CORRELATION BETWEEN TWO HOTELLING'S \mathtt{T}^2

by

A. M. Kshirsagar and John C. Young

Technical Report No. 79
Department of Statistics THEMIS Contract

August 1, 1970

Research sponsored by the Office of Naval Research
Contract N00014-68-A-0515
Project NR 042-260

Reproduction in whole or in part is permitted for any purpose of the United States Government.

This document has been approved for public release and sale; its distribution is unlimited.

DEPARTMENT OF STATISTICS
Southern Methodist University

CORRELATION BETWEEN TWO HOTELLING'S T2

by

A. M. Kshirsagar* and John C. Young
Southern Methodist University
Dallas, Texas 75222

1. Introduction:

Let B be a $p \times p$ symmetric matrix having the Wishart distribution

(1.1)
$$W_p(B|I|f)dB = C_{pf}|B|^{(f-p-1)/2} e^{-1/2 trB} dB$$
,

where

(1.2)
$$C_{pf}^{-1} = 2^{fp/2} \pi^{p(p-1)/4} \prod_{i=1}^{p} \Gamma\left(\frac{f+1-i}{2}\right)$$
,

and dB stands for the product of the differentials of the p(p+1)/2 distinct elements of B. Let \underline{x} and \underline{y} be two vector variables of p components, distributed independently of B, and also independently of each other, as

(1.3)
$$\frac{1}{(2\pi)^{p/2}} e^{-1/2} \underline{x' x} d\underline{x} ,$$

and

(1.4)
$$\frac{1}{(2\pi)^{p/2}} e^{-1/2} \underline{y}^{\prime} \underline{y} d\underline{y}$$

respectively. While considering the problem of multivariate statistical outliers, Wilks (1963) used statistics of the type,

^{*}Research supported by ONR Contract N00014-68-A-0515, Department of Statistics THEMIS Project.

(1.5) r = |B + yy'|/|B + xx' + yy'|, s = |B + xx'|/|B + xx' + yy'|. He has remarked that the exact distribution (joint) of r and s is complicated and has given the expected values, variances and covariance of r and s. Unfortunately, his expressions for the variance and covariance are in error. The purpose of this note is to derive the exact joint distribution of r and s and to give correct expressions for the moments.

2. Joint distribution:

In the joint distribution of B, \underline{x} and \underline{y} , make the following transformation

(2.1)
$$A = B + \underline{x} \underline{x}' + \underline{y} \underline{y}',$$

$$\underline{u} = A^{-1/2} \underline{x},$$

$$\underline{v} = A^{-1/2} \underline{y},$$

where $A^{-1/2}$ is any matrix such that $A^{-1/2} \cdot A^{-1/2} = A^{-1}$. The Jacobian of transformation from B to A is 1 and that from \underline{x} to \underline{u} or \underline{y} to \underline{v} is $|A|^{1/2}$ and hence, the joint distribution of A, \underline{u} and \underline{v} comes out as

(2.2)
$$\frac{C_{pf}}{(2\pi)^{p}} |A|^{\frac{(f+2)-p-1}{2}} e^{-1/2 \operatorname{tr} A} \cdot |I - \underline{u}\underline{u}' - \underline{v}\underline{v}'|^{\frac{f-p-1}{2}} dAd\underline{u}d\underline{v} ,$$

as $|B| = |A - A^{1/2}\underline{u}\underline{u}' A^{1/2} - A^{1/2}\underline{v}\underline{v}' A^{1/2}| = |A||I - \underline{u}\underline{u}' - \underline{v}\underline{v}'|$. This shows that A has a Wishart distribution of f+2 degrees of freedom and is independent of \underline{u} and \underline{v} . Splitting the constant suitably, the joint distribution of \underline{u} and \underline{v} is

(2.3)
$$\frac{\Gamma(f+1)}{(2\pi)^p\Gamma(f-p+1)} |I - \underline{u}\underline{u}' - \underline{v}\underline{v}'|^{\frac{f-p-1}{2}} d\underline{u}d\underline{v}.$$

Observe that the statistics r, s of Wilks are given by

(2.4)
$$r = \frac{|B+yy'|}{|B+xx'+yy'|} = \frac{|A-xx'|}{|A|} = |I-\underline{u}\underline{u}'| = 1-\underline{u}'\underline{u} ,$$

and

(2.5)
$$s = \frac{|B+xx'|}{|B+xx'+yy'|} = 1 - \underline{v'v}$$
.

