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CHAPTER 1
INTRODUCTION

Let Hl and H2 be two populations with wvariances oi and 03 respectively.
The variance of these two populations can be compared by testing the null
hypothesis, oi = ccg , where c is some specified constant, against an alter-
native hypothesis which may be either two-sided, such as ci # coi , or one-
sided, such as oi/cg > c¢. The tests considered fhroughout this paper will be
for one-sided alternative hypotheses of the form above, and therefore will
be upper-tail tests. Furthermore, since in the F-test and in the alterna-
tive test that shall be considered the wvalue of the constant, c, does not
affect the procedure, the null hypothesis will be that of equal variances

2 2

and the alternative will be 01 > 02 .

Now if the two populations are normally distributed, sufficiency and
the monotone likelihood ratio property combine to make the F-test for com-
paring variances uniformly most powerful for testing oi/og = 1 versus
oi/cé > 1. This property, along with the efficiency of the statistics
involved in forming the F-statistic have caused this test to be widely used
and favored.

Because it is so favored and because the normality of the populations
is questionable in many situations, there have been several papers directed
to the problem of finding out what happens to the F-test when the populations
involved are not normal distributions. Work of this nature has led to the

notion of robustness for a test. The term robust will be used to denote a



The second kind of error occurs when the statistician assumes that
the distributions are non-normal (but not specified) when in fact they are
normal. Having assumed that the F-test is not appropriate and not assuming
some other specific distribution leads the statistician to a non-parametric
approach. In doing this the statistician is denying himself the power of
the F-test when it would be properly useful. Because this second kind of
error is more obvious in its defects and because the procedures involved
in the non-parametric approach are more difficult than those for the F-test
the first kind of error is probably more common.

Since both kinds of error need to be considered in developing an
alternative to the F-test, both the robustness and the power of the alter-
native criterion for comparing variances will be considered.

The test statistic for the alternative test will be developed in
Chapter II. Next, in Chapter III, the critical points will be obtained
and an approximation to the power function for the alternative test under
normality will be developed. This approximation will then be compared with
the poWer function for the F-test. The effects of non-normality upon both
the alternative test and the F-test will be considered in Chapter IV and
Chapter V will be a summary of the results contained in the first four
chapters. In the appendix some material used in the course of this paper

is included, along with the unabridged data from the sampling experiments.



CHAPTER 1I1I
THE V-STATISTIC

The use of order statistics in estimates of location and scale para-
meters was developed extensively by Lloyd (1952). Lloyd used the theory
of least squares to obtain his estimators and unfortunately these estimators
were, in general, rather difficult to use. Downton (1966) decided that
mathematical tractability was a more desirable feature for estimators based
on order statistics than least squares optimality and so considered estima-
tors with polynomial coefficients. One of the estimators that Downton (1966)

gives is for the standard deviation of a normal population, namely

n +1
g% = [2/11_ kzl (k - 12—) zk]/[n(n—l)] (1)

where n is the sample size and 2z, denotes the kth order statistic from the
sample. When the underlying population is normal Downton shows that o* is
an unbiased estimator of the standard deviation, is uncorrelated with the

mean and is highly efficient even for small sample sizes.

Barnett, Mullen and Saw (1967) note that o* is a constant multiple of
one of a general class of statistics which are linear combinations of order
statistics with coefficients of ordered Tchebycheff-Hermite polynomials as
weights. Thus, based on a paper by Saw and Chow (1966), Barnett, Mullen

and Saw give a table of coefficients and the formulas necessary to obtain

the first four moments about the origin for ¢*. This leads to a formula



for the wvariance of o*, namely,
var (g*) = cz{n(n/3 +2/3-4) + (6 - 4/3 + ﬂ/B)L/&n(n—l)] (2)

which agrees with the results given by Downton (1966) even though it is
expressed differently.
Barnett, Mullen and Saw (1967) also suggest using ¢* in a test of

the hypotheses y = Hg Versus u > yu, in a normal population. Their test

statistic is
Y = (X - uo)/{{/o* . (3)

This test is only slightly less powerful than the usual t-test and the
power of the Y test is easily obtained using a cumulative normal density.

Thus o* recommends itself as a candidate for use in test criteria
proposed as alternatives to the uniformly most powerful tests.

Returning to the original problem, let II. and II. both be normally

1 2

distributed, let n be the size of the sample drawn from population one and
m be the size of the sample drawn from population two, and let the ordered
sample from Hl be denoted by zq < 22 < eee < zn, while the ordered sample

from H2 is denoted by W, < W, < tee < wm. Then

2 n+l
C?I‘. = {2/1—1— kél (k - Zk}% (n-1) (4)

and
/—- o m+l
03 =1 2¥T kzl (k - —5—i>wk m(m-1) (5)

are unbiased estimators of Ol and o, respectively.

Thus when Hl and H2 are independent, the ratio

v = g¥/ogk (6)



is the ratio of the u.b.e. of o4 and °, respectively which are independent.

Therefore v may be used as a test statistic for the hypothesis Ol = 02

versus g, > o,- This is equivalent to testing equality of variances with

the hypothesis 02 = 02 versus 62 > 02

. i g*!
1 5 1 0, The linear nature of the S

leads one to feel that v may be affected less by non-normality than the
usual F-statistic. 1In order to verify this some properties of this alter-
native test for equality of variances need to be considered. But first
an alternative form for the V-statistic will be given.‘

David (1968) discusses the estimator o* in terms of a statistic called
"Gini's mean difference" which was discussed by Helmert in 1876 and was not
new at that time according to the history included in David's article.

