable preference function converts the original
N-dimensional problem into a one-dimensional problem. A plot of the
values of the preference function over the possible game outcomes, accord-
ing to increasing function value, provides a graphical representation of
the preference function values.

Development, on the same representation, of a graph that is increasing
in the corresponding value for the preference function graph is a way of
obtaining the positive values being sought. The values for this new graph
should be positive and their ratios should quantitatively represent the
relative value, to the player, of cutcomes which yield these values., In
principle, all game values for the preference function graph would be con-
sidered in development of the new graph. 1In practice, however, specific

consideration might be limited to a relatively small fraction of the values

12



for the preference function graph, with isolated values that are repre-
sentative of the various parts being considered. This provides isolated
representative values for the new graph and interpolation among these

isolated values furnishes the overall new graph.
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