Also observe that in (2.3)

In (2.3), transform from \underline{v} to $\underline{w} = [w_1, w_2, ..., w_p]'$, by an orthogonal transformation

$$(2.7) \underline{\mathbf{w}} = \mathbf{L} \underline{\mathbf{v}} ,$$

where

L is a p×p orthogonal matrix, whose last row is $\underline{u'}/\sqrt{\underline{u'u}}$. The Jacobian of this transformation is |L|=1 and $\underline{v'v}=\underline{w'w}=1$ -s. Also

(2.8)
$$u'v = \underline{u}'L'L\underline{v} = [0 ... 0, \sqrt{u'u}]\underline{w} = \sqrt{1-r} \cdot w_{p}$$
.

The joint distribution of \underline{u} and \underline{w} is, therefore,

(2.9)
$$\frac{\Gamma(f+1)}{(2\pi)^{p}\Gamma(f-p+1)} \left\{ rs - (1-r)w_{p}^{2} \right\}^{\frac{f-p-1}{2}} \underline{dudw}$$

From \underline{u} , transform to r = 1 - u'u and p-1 other variables

$$\phi_1$$
, ϕ_2 , ..., ϕ_{p-1} by

$$u_{1} = (1-r)^{1/2} \cos \phi_{1} \cos \phi_{2} \dots \cos \phi_{p-1},$$

$$(2.10)$$

$$u_{j} = (1-r)^{1/2} \cos \phi_{1} \cos \phi_{2} \dots \cos \phi_{p-j} \sin \phi_{p-j+1}$$

$$(j=2, 3, \dots p)$$

Similarly, transform from \underline{w} to $s = 1 - \underline{w}'\underline{w}$ and p-1 other variables

$$\theta_1$$
, θ_2 , ..., θ_{p-1} by

(2.11)
$$v_1 = (1-s)^{1/2} \cos \theta_1 \cos \theta_2 \cdots \cos \theta_{p-1},$$

$$v_j = (1-s)^{1/2} \cos \theta_1 \cos \theta_2 \cdots \cos \theta_{p-j} \sin \theta_{p-j+1},$$

$$(j=2, 3, ..., p)$$

The Jacobian of transformation from \underline{u} to r, ϕ_1 , ... ϕ_{p-1} is

$$\frac{1}{2}(1-r)^{\frac{1}{2}} p-1 \quad p-2 \quad p-i-1$$

$$\prod_{i=1} \cos \phi_i$$

and a similar expression in s and θ_1 for the Jacobian of transformation from \underline{w} to s and the θ 's. Now θ_{p-1} and ϕ_{p-1} vary from 0 to 2π , the other θ 's and ϕ 's vary from $-\pi/2$ to $\pi/2$ while r and s vary from 0 to 1. Integrating out all the ϕ 's and all θ 's except θ_1 , we obtain the joint distribution of r, s and θ_1 as

$$(2.12) \qquad \frac{\Gamma(f+1)}{4\pi\Gamma(p-1)\Gamma(f-p+1)} \left\{ rs - (1-r)(1-s)\sin^2\theta \right\}^{\frac{f-p-1}{2}} \cos^{p-2}\theta \ drdsd\theta$$
 where θ_1 is replaced by θ .

The joint distribution of r,s alone can now be obtained by integrating out θ but this does not seem to yield a manageable expression, as the bracket in (2.12) will have to be expanded in a series.

3. Moments of r,s.

Only the product moment of r and s is difficult to obtain. The mean and variance of r (or s) can be very easily obtained from the marginal distribution of r, which is related to the well-known Hotelling's $T^2 \text{ by } r = \frac{1}{1 + \left(\frac{T^2}{f+1}\right)} \text{ .} \quad \text{In the joint distribution of } \underline{u} \text{ and } \underline{v} \text{ , given by }$

(2.3), if we transform to
$$\underline{z} = [z_1, \ldots, z_p]'$$
 from \underline{v} by

$$(3.1) \qquad \underline{v} = (I - \underline{u}\underline{u}')^{1/2}\underline{z} \quad ,$$

we shall find that \underline{u} and \underline{z} are independently distributed as

