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SIMPLIFIED SOLUTIONS FOR TWO-PERSON PERCENTILE GAMES*

John E. Walsh Grace J. Kelleher
Southern Methodist University** University of Texas at Arlington

ABSTRACT

Consider solution of a two-person game in which the players use
percentile criteria. For player i, the stepwise procedure is to mark
positions of the game outcomes (pairs of payoffs, one to each player) in
his payoff matrix according to decreasing desirability level (i = 1,2).
To be determined is the smallest marked set such that, for percentile
10001i used by player i, an outcome of this set can be assured with prob-
ability at least ai. Also, an optimum mixed strategy.is to be determined
(for accomplishing this assurance) . In general, the probability with
which a marked set can be assured is evaluated by solution of a special-~
ized zero-sum game with an expected-value basis. However, easily evalu-
ated upper and lower bounds for this probability can be obtained from the
matrix locations of the markings. Use of these bounds can substantially
reduce the effort in the stepwise solution of a game, Moreover, equality
of the bounds can occur. Then, the probability is detexrmined without
solution of a zero-sum game, and a corresponding optimum strategy is
readily identified. The probability value is approximately determined
when the bounds are nearly equal, and an approximately optimum strategy
is easily identified. Indications are that many percentile games can be

solved, exactly or approximately, by this simplified method,

*Part of the results given here were independently discovered by Dr.
Robert E. Hiller of the Operations Analysis Office, Pacific Air Forces,
Hawaii.

**Regearch partially supported by Mobil Research and Development Corpora-
tion. Also associated with ONR Contract N00014-68-A-0515 and NASA Grant
NGR 44-007-028.



INTRODUCTION AND SOME RESULTS

Considered is the case of two players with finite numbers of strat-
egies, where each plafer selects his strategy separately and independently
of the strategy choice by the other player. Mixed strategies are used.
That is, a player assigns probabilities to his strategies (sum to unity,
with a unit probability possible) and randomly selects the strategy used
according to these probabilities.

The possible game outcomes are the pairs of paydffS, one to each
player, that occur for the possible combinatiéns of strategy selection
by the two players. The payoffs can be of a very general nature but are
such that the outcomes can be ranked according to desirability level
separately by each player. Use of a matrix form is convenient for con-
sidering the possible payoffs to a player, where rows represent his strat-
egies and columns represent thé other player's strategies.

For percentile game theory, player i specifies a probability ai which
represents the assuiance with which he wants to obtain an outcome with
reasonably high desirability (i = 1,2). A largest level of desirability
occurs among the outcomes such that player i can assure, with probability
at least ai, that an outcome having at least this desirability level occurs.
The symbol Oi designates the outcome (s) having ﬁhis largest desirability
level.

Given ai, a game solution for player i consists in determining Oi
and an optimum strategy for the combingtion ai and Oi. This determination

can be made by a stepwise procedure in which, for player i, positions of



outcomes are marked in his payoff matrix according to decreasing desir-
ability level (ocutcomes with the same level are marked éimultaneously).
Oi is determined as the outcome(s) having the smallest desirability level
in the smallest set of marked ocutcomes that player i can assure with
probability at least o - In general, the probability with which a stated
marked set of ocutcomes can be assured is evaluated as the value of a
zero-sum game with an expected-value baéis. The payoff matrix for player
i in this.game has ones at the marked positions and zeroes at the un-
marked positions. An optimum sfratégy for player i in the zero~suﬁ game
corresponding to the smallest mérked set containing Oi is an optimum
strategy for the combination ai and Oi. Ref. 1 contains a detailed state-
ment of this general method for solution of two-person percentile games.

A couple of one-sided bduﬁds on the probability with which a marked
set can be assured (one bound uéed-for ai £ 1/2, the other for ai > 1/2)
are given in ref. 1. These bounds are helpful in reducing the effort
needed for sol&ing\é game.

This paper develops a_class of upper and lower bounds such that both
an upper and lower bound is available for the probability with which a
marked set can be assured by player i (a 1§wer bound may have the trivial
value zero, or an upper bound the trivial value unity, in some cases).
Equality of the upper and lower bounds occurs in a number of cases, with
the probability being directly determined without solution of a zero-sum
game. At least approximate equality of upper and lower bounds occurs in

many caées, Then the probability wiﬁh which a marked set can be assured



is at least approximately determined without solution of a zero-sum game.
Moreover, when equality df bounds occurs, an optimum (mixed) strategy for
accomplishing this probability is readily determined. Also, an approxi-
mately optimum (mixed) strategy is easily determined when the bounds are
approximately equal. These results, which apply to any marked set in the
payoff matrix for player i; can be exceedingly helpful in reducing the
effort for solving a game.