This results in ci and 03 being rewritten as

n
Oi = [/F . Z lxi—xj]l/GZn(n~l)] (7)
i,j=1
and
m
oy = A T lyyvl)fanemen) ®
ll]=l

where‘{xi} is the unordered sample from I, and {yi} is the unordered

1
sample from H2. That (7) and (8) are equivalent to (4) and (5) is apparent

from the following. Let {xi} be an unordered sample of size n and let

Z) < vee < zn be the corresponding ordered sample, then
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Thus using (7) and (8) and cancelling common terms, an alternate expression

for v is

n
m(m-1) 2 ]xi—le

v = i,3=1 i (10)
m

n(n-1) ) lyi-yjl
i,j=1

This expression is more convenient for use with computers than is expression
(6) when the sample data is not in an ordered form.

In both (10) and (6) v is a realization of a random variable which
shall be denoted by V. The distributional properties of V are difficult
to obtain directly as may be seen from a consideration of expressions (7)
and (8). 1In particular both o* and o* are sums of dependent random variables

1 2

each of which has a marginal half-normal distribution when Hl and H2 are

normally distributed. The dependency makes finding the distributions of
oi and 03 di fficult and since non-normality for Hl and H2 will also be con-
sidered an alternate approach to the distribution of V was used.

If Cy denotes the critical point for an upper tail test where the
probability of a type I error is a, that is, c, is that point at which the

cumulative distribution function of V has value 1l-&, then using an approach

similar to that of Barnett, Mullen and Saw (1967), it is found that

= P * /g% = * > *
a = Pri{v > Ca} Pr{01/02 > ca} Prioc cucz}

1

Pt{c’i - c 0% > 0} = pr{Z> 0} (11)



where 2 = 01 - caG; . Since Barnett, Mullen and Saw (1967) give the

formulas necessary to compute the first four moments about the origin of

oi and G; the first four moments (about the origin or the mean) of z are

easily obtained as a function of Cyr The method by which the values of

c, are obtained will be outlined in the following chapter.



CHAPTER IIT

THE CRITICAL POINTS AND POWER OF THE

v-TEST UNDER NORMALITY

The o* statistic, when considered as a random variable, has a distri-
bution which will be treated as approximately normal when Hl and HZ are
normal. Moore (1968) has shown that under this condition of normality for
the population involved the distribution of ¢* is asymptotically normal,
and Barnett, Mullen and Saw (1967) have given values for Pearson's measures
of skewness and kurtosis, Bl and 32, for g* for a few sample sizes. For
example, when the sample size is ten, g* is distributed with skewness
Bl = .07 and kurtosis 82 = 3.02.

Since z is a linear combination of asymptotically normal variables
it is itself asymptotically normal and shall be considered to be approxi-
matley normal when Hl and H2 are normal because of the approximate normality
of oi and 03 for relatively small sample sizes. Under this assumption an
approximation to Cu may be obtained as follows.

® 2

Pr{Vv > ca} = pr{g > O} = [V2r oz]_l S exp! - —-< . Z> dz
0

2 . .
where M, and o, are respectively the mean and variance of z. If the trans-

formation U = (z - uz)/oz is made, then

o

Pr{Vv > cu} = q = S G'(u)du = 1 - G(8) (12)
§
9
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where G'(x) and G(x) are respectively the normal (0, 1) p.d.f. and c.d.f.,
and where § = —pz/oz. If du denotes the critical point of a standard
normal distribution which corresponds to an upper tail area of o, then

da = §. Since the exact moments of Z are known as functions of .’ the

expression du = —uz/cz can be solved in terms of c, to obtain an approxi-

mation to ca, say Gu. In particular, the mean of Z is
U =0, —CoO (13)
and the variance of Z can be written as

2 22
= +
oz czcl c3cac2 (14)

where c2 and c3 are constants given by Barnett, Mullen and Saw (1967) to be

Q
I

[n(r/3 + 2V3 - 4) + (6 - 4/3 + ©/3)]/n(n-1) (15)

[m(n/3 + 2V/3 - 4) + (6 - 4/3 + 1/3)1/m(m-1) . (16)

Q
It

So under the null hypothesis, 02 = 03

1 , the expression § = da becomes

(ca - 1)02

' N 1
@ [c 02 + czc 02] /2

272 0 32

= (17)

thus

which becomes

2. A2 ~ 2
- - + - -
(1 c3du)ca 2Ca (1 C2du) 0
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so by the quadratic formula

& = [2(1—cd2)]—12+ ‘/4—4(1—cd2)<1—cd2) (18)
o 3 a - 3 a 2 o

the larger value of (18) becomes, upon simplification

s = |- chz)—l 1+ a Jc3 + oy (1 - o) (19)
which is the desired approximation to the critical point - As the sample
size increases, Z will asymptotically approach a normal distribution and
the approximation in (19) will improve in accuracy. But a method of im-
proving the accuracy of (19) for a given sample size is needed. This will
be considered next.

Since the moments of Z are known functions of c, these moments can
now be approximated by using éa. If these approximate moments of Z could
be used to find interval probabilities for Z, then perhaps Eu could be
improved to any desired level. In order to do this a close approximation
for the distribution of 2 will be needed.

In order to approximate a distribution closely when only four moments
are known it is desirable to match each of those four moments as closely
as possible. A family of distributions which allow this to be done is
given by Burr (1942). This family is characterized by the cumulative dis-

tribution function

]
—

1
-
+
xO
VI

F(x)

=0 x <0 (20)

where ¢ and k are positive. Let A3 and A4 be measures of skewness and

kurtosis defined by

Ay =B, A =8, - 3. (21)
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The family of Burr distributions includes distributions with A3 and

A4 values covering a large area surrounding the values for a normal distri-

bution, and because the parameters, c and k, together uniquely determine a
pair of values of A3 and A4 this family of distributions is well suited for
use in approximating the distribution of Z. For information about using a

Burr distribution as an approximation for a normal distribution see Burr

(1967).
The procedure for improving the approximation to c, consists of the

following. First use 8a to obtain approximate values for the mean, variance,

skewness and kurtosis of %, denoted by ﬁz, 83, X3z’ X4z respectively. Next

find the values of ¢ and k which determine a Burr distribution of the form

A~

of (20) with a skewness, A_ , equal to A

and a kurtosis, A, , equal to

3x 4x

3z

X4z (see Burr (1942)). Now since skewness and kurtosis are invariant under
any change in location or scale the Burr distribution above may be trans-

formed to have a mean equal to ﬁz and a variance equal to 82. If ux and
2 . . . . . .

