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1. Introduction:

Let B be a pxp symmetric matrix having the Wishart distribution

(1.1) w.(B|1]f)aB = ¢ IBI(f—p-l)/Z e-l/2 trB o ,
p pf

where
- - P .

(1.2) ¢l ofe/2 ple-/4 § o (g4md)
Pt i=1 \ 2

and dB stands for the product of the differentials of the p(p+l)/2
distinct elements of B. Let x and y be two vector variables of p
components, distributed independently of B, and also independently of
each other, as

- ]
1 e 1/2 x'x

1.3 — '
. (21r)p/2 =
and

1 ~1/2 y'y

(1.4) P e dy

respectively. While considering the problem of multivariate statistical

outliers, Wilks (1963) used statistics of the type,
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(1.5) r=|B+ zy_'|/|B +xx' +yy'l ., s=1B+ xx'|/|B + xx' + yy'| .
He has remarked that the exact distribution (joint) of r and s is compli-
cated and has given the expected values, variances and covariance of r
and s. Uﬁfortunately, his expressions forb the variance and covariance
are in error. The purpose of this note is to derive the exact joint

distribution of r and s and to give correct expressions for the moments.

2. Joint distribution:

In the joint distribution of B, x and y , make the following

transformation
(2.1) A=B+xx'+yy' .
wu=a2x ,
v = % ’
1/2

1/2 | =172 _ -1

where A is any matrix such that A A . The Jacobian

of transformation from B to A is 1 and that from x to uor y to v is

1 . . , . .
|A| /2 and hence, the joint distribution of A, u and v comes out as

c {£+2) p-1 £-p-1

(2.2) 2L || 2 /2 ER L - w'| % andway
(2m®

as 1B| = |A - Al/z_'lil_' A1/2 - Al/zvv' Al/zi = |AHI - uu' - ﬂ'l .

This shows that A has a Wishart distribution of f+2 degrees of freedom
and is independent of u and v . Splitting the constant suitably, the

joint distribution of u and v is

T'(f+1)
(2m Pr(£-p+1)

(2.3) [T - uu'- ' | dudv .

Observe that the statistics r, s of Wilks are given by

Bayy'| - |aexx']
(2.4) r = = =|I—_u_1:1_'=1-_1_:l_'_1_1_, \
|B+xx+yy' | |al




and
|B+xx'|
(2.5) § = ————————=1=V'y .
|B+xx'+yy'l

Also observe that in (2.3)

|1 - wu - w'| = @ -ww@- vy - @w?

(2.6)

rs - (Ejlpz .

In (2.3), transform from v to w = [wl ) We 4 eeey wp]' , by an orthogonal

2
transformation
(2.7) w = LY_ ’
where

L is a pxp orthogonal matrix, whose last row is u'/vYu'u . The

Jacobian of this transformation is !Ll =1 and V'v = w'w = 1-s . Also
(2.8) u'v = u'L'Ly = [0 ... 0, Yu'u }Jw = V1-r - v, o

The joint distribution of u and w is, therefore,

f-p-1

[(f+1) {rs - (l—r)w;} 2 dudw .

(2.9)
(2m) Pr (£-p+1)

From u , transform to r = 1 - u'u and p-1 other variables

$ s by0 weer &) bY

p-1

c
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1/2
1 (1-x) cos¢l cos¢2 .o cosd)p_l ’

(2.10)

e
Il

1/2 .
(1-x) cos¢l cos¢2 cee cos¢p_j 51n¢p—j+l

(j=2, 3, ... P)
Similarly, transform from w to s =1 - w'w and p-1 other variables
0

8., «+.s 6_ . by

1’ "2’ p-1
vl = (l-s)l/zcosel cosH_ ... cosb ’
(2.11) 2 p-l
1/2 .
v, = (l-s cosO. cosO_ ... cos® , sinb® .
3 (1-5) 1 2 p-3 p-j+l

(j=2, 3’ e ey p)



The Jacobian of transformation from u to r, ¢1, ces ¢p—1 is
1 5P 1l p-2 p-i-1
=(1-r) I cos¢
2 =1

and a similar expression in s and Si for the Jacobian of transformation

from w to s and the 0's. Now ep_l and ¢p-1 vary from 0 to 2w, the other

@'s and ¢'s vary from -v/2 to m/2 while r and s vary from 0 to 1. Inte-
grating out all the ¢'s and all 6's except el  we obtain the joint

distribution of r, s and el as

f-p-1
[ (f+1) {rs (1-r)(1-s)sin29} 2 cosp-ze drdsd6

(2.12) ST (-LT(fp+D)

where 91 is replaced by 6 .
The joint distribution of r,s alone can now be obtained by integrating
out 6 but this does not seem to yield a manageable expression, as the

bracket in (2.12) will have to be expanded in a series.

3. Moments of r,s .

Only the product moment of r and s is difficult to obtain. The
mean and variance of r (or s) can be very easily obtained from the

marginal distribution of r, which is related to the well-known Hotelling's

—1
>N -
T
1+ (f+ 1)
(2.3), if we transform to z = Y zp]' from v by

72 by r = In the joint distribution of u and v , given by

(3.1)  v=(-w)¥%

we shall find that u and z are independently distributed as

fp

£ . LE/2) |1 - uu' | 2 du

P72 (£_p) %(f—p)

(3.2) K(u| £) du

(3.3) and K(Ejf—l)QE ., respectively.



From (3.2), one can easily show that

h E|I—uu'|h

£(£42h-p) | (52 + n)r(z)
ERER ()

(3.4) EGY) = EQ-u'w

. . t
This will also be the h h moment of s by symmetry. This leads to

(3.5) B = ER2 g - ZRUEpr2)
(£+2) 2 (£+4)

Now Cov(r,s) = E{(l-u'u)(1-v'v)} - E(r)E(s)

E{(1-u'u) (1-z(I-wu")z]} - {E(x)}? by (3.1)

E(r) - E{rlz'z-(z'w) 2]} - {E(r)}?

(3.6) E(r) - E(r)E(z'z) + E{r(z'w)?2} - {E(n)}? ,
as z and r are independent. Since z has the same distribution as u

with £ changed £-1 ,

E(z'z)

1 -E(1 - u'u) with f replaced by f-1

£_
£+1

(3.7)

Hence (3.6) reduces to

(3.8) Covir,s) = —RLETR¥2) |\ pir(prwy2)
(£+1) (£+2) 2
Now
(3.9) E{r(z'w?} = /(1-u'u) (z'w) 2K (u| £)K (2| £-1)dudz

where the integration is over the range of values of u and z such that

u'ux<1l, z'z < 1. Transform from z to £ = [§ ey Ep] by the

ll

transformation

where L is already defined to be a pxp orthogonal matrix, whose last row
is _1_1_'/»’5'3 . Then,
/2

Zu= s fws g e s e’

Ep .



Hence (3.9) reduces to

(3.0 fra-oxlfay - se2 KE|E-DAE = E@r?) - Il) E(£'E) , due
to symmetry of the distribution of § . Now & has the same distribution
as u with f replaced by f-1 and hence finally, (3.10) reduces to

p(f-p+2) . _1
(f+4) (£+2) f+1 ‘

The covariance between r and s, therefore, is (from (3.5))

-2p (£f-p+2)
(£+1) (£+2) % (£+4) -

(3.11)

Remarks:

Wilks considers a sample of size n and has a Wishart matrix based
on n-1 degrees of freedom as. deviations are from the sample means. He
then removes two observations as outliers and thus his (n-1)-~2 corresponds
to our £ . His E(r) agrees with our result, with this correspondence

but the other moments are in error.
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