Specifically, for a given marked set, suppose. that at least M marks
in every column are obtainable from R rows, and that at least U unmarked
positions in every row are obtainable from C columns. Then, player i can
assure an outcome of the marked set with probability at least M/R and at
most 1 - U/C. If R rows and U columns wifh these properties satisfy

M/R =1 - U/C,
then an optimum mixed.strategy_for player iis to'choose one of these R
rows with probability 1/R for each row (and probability zero for the other
rows) . If M/R approximately equals 1 ; U/C, this mixed strategy is
approximately optimum and the.aSsurancé'probabilify with this strategy is
at least M/R.

Use of these results to obtain simplified solutions for two-person
percentile games is considered in the next section. An example of deter-
mination of upper and lower boundé on assurahée probabilities is given in
the next to last section. The final section contains the basic theorems

and their verification.



SIMPLIFIED SOLUTION METHOD

The same solution method applies to each player and is stated for
player i. A preferred assurance probability ai, 0 < di = i, is specified
by player i. First, the solution method is stated for this given value
of ai. Then, advantageé of making small changes in preferred values for
o, are discussed.

The method is stated in texrms of a marking of outcome positions in
the payoff matrix for player i. The r rows of this matrix correspond to
the r strategies for player i, and the ¢ columns are the strategies for
the other player‘(r, c =z 2).

As the initial step, mark the position(s) in the payoff matrix for
player i of the outcome(s).with the highest level of desirability to
player i. Determine the smallest value of 1 - U/C for this marking, where
U and C are such that at least U unmarked positions in every row are
obtainable from C columns.

Next, also mark the pésition(s) of the outcome(s) with the next to
highest desirability level and determine the smallest value of 1 - U/C
for the overall marking. Continue this marking, according to decreasing
desirability level, until the first time that ai is at most equal to the
smallest value of 1 - U/C (for the overall marking). Also determine the
largest value of M/R for this marking, where M and R are such that at
least M marks in evéry column are obtainable from R rows. If

largest M/R < ai < smallest (1 ; U/C) ' (1)

and the largest M/R equals, or approximately equals, the smallest (1 - U/Q),



a usable solution is obtained (exact or approximate). Then, Oi is
determined as the outcome(s) with smallest desirability level in this
marked set. An optimum (or approximately optimum) strategy consists of
randomly selecting one of the R rows for which largest M/R occurs so
that each row has probability 1/R of being chosen.

If (1) holds but the bounds are not approximately equal, continue
the marking until (1) holds.with the bounds equal or approximately equal,
or until di is at most equal to the largest M/R. When the situation is
that (1) holds with the bounds equal or nearly equal, a usable solution
is obtained (as described in the preceding paragraph) . However, this
solution can be approximate even when the bounds are equal, since the
marked set may not be the smallest set that can be assured with probability
at least ai. This possible difference in set size is usually‘unimportant
but the method of ref. 1 could be used to determine whether a smaller set
satisfies the requirements.

Finally, suppose that a marking has been reached (without first
obtaining a usable solution) where ai is at most equal to the largest
M/R. Then, remove the mark(s) for the outcome(s) with lowest desirability
level among the outcomes that have received marks. Then, by the folloWing
procedure, determine whether some one of the remaining marked outcomes can
be assured with probability at least ai. The procedure (used in ref. 1)
is to replace every marked position in the matrix of player i by unity
and all other positions by zero. The resulting matrix of ones and zeroes
is considered to be the payoff matrix to player i for a zero-sum game with

an expected-value basis, and is solved for the value of the game to player



i, If the game value is less than ai, then Oi consists of the outcome (s)
with mark(s) removed.

Otherwise, remove the mark(s) for the outcome(s) with least desirable
level among the outcomes still having marks and, using the same procedure,
determine the probability with which player i can assure a marked outcome,
If this probability is less than ai, then Oi consists of the outcome (s)
with mark(s) removed last, If not, continue until the first time that
some one of the reﬁaining marked outcomes cannot be assuréd with proba-
bility at least ai. Then, Oi consists of the outcome(s) with mark(s)
removed last.

For the cases starting with a marking such that ai is at most equal
to the largest M/R, the same way is used to deterxrmine an optimum mixed
strategy for player i. Mark the matrix positions of all outcomes whose
desirability level is at least that of Oi and replace marked positions by
unity and unmarked positions by zero. Treat the resulting matrix of ones
and zeroes as the payoff matrix for player i in a zero-sum game with an
expected-value basis. An optimum strategy for player i in this zero-sum
game is ai—optimum for him.

Now, consider some advantages of making small changes in the value
preferred for di. Markings sometimes occur such that the smallest (1 - U/C)
equals the largest M/R. If this occurs for a value near di, substantial
solution effort can be avoided by letting ai equal this common value for
the bounds. At ieast approximate equality of the bounds can happen in

many cases, especially when r and ¢ are of at least moderate size. Change



of the value for di to a nearby value which is between itwo approximately
equal bounds also can result in substantially less solution effort (when
approximate solutions are acceptable). Often, use of the arithmetic
average of two approximately equal bounds provides a suitable value for
o, .