O denote the original mean and variance of the Burr distribution, then
this transformed Burr distribution has the form

-k
) . o . )
1- {1+ [0 /o) (v - u) + u 1% y > - (6, /0 )

FY (y)

=0 otherwise. (22)

Actually when A z is negative it is easier to find a Burr distribution with

3

A A

shape parameters equal to 5A3z and A4z and by flipping this distribution
about the origin a distribution with the proper skewness and kurtosis is
obtained. When this procedure is used the transformed Burr distribution

which has approximately the same first four moments as z is of the form

, -k )
{1+ [(o /0, )(u, - y) + uxlc} Py Su, + (0, /0 )

FY(y)

= Q otherwise. (23)
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Having found a transformed Burr distribution of the form of (22) or
(23) the next step is to use this distribution to improve the approximation
to cu. If Y denotes a random variable distributed according to this trans-

formed Burr distribution, then
Pr{Vv > ca} = Pr{Z < 0} = q. (24)
Now
Pr{Z > 0} = Pr{Y > 0} (25)

and if the c.d.f. of ¥ is of the form of (22) then
. . -k
Pr{v>c} = {1+ [u - (0,/6)u1°} (26)
where the right hand side is not zero. The right hand side of (26) is an
approximation to the known value of o. If the c.d.f. of Y is of the form
(23) then the approximation for o is given by

-k
. ~ ~ C . ~ ~
1~ {l + [(ox/az)uz + ux] } if w, + (oz/ox)ux >0

or 0 otherwise. (27)

The accuracy of this approximation is directly dependent upon the accuracy
of ea, and Su can be improved by comparing this approximation of a with a.
Using the improved value of éa, say éa' to calculate new approximations to
the moments of z the above procedure is repeated. When the approximation

for o is "close enoug to o then the present value of aa is taken as the
actual value of ca.
The above process for finding a value for ca is rather complicated,

therefore the accuracy of the results are of interest. In the work done

the approximations to o were considered close enough when they were within
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0.0001 of a. This led to values of éa that were accurate to three decimal
places and thus to moments of Z that were also accurate to three decimal
places. So the moments of the transformed Burr distribution were made to
match the moments of z to three decimal places, dbtaining thereby a fit
which was as close as possible without fitting error. The discrepancies
between the cumulative distribution for Z, Fz(z) and its approximation,

the c.d.f. for Y, FY(y), are composed basically of the differences between
the two distributions related to the differences between moments of order
greater than four. Considering the work of Burr (1967) these discrepancies
appear to be no greater than 0.004, and generally are less than 0.001, at
least in the neighborhood of the normal distribution which is the area of
concern. The only other factor affecting the discrepancies between FZ(z)
and FY(y) is the accuracy of éa' Based on the work done it seems that dis-
crepancies between éa and <, should not affect the cumulative distribution
functions by more than 0.0005.

Table 1 contains critical points for the v-test for three different
levels and for nine different pairs of sample sizes. The sample sizes were
obtained by letting the sample sizes for the two populations, n and m
respectively, take on the wvalues 5, 10 and 21 independently. For each of
these nine pairs of sample sizes the critical points are tabled for o levels

of .05, .10 and .25.

The critical points given in columns labeled c, are the final values

If critical points for the v-test which are not given in Table 1 are
desired, then they may be approximated using expression (19) for Ea. Further-
more, if the accuracy of ea and the direction in which Ea errs from c were

known for the desired combination of o-level and sample sizes then an even



CRITICAL POINTS,

TABLE 1

o FOR THE v-TEST AND RATIOS OF éa TO

Q

15

n 10 21
o4
m c, cu/cu c, cd/ca c, Ca/ca
.05 5 2.5750 1.077 2.4089 1.092 2.3270 1.103
10 2.0024 0.996 1.8090 1.009 1.7100 1.017
21 1.7778 0.990 1.5714 1.002 1.4712 0.999
.10 5 2.0661 1.008 1.9487 1.014 1.8930 1.017
10 1.6960 1.005 1.5795 0.998 1.5091 1.001
21 1.5750 0.997 1.4240 1.002 1.3489 0.997
.25 5 1.4406 0.993 1.4002 0.983 1.3803 0.978
10 1.3229 1.004 1.2636 0.999 1.2336 0.995
21 1.2755 1.006 1.2069 1.002 1.1666 1.000
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closer approximation to c, would be possible. In order to give some idea

c

S tre acouracy of éa and its position with respect to ca the ratio éa/ca
was included in Table 1.