(3.2)
$$K(\underline{\mathbf{u}}|\mathbf{f}) d\underline{\mathbf{u}} = \frac{\mathbf{f}}{\pi^{\mathbf{p}/2}(\mathbf{f}-\mathbf{p})} \cdot \frac{\Gamma(\mathbf{f}/2)}{\frac{1}{2}(\mathbf{f}-\mathbf{p})} |\mathbf{I} - \underline{\mathbf{u}}|^{\frac{\mathbf{f}-\mathbf{p}}{2}} d\underline{\mathbf{u}}$$

(3.3) and $K(\underline{z}|f-1)d\underline{z}$, respectively.

From (3.2), one can easily show that

(3.4)
$$E(\mathbf{r}^{h}) = E(1 - \underline{\mathbf{u}}^{!}\underline{\mathbf{u}})^{h} = E|1 - \mathbf{u}\mathbf{u}^{!}|^{h}$$

$$= \frac{f(f+2h-p)}{(f-p)(f+2h)} \cdot \frac{\Gamma(\frac{f-p}{2} + h)\Gamma(\frac{f}{2})}{\Gamma(\frac{f}{2} + h)\Gamma(\frac{f-p}{2})}$$

This will also be the hth moment of s by symmetry. This leads to

(3.5)
$$E(r) = \frac{f-p+2}{f+2}$$
, $v(r) = \frac{2p(f-p+2)}{(f+2)^2(f+4)}$.

as \underline{z} and r are independent. Since \underline{z} has the same distribution as \underline{u} with f changed f-1,

$$E(z'z) = 1 - E(1 - \underline{u'\underline{u}}) \text{ with f replaced by f-l}$$

$$= \frac{p}{f+1}$$

Hence (3.6) reduces to

(3.8)
$$\operatorname{Cov}(r,s) = \frac{-p(f-p+2)}{(f+1)(f+2)^2} + \operatorname{E}\{r(z'u)^2\}.$$

Now

$$(3.9) \qquad E\{r(\underline{z'u})^2\} = \int (1-u'u) (\underline{z'u})^2 K(\underline{u}|f) K(\underline{z}|f-1) d\underline{u} d\underline{z}$$

where the integration is over the range of values of \underline{u} and \underline{z} such that $\underline{u'}\underline{u} \le 1$, $\underline{z'}\underline{z} \le 1$. Transform from \underline{z} to $\underline{\xi} = [\xi_1, \ldots, \xi_p]$ by the transformation

$$\xi = Lz$$

where L is already defined to be a p×p orthogonal matrix, whose last row is $\underline{u}'/\sqrt{\underline{u'u}}$. Then,

$$\underline{\mathbf{z}'\underline{\mathbf{u}}} = \underline{\mathbf{z}'}\mathbf{L'}\mathbf{L}\underline{\mathbf{u}} = \xi'\mathbf{L}\underline{\mathbf{u}} = \xi_{p}\sqrt{\underline{\mathbf{u}'}\underline{\mathbf{u}}} = (1-r)^{1/2}\xi_{p}$$

Hence (3.9) reduces to

(3.10) $\int r(1-r)K(\underline{u}|f)d\underline{u} \cdot \int \xi_p^2 K(\underline{\xi}|f-1)d\underline{\xi} = E(r-r^2) \cdot \frac{1}{p} E(\underline{\xi}'\underline{\xi})$, due to symmetry of the distribution of $\underline{\xi}$. Now $\underline{\xi}$ has the same distribution as \underline{u} with f replaced by f-1 and hence finally, (3.10) reduces to

$$\frac{p(f-p+2)}{(f+4)(f+2)} \cdot \frac{1}{f+1}$$

The covariance between r and s, therefore, is (from (3.5))

(3.11)
$$\frac{-2p(f-p+2)}{(f+1)(f+2)^2(f+4)}$$

Remarks:

Wilks considers a sample of size n and has a Wishart matrix based on n-l degrees of freedom as deviations are from the sample means. He then removes two observations as outliers and thus his (n-1)-2 corresponds to our f . His E(r) agrees with our result, with this correspondence but the other moments are in error.

Reference

Wilks, S. S. (1963). "Multivariate Statistical Outliers," Sankhyā, Vol. 25, p. 407-426.