1

EXAMPLE OF BOUNDS DETERMINATION

To illustrate how largest M/R and smallest (1 - U/C) change as
marking continues, a payoff matrix with ¥ = 10 and ¢ = 8 is considered.

No ties in desirability level occur for this example and the numbers 1,
2,...:80 in the matrix show the locations of the most deéirable outcome,
the next to most desirable outcome,..., the least desirable outcome,
respectively. The first mark occurs at the location of 1, the second at
the location of 2, etc. Thus, a total of t marks have occurred at the -
time the t-th most desirable outcome is marked (t = 1,f..,80). The values
of largest M/R and of smallest (1 - U/C) are listed as fuhctions of t.

The matrix for player i, with the position numbers l;...,80 entered,
is provided by Figure 1. The values of the largest M/R and of the smallest
(1 - U/C) are stated in pairs for t = 1,...,80, with the largest M/R listed
first:

(0,1/8), for £t = 1,...,7: (0,1/7), for t = 8,9;

(1/7,1/7), for t = 10,11;12; (1/6,1/6) , for t = 13,14,15;



Ficure 1.

Matrix for the Example

1 2 3 4 5 6 7 8
1| 63 38 15 77 35 11 51 55
> |l 1 75 33 43 21 36 52 67
3 || 57 42 2 76 28 14 70 17
4 || 27 31 73 48 68 6 8 44
5 || 69 13 20 3 37 62 30 53
6 || 50 78 19 29 59 66 | 26 7
7 || 23 12 61 47 71 9 49 32
g || 79 41 54 18 10 34 46 80
9 {| 45 4 39 65 24 72 22 58
10 || s 64 60 25 40 74 56 16




(1/5,1/5), for t = 16,17; (1/5,1/4), for ¢ = 18,19;

(1/4,1/4), for t = 20,21; (1/4,2/7), for t = 22;
(1/4,1/3), for t = 23; (2/7,1/3), for t = 24;
(1/3,1/3), for t = 25,26; (1/3,3/8), for t = 27;
(3/8,3/7), for t = 28,29; (2/5,3/7), for t = 30;
(2/5,1/2), for t = 31; (1/2,1/2), for t = 32,...,39;
(1/2,4/7), for t = 40,...,43; (1/2,3/5), for t = 44,45;
(5/9,5/8), for t = 46; 4/7,5/8), for £ = 47;
4/7,2/3), for t = 48; (3/5,2/3), for t = 49,50;
{5/8,2/3), for t = 51; (2/3,2/3), for t = 52;
(2/3,5/7), for t = 53,...,56; (3/4,3/4), for t = 57,...,61;
(3/4,4/5), for t = 62,63; (4/5,4/5), for t = 64,...,67;

(5/6,5/6), for t 68; (1,1), for t = 69,...,80.
The upper and lower bounds are seen to be near each other in almost all

cases and to be equal in some cases. Equality of bounds occurs for

probability values 1/7, 1/6, 1/5, 1/4, 1/3, 1/2, 2/3, 3/4, 4/5, 5/6.

THEOREMS AND PROOFS

The results stated in the previous sections are based on two theorems.

THEOREM 1, For a given set of markings of outcomes in the payoff

matrix for player i, at least M marks in every column are obtainable from

R rows and also at least U unmarked positions in every row are obtainable

from C columns. Then, player i can assure an outcome of the marked set

with probability at least M/R and at most 1 - U/C.

Proof. rirst, it is shown that a probability of at least M/R can
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be assured. Let Prs-..sPy and i reesrdg be the mixed strategies used.

Then, the probability of obtaining a marked outcome is

Zp.Q.,
i=1 vt

where Qi is the sum of the g's for the columns that have marked positions
in the i-th row. The largest value of this probability that player i
can assure, by choice of p;,...,Py, is

G = min (maxQ.)-
i i
A1 r7e.+r9c

et i(l),...,i(R) be R rows that together contain marked positions in all
columns. For any minimizing choice of the values for d1ree.s9,, all of

are at most G. Hence,

Ciyrfim

RG 2 Q + ...40

i() =M

i(R)
so that a probability of at least M/R can be assured by player i.
Similarly, considering columns and unmarked positions, the other
player can assure an unmarked outcome with probability at least U/C. Thus,
player i can assure a marked outcome with probability at most 1 - U/C.

Theorem 2. Under the circumstances stated in Theorem 1, use of a

mixed strategy where each of the R rows is randomly selected with proba-

bility 1/R (and the other rows have zero probability) assures player i

that an outcome of the marked set occurs with probability at least M/R.

Proof. Let pi = .. =

(1) = 1/R while the other p's are zero.

Pi (R)
Then, for any given ql,..,;qc, the probability of obtaining a marked

outcome is

11



R
(/R £ 9, . = MR.
/ )_“ Ql(]} /R
=1
In particular, this inequality holds for any minimizing set of values for

Jireees9ce
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