Determining a general systematic pattein for accuracy and direction
of deviation of Ea would reguire the evaluation of the ratio Eu/cCé at more
points than are available, and would b« equivalent to preparing a more
extensive table of critical values. However some observations based on
the tabled values of au/cu are possivle. ¥First it seems that 6u improves
in accuracy with increasing denominator sample size and total sample size
and with larger a~levels. Secondly it will be noticed that two-thirds of
the ratios differ from the value cne by less than one percent. In these
situations at least it appears that 6a is a fairly accurate approximation
to c .

a

With the critical voint known it is natural to consider the power of

the v-test when the two populations are both normally distributed. The

pewer is a function of simple alternative hypotheses which are included in

2

the compound alternative hypothesis 02 > 0, -

1

Rewrite the alternative hypothesis as
o, = c,0 , ¢, > 1. (28)

For any particular value of c, > 1, (28) represents a particular alter-

1
native hypothesis at which the power can be calculated. Also if ¢ =1,

2

then (28) becomes the null hypothesis, 02 =a, -

1 In order to find ca, the

moments <f Z were -onputed, in effect, with ¢, = 1, and in order to cbtain

1

a point on the power curve of the v-test the moments of Z will have to be

recomputed using hoth the value of ¢ found earlier and a value of ¢y > 1.
o

Having computed these moments, a transformed Burr distribution is found to
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match them and is used to evaluate (25)

Pr{Z > 0} = Pr{Y > 0} (25)

as before. When cy > 1 the left hand side of (25) is the power of the
v-test for the alternative hypothesis o, = /EI Oy Thus an approximation
to the power of the v-test is obtained. The accuracy of this approximation
is the same as the approximation discussed above, namely the right hand
side should not differ from the left hand side by more than 0.0045 at any
point.

Table 2 compares this approximation to the power function of the

v-test of the hypotheses o, = o, versus o, > o

1 5 1 with the power function

2
of the F-test of the hypotheses ci = 02 versus oi > cg . The probabilities
of type I error {a~lievels) for which points on the power curves are tabled
are .05, .10 and .25. The sample sizes used in Table 2 are the same as in
the critical point tables.

Table 2 is divided into three sections according to the level of the
tests. The first column of each section gives ths values of ¢y which were
used in obtaining the points on the power curves given in the following
columns. Next, according to sample sizes for m and n, points corresponding
to the same alternative hypothesis from the power curves of the F-test and

the v-test are given. The values for the F-test were obtained from Pearson's

Tables of the Incomplete Beta Function and the values for the v-test are

approximations based upon the transformed Burr distributin: fitted to the
moments of Z.

There are several points in Table 2 where the approximation to the
power value of the v-test exceeds the corresponding power value of the

F-test. However, these points do not exceed the F-test values by more than
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0.005, which is, based on earlier considerations, the size of the maximum
discrepancy between the transformed Burr distribution and the cumulative
distribution of Z which it approximates. Therefore these points where the
v-test values are larger than the F-test values can be interpreted as points
where the power of the v-test is almost exactly the same as the power of
the F-test.

By the same criterion all of the approximations to the power curve
points of the v-test can be considered to be accurate to two decimal places.
Thus Table 2 shows that the v-test is almost as powerful as the F-test and
that the use of the v-test entails the loss of an almost negligible amount
of power when normality holds.

Box and Anderson (1955) presented the approximate power function for
the modified F-test for one case (oo = .05, m=n = 20). For this case the
modified F-test appears to be slightly less powerful than the v-test. 1In
particular, the power lost in this example when using the modified F-test
instead of the usual F-test when the underlying populations are normal is
shown by Box and Anderson to be as great as .05, whereas the power loss due
to using the v-test when normality holds is generally less than .02 (see
Table 2).

In this chapter the v-test has been considered as an alternative to
the F-test when the two populations sampled are normally distributed. An
estimate for critical points of the v-test was developed, a method of ob-
taining more exact values of the critical points was outlined and a short
table of critical points was given. Finally a procedure for approximating
the power of the v-test was outlined and this approximation to the power
function was compared pointwise with the power function for the corresponding

F~-test. Comparison of the power functions under normality is advocated by



TABLE 2

POWER OF F AND v-TESTS WHEN o LEVEL IS .05

c n=5 m=5 n=10 m=5 n=21 m=5
1 F test v test F test v test F test v test
1.0 .050 .050 .050 .050 .050 .050
1.21 .068 .069 .069 .069 .069 .069
1.44 .089 .089 .092 .091 .093 .092
1.69 .113 .113 .118 .116 .120 .119
1.96 .140 .138 .147 .1l46 .151 .149
2.25 .168 .165 .179 .175 .185 .182
3.24 .264 .254 .289 .279 .305 .295
4.0 .331 .317 . 369 .354 .392 .379
5.76 .461 .444 .526 .506 .565 .548
9.0 .626 .616 .719 .702 .774 .760
16.0 .802 .790 .898 .891 .944 .939
c n=5 m=10 n=10 m=10 n=21 m=10
1 F test v test F test v test F test v test
1.0 .050 .050 .050 .050 .050 .050
1.21 .079 .078 .083 .082 .087 .085
1.44 . 115 .107 .127 .124 .136 .133
1.69 .157 .148 .180 .174 .199 .191
1.96 .203 .194 .241 .231 .272 .260
2.25 .253 .243 .308 .293 .352 .332
3.24 .405 . 396 .511 .485 .596 .574
4.0 .499 .489 .631 .622 .731 .713
5.76 .653 .642 .805 .791 .899 .891
9.0 .802 .789 .932 .921 .982 .978
16.0 .916 .907 .988 .986 .999 .999
n=>5 m=21 n=10 m=21 n=21 m=21
F test v test F test v test F test v test
.050 .050 .050 .050 .050 .050
.087 .087 .098 .098 .086 .086
.135 .136 .165 .165 .196 .186
.191 .192 .246 .248 . 307 .289
.251 .254 .337 .342 .429 .405
.313 .317 .429 .432 .550 .544
.491 .494 .670 .670 .823 .813
.591 .592 .784 .780 .917 .908
.738 .735 .912 .906 .985 .982
.862 .858 .977 .975 .999 .999

.946 .944 .997 .997 1.000 1.000



(TABLE 2)

POWER OF F AND v-TESTS WHEN o LEVEL IS .10

c n=5 m=5
1 F test v test
1.0 .100 .100
1.21 .132 .130
1.44 .167 .164
1.69 .205 .199
1.96 .246 .237
2.25 .287 .276
3.24 .412 .395
4.0 .490 . 466
5.76 .624 .614
9.0 .767 .754
16.0 .892 .880
c n=5 m=10
1 F test v test
1.0 .100 .100
1.21 .147 . 147
1.44 .200 .202
1.69 .258 .20l
1.96 . 317 .321
2.25 .376 . 380
3.24 .538 .542
4.0 .627 .629
5.76 . 759 . 756
9.0 .871 .866
16.0 . 949 .946
c n=>5 m=21
1 F test v test
1.0 .100 .100
1.21 .157 .158
1.44 .221 .225
1.69 .293 .296
1.96 .363 .367
2.25 .431 .435
3.24 .605 .606
4.0 .693 .692
5.76 .813 . 809
9.0 .906 .902
16.0 .965 .964

n=10 m=5 n=21 m=>5

F test v test F test v test
.100 .100 .100 .100
.134 .133 .135 .134
173 .170 .176 .173
.216 .210 .221 .217
.262 .254 271 .264
.310 .299 .323 .313
.458 .441 .485 .470
.551 .533 ,589 .571
.709 .693 .760 .745
.861 .852 .910 .903
.962 .956 .987 .985
n=10 m=10 n=21 m=10

F test v test F test v test
. 100 .100 .100 .100
.155 .153 .161 .159
.222 .215 .239 .231
.297 . 286 .327 .315
.375 .36l .421 .405
.453 .431 .514 . 496
.660 .655 .751 .736
.763 .752 .855 .846
.892 .881 .958 .955
.967 .962 .995 .994
.995 .995 .999 .999
n=10 m=21 n=21 m=21

F test v test F test v test
.100 .100 .100 .100
.175 .176 .193 .185
.268 .270 .314 .298
.369 .372 .448 .426
. 469 .473 .578 .583
.563 .568 .691 .686
777 .774 .902 .894
.863 .858 .960 .953
.950 . 946 .994 .994
.988 .988 .999 .999
.999 .999 1.000 1.000
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(TABLE 2)

POWER OF F AND v~TESTS WHEN o LEVEL IS .25

c n=5 m=5 n=10 m=5 n=21 m=5
1 F test v test F test v test F test v test
1.0 .250 .250 .250 .250 .250 .250
1.21 .309 . 306 .316 . 313 .320 .318
1.44 .368 . 364 . 384 .379 .393 .389
1.69 .425 .420 .452 .445 .467 .461
1.96 .481 .475 .517 .509 .539 .531
2.25 .532 .532 .579 .571 .607 .599
3.24 .664 .663 .733 .728 .775 . 769
4.0 .731 .729 . 809 .805 .854 .850
5.76 .828 .822 .906 .905 .944 .942
9.0 .909 .902 .968 .965 .989 .988
16.0 .964 .961 .994 .994 .999 .999
c n=5 m=10 n=10 m=10 n=21 m=10
1 F test v test F test v test F test v test
1.0 .250 .250 .250 .250 .250 . 250
1.21 .326 .327 . 345 .337 .328 .332
1.44 .402 .403 .442 .437 .473 .467
1.69 .473 .475 .535 .540 .583 .576
1.96 .539 .540 .619 .624 .681 .675
2.25 .598 .598 .693 .696 .763 .759
3.24 .736 .732 . 848 .842 .916 .915
4.0 .800 .794 .907 .910 .962 .961
5.76 .882 .876 .967 .962 .993 .992
9.0 .943 .939 .992 .992 .999 .999
16.0 .979 .978 .999 .999 1.000 1.000
c n=>5 m=21 n=10 m=21 n=21 m=21
1 F test v test F test v test F test v test
1.0 .250 .250 . 250 .250 .250 .250
1.21 .337 .338 .369 .370 .399 .390
1.44 .422 .423 .487 .488 .551 .555
1.69 .501 .501 .595 .594 .685 .689
1.96 .571 .570 .687 .684 .790 .790
2.25 .633 .630 .762 .757 . 866 .863
3.24 .770 .764 .900 .894 .971 .968
4.0 .830 .824 .945 . 940 .990 .989
5.76 .903 . 898 .983 .981 .999 .999
9.0 .954 .952 .996 .996 1.000 1.000
16.0 .983 .983 1.000 1.000 1.000 1.000
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Kendall and Stuart (1967) when they discuss distribution-free statistics:

"If we examine power against the alternatives considered

in normal distribution theory, we obtain a measure of how much

we can lose by using a distribution-free test if the assump-

tions of normal theory really are valid. If this loss is

small we are encouraged to sacrifice the little extra efficiency

of the standard normal theory methods for the extended range

of validity attached to the use of the distribution-free

test."
And Box and Andersen (1955) indicate that when considering any alternative
to normal theory test criteria the power loss under normality should be
considered. Using the comparison of the power functions as a measure of
goodness the small loss of power, which results from using the v-test when
the underlying populations are norxrmal, leads to the conclusion that there
is little reason to prefer the F-test over the v-test when the normal theory
assumptions are valid. The incompleteness of the information on the power
of the modified F-test allows only a conjecture that the v-test is slightly

more powerful. Therefore the behavior of these tests under non-normality

will determine which is to be preferred.



CHAPTER IV
THE EFFECTS OF NON-NORMALITY UPON V

When the two populations, [I. and II.,, are not normally distributed

1 2
the significance levels associated with the critical points for the v-test
are different from the assigned values. If this difference in significance
levels is not too large then the v-test will be said to be robust, other-
wise it is non-robust. Just how large "large" is will depend upon the
level and the situation, generally "large" will be taken to be greater
than .01 or .02. It was precisely the non-robustness of the F-test that
led to the consideration of V as a test statistic, therefore ﬁhe v-test
should be examined for robustness and compared with the F-test.

To study the robustness of the v-test directly under various types
of non-normality some properties of the V-statistic or the related Z-statistic
need to be known. Since Z is a linear combination of order statistics it
would seem to be rather straight forward to obtain some properties of Z at
least for some particular non-normal distributions. But if the v-test is
to be considered in several non-normal situations, the properties of the
Z-statistic will need to be known for a class of non-normal distributions.
Subrahmaniam (1969) considers order statistics from a class of non-normal
distributions which have density functions given by Edgeworth series. This
paper would seem to provide the background needed to obtain the moments of

Z, but unfortunately it does not. If the moments of Z are to be obtained

when Hl and H2 are distributed according to some distributions in Subrahmaniam's

23
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class of non-normal distributions then the expectations of products of

order statistics from distributions in this class are needed, and these

are not given in nor are they easily cbtainable from Subrahmaniam's paper.
Another class of non-normal distributions which suggests itself for

a study of the robustness of the v-test is the family of Burr distributions.

In Figure 1, the range of skewness énd kurtosis for which Burr distributions

exist is shown. The parameter for skewness, A, and the kurtosis parameter,

3
Ayr are as defined earlier, and the normal distribution values of A3 and

A4 occur at the origin. Therefore the Burr distribution covers a region
surrounding the normal distribution point.

The moments of order statistics from any Burr distribution may be
obtained by numerical integration as can the expected values of cross products
of order statistics, so in theory, close approximations to the moments of
Z2 are possible. However both the number of numerical integrations involved
and the fact that the resulting moments would then only help in an approxi-
mation of the distribution of Z combine to discourage this approach. Finally
the class of Burr distributions is more restrictive than the general class
of non-normals considered by Subrahmaniam (1969), and the results obtained
by using the Burr distributions would be dependent to some extent upon the
actual properties of the Burr distribution and upon the properties of the
approximating distribution.

Therefore, since exact results are not possible by either of the two
approaches above and since the approximate results are rather difficult to
obtain, sampling seems to be an acceptable approach for a preliminary study
of the robustness of the v-test.

Because of the large range of shapes possible with the family of

Burr distributions, this family will contain most of the distributions which



FIGURE 1.

Range of Skewness, A3, and Kurtosis, X

4'

for Burr Distributions
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will be sampled. In order to obtain symmetric distributions with large
values of A4 some mixtures of Burr distributions were used. These mixtures
are given in Appendix A.

Another reason for using Burr distributions is apparent when the
generation of a sample is considered. The c.d.f. of a Burr distribution
is a closed form and can be solved explicitly in terms of the argument x

to give
x=[( - F(x))—l/k - 1]e . (29)

Thus, given a value of a random variable which is uniformly distributed
on the interval [0, 1], it is a simple matter to obtain a corresponding
value for a random variable distributed according to a given Burr distri-
bution.

In the sampling experiments the V and F statistics were calculated
according to the following procedure. A pseudo-random number generator
(see Appendix B) was used to generate a sample of size n + m from a uniform
distribution on [0, 1]. The first n values were used to generate a sample

of size n from Hl, and the remaining m values were used to generate a

sample of size m from H2. Transformations of the form of (29) were used
to obtain samples from Burr distributions and then samples were standardized

to obtain the samples from I, and H2. The standardization was performed

1

in order to consider effects of non-normality when the variances of Hl and

I, were equal. Let.yi and z, denote the ith'samples from I, and I, res-

2 1 2

pectively. Upon obtaining the yi's and the zi's the statistics

n n

m m
- y.<y.| and P EIE N (30)
izl jzl_l 173 121 j=1 =+ I
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were computed, and the V and F statistics obtained by the formulae

(31)
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For a given set of sample sizes and a given pair of distributions for

the V and F statistics were calculated 2500 different times and

ny and I,

the number of times each of these statistics exceeded its respective critical
point was observed. These numbers were then used to obtain observed sig-
nificance levels. For each pair of distributions for Hl and H2 observed
significance levels were obtained for nominal o~levels of .25, .10 and .05
for each of the nine combinations of n and m values given in Table 1.

Seven non-normal distributions were used and for each of these the

following deviations from normality for I, and H2 were considered. First

1
population one was normally distributed while population two was non-

normal. Next population one was non-normally distributed while H2 was
normally distributed, and finally both populations were distributed according
to the same non-normal distribution. Among the seven non-normal distribu-
tions one was skewed only (A3 = 0.47), three were symmetric and leptokurtic
(A4 = 1.02, 2.01, 3.01) and three were both skewed and leptokurtic (the

ordered pairs for_)\3 and_x were (.78, .73), (.95, 1.19) and (1.18, 2.02)).

4
There fore there were 21 different non-normal situations for which cbserved
significance levels were obtained.

Since the V and F statistics are both symmetric in the sample values

and in their treatment of the two samples the lower tail of the distribution

of both V and F was also used to obtain ocbserved significance levels. For
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if nl and n2 are both normal and are sampled n and m times respectively

and if wa is the nominal g-level critical point for the test (either Vv

or F) when the numerator is based on a sample of size m and the denominator
is based on a sample of size n, then the statistic will fail to exceed

l/wu exactly o percent of the time.

Therefore if Hl is a normal population and II, is a given non-normal

2
population from which samples of sizes a and b have been taken respectively,
then the observed significance levels for this case are correlated with
the observed significance levels for the case where Hl is the given non-

normal population and H2 is the normal population, samplea b and a times

respectively. Similarly when both I, and H2 are distributed according to

1
the same non-normal distribution with sample sizes a and b there is a
correlation between the observed significance levels here and the observed
significance levels for the case with sample sizes b and a. If b = a when
both Hl and H2 are non-normal then a second set of observed significance
levels is obtained which is correlated with the first set. 1In the absence
of this correlation this last case would effectively give the same results
as repeating the calculation of the V and F statistics 5000 times. In all
of these cases the amount of the correlation between sets of observed
significance levels is uﬁdetermined, but consideration of cases where both
Hl and H2 are non-normal with n = m indicates that this correlation is
small.

The observed significance levels for these upper tail tests are tabled
in Appendix C and summarized in Table 3 below. In order to reduce the vol-
ume of data to be considered, the results of the sampling experiments were

treated as observations in sampling from & multinomial and accordingly

chi-square statistics were obtained as a measure of lack of fit. These
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chi-square statistics were obtained as a measure of the lack of fit for the
upper tail of the distributions and therefore are a measure of the robust-
ness of the tests as upper tail tests.

The chi-square statistics were calculated twice for each set of data,
the first chi-square statistic having 3 degrees of freedom and being a
measure of combined robustness at the .05, .10 and .25 lewvels and the second
chi-square statistic having two degrees of freedom and being a measure of
combined robustness at the .05 and .10 levels only. The three d.f. and
two d.f. chi-square statistics were computed for the observed significance
levels for both the v-test and the F-test. Thus for a given set of sample
sizes and a given type of non-normélity there were four chi-square statis-
tics, namely the two and three d.f. chi-squares for Vv, Xg(v), Xi(v), and the
two and three d.f. chi-squares for F, X;(F), Xi(F)' In order to measuré
the relationship between corresponding chi—squaré statistics the differences,
Xi(F) - Xi(v) and X;(F) - X;(V), and the ratios, Xi(V)/Xg(F) and X;(V)/Xz(F),
were obtained. The average of these differences and the geometric mean of
these ratios over the nine different pairs of sample sizes for each of the
twenty-one different non-normal situations is given in Table 3.

The first four columns of the upper part of Table 3 give the wvalues

of the skewness and kurtosis parameters, )., and ),, for II, and I, respectively,

3 4 1 2

the last four colums give the average of the differences and the geometric
mean of the ratios of the corresponding chi-square statistics for three
degrees of freedom and two degrees of freedom respectively. The twenty-one
non-normal situations are organized into seven groups of three rows. Each‘

group of three rows follows the same pattern, in the first row I, is normally

1

distributed while n2 is distributed according to a given one of the non-

normal distributions, in the second row Hl and.r[2 switch distributions and
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in the third row both Hl and H2 are distributed according to the given non-
normal distribution. The last three rows of Table 3 give averages of the
means of differences and the geometric mean of the ratio means for the sit-
uations identified on the left hand side.

In Table 3 one asterisk denotes a non-normal situation where a test
of robustness for the F-test using the chi-square statistic would fail to
reject robustness at the .05 level. Two asterisks denote a situation where
the same criterion would indicate robustness for the v-test and three asﬁer—
isks denote a situation where both tests can be considered robust by the
above criterion. Since for each row there were nine sets of sample sizes
for which both the three d.f. and the two d.f. chi-square statistics were
computed the asterisks represent cases where the chi-square test for robust-
ness failed to reject robustness for at least five of the nine sets of -
sample sizes.

The .05 level was chosen as the level to use for testing robustness
on the basis of the power of the chi-square test. If the actual significance
levels of the v-test or the F-test are, for example, .06 and .11, then the
power of the two d.f. chi-square test based on a sample of size 2500 is
approximately 0.8. This value is obtained from the limiting power function
for the chi-square test given by Kendall and Stuart (1967) in paragraph

30.27 of their work, The Advanced Theory of Statistics.

The situations where either the F-test or the v-test or both can be
considered robust will be listed next, and following this listing these
situations will be discussed. It should be remembered throughout the

following that the robustness described is for upper tailed tests only.



TABLE 3

SUMMARY OF SAMPLING EXPERIMENTS FOR ROBUSTNESS

Shape Parameters

3 4d.f.

Chi-squares 2 d.f. Chi-squares
., I d . i i
num. , I, enom. , H2 means of geometric means of geometric
. means of . means of
differences . differences .
A A A A ratios ratios
3 4 3 4
0 0 0.47 1 0.04 -1.159 *** ] 322 -0.424 *** 1,296
0.47 § 0.04 0 0 0.840 *** 1,248 0.046 *** (0,926
0.4710.04 | 0.47 | 0.04 0.416 *** (0,855 1.617 *** (0.604
0 0 0.01 ] 1.02 -3.622 1.321 -1.913 1.301
0.01}1.02 0 0 3.802 *** (0,649 3.843 *** (0,293
0.01]1.02}40.01]|1.02 13.678 0.635 13.826 0.582
0 0 0 2.01 -30.770 1.277 -18.360 1.183
0 2.01 0 0 -15.460 1.764 -8.370 * 2.458
0 2.01 0 2.01 5.380 0.879 5.960 0.865
0 0 0 3.01 -97.510 1.204 -76.530 1.171
0 3.01 0 0 -24.320 2.248 -9.270 2.800
0 3.01 0 3.01 15.550 0.911 16.480 0.905
0 0 0.78 1 0.73 0.487 1.074 3.046 **  (0.656
0.78 | 0.73 0 0 1.274 1.509 0.983 * 1.554
0.78 10.730.78] 0.73 11.262 ** (0,420 10.712 0.374
0 0 0.95 ]| 1.19 -2.584 1.146 0.882 0.951
0.95 ] 1.19 0 0 0.172 * 1.473 2.524 **%x (0,941
0.9511.19 § 0.95 ] 1.19 20.971 0.406 20.841 0.386
0 0 1.18 | 2.02 1.390 0.985 7.740 0.902
1.18 | 2.02 0 0 9.530 0.564 14.920 **  0.174
1.18 1 2.02 {1.18 | 2.02 49.560 0.468 46.780 0.467
Summary of rows 4-21
Numerator Normal -19.110 1.184 -12.222 1.040
Denominator Normal -3.555 1.221 0.668 0.899
Both Non-normal 16.688 0.618 16.602 0.566
* The F-test is robust in this situation for the levels indicated.
** The v-test is robust in this situation for the levels indicated.

*%* Both tests may be considered robust in this situation.




32

1) The first three rows of Table 3 represent situations where either one
or both of the distributions involved are skewed with only a very
small amount of leptokurtosis. For these three situations both the
three d.f. chi-square tests and the two d.f. chi-square tests indicate
robustness for both the F-test and the v-test at least eight times
out of every nine, and this is in keeping with the previous work on
the robustness of the F-test (Pearson (1931), Geary (1947)) which
showed that non-robustness is a problem only when non-normal kurtoéis
is present.

2) The next situation where some robustness is indicated is when Hl has
shape parameters k3 = .Ol,l>\4 = 1.02 and H2 is normally distributed.
Both the F-test and the v-test are noted as robust at all three a-
levels and at the lower two a-levels alone. Both the three d.f. ‘and
the two d.f. chi-square tests show the F-test as robust in six of
the nine cases. The v-test is indicated as robust at all three o-
levels seven times and at the lower two a-levels by eight of the nine
separate tests. It should be noted that in this situation every time
the F-test could be considered as robust the v-test could also be con-
sidered robust.

3) The next place in Table 3 where robustness is noted is when the denomin-
ator is normally distributed and the numerator population is symmetric
and leptokurtic with A4 = 2.01. The F-test is marked as being robust
for a-levels of .05 and .10 only and this is based upon seven of the
nine two d.f. chi-square tests failing to reject robustness at the
.05 level. This case is singular in that it is the only time the F-
test was strongly indicated as robust and the v-test was not indicated

as robust by several of the chi-square tests. This is due to the more

conservative nature of the v-test as may be seen from the data tabled
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in Appendix C.
4) When one or both populations are moderately skewed and leptokurtic,

. k3 =.78,_>\4 =.73, either the F-test or the v-test is marked as robust.
Namely, when the numerator is normal and when both numerator and denom-
inator are non-normal the v-test is marked as robust on the basis of
six out of nine two d.f. chi-square tests in the first case and five
out of nine three d.f. tests in the second case. When the denominator
is normal and the numerator has the moderately skewed and leptokurﬁic
population then the F-test is marked as robust at the lower two 0-
levels on the basis of five out of nine two 4d.f. chi-square tests.

5) The F-test is again marked as robust when the numerator is slightly

more skewed and leptokurtic than above (X3 = .95, A, = 1.19) and the

4
denominator is again normal. Here the three d.f. and the two d.f.
chi-square tests failed to reject robustness for the F-test seven out
of nine times and the two d.f. chi-square test indicated robustness

for the v-test six of the nine times.

6) Finally when the numerator is even more skewed and leptokurtic (A, = 1.18,

3
14 = 2.02) and the denominator is normal the chi-square tests indicated

that the v-test was robust for the lower two O-levels five times out

of nine.

The most striking thing about the list above is the number of times
the F-test is indicated to be robust by a majority of the chi-square tests
involved. Upon consideration of the situations in which this happens it
appears that in each situation where the F-test might be considered as
robust the denominator is based upon a normal population and the numerator
population:is the one which departs from normality. Gayen (1950) indicated

that in some situations the F-test on variances may be robust when he said,
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"a distinction should always be made between samples from the same popu-
lation and those from two different populations,"” and "It is therefore not
unlikely that the presence of deviations from normality in both the measures
... may sometimes, far from disturbing the normal-theory law of the variance
ratio, contribute towards its stability." This has not been pointed out
more clearly because the literature has tended to deal with situations
where, when there are two populations, both populations have the same shape.
When only one of two populations is non-normal it would be expected that.
non-normality for the denominator would have more serious effects upon the
F-test than would non-normality for the numerator, and this is precisely
what the sampling experiments showed.

The second thing to notice from the listing above is that the v-test
tended to be robust when the F-test was robust. The v-test was robust on
its own only three times, namely when Hl and H2 were moderately skewed and
leptokurtic, when the numerator was normal and the denominator was again
only moderately skewed and leptokurtic and finally when the denominator was
normal and the numerator was more extremely skewed and leptokurtic. 1In
short it seems that the situations and regions for which the v-test is robust
are slightly more general and more broad than those for which the F-test is
robust, but that the v-test also has problems with non-robustness. The next
question is how badly non-robust is the v-test compared to the F-test?

The ratios and differences of the chi-square statistics were used
because they contain the same information as the pair of chi-square statistics
and this information is in a form that is easier to use for comparison and
summary purposes. Table 3 lists the means of the differences and the geo-
metric means of the ratios for each of the non-normal situations. These

two types of means summarize the relationship between the lack.of fit
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statistics for the v-test and the F-test for each situation.

The robustness of the F-test has already been noted when the denom-
inator is normal and the numerator only moderately non-normal. The more
conservative nature of the v-test, which is apparent from the unabridged
data, is brought out in Table 3 in these situations where the F-test is
robust. In these situations the mean of the differences is generally
negative or close to zero and the geometric mean of the ratios is either
greater than one or close to one. In general, then, when the denominatof
is normal the v-test is no better than the F-test.

When the numerator is normal and the denominator is non-normal the
cumulative measures given in Table 3 indicate that the v-test is worse than
the F-test when the non-normality is due to leptokurtosis only and that the
v-test is a little better than the F-test in its degree of non-robustness
when the non-normality is due to both skewness and leptokurtosis.

When both numerator and denominator have the same non-normal distri-
bution the v-test appears to be better than the F-test. In particular the
chi-square statistics for the v-test are consistently smaller than those
for the F-test and the overall geometric means for the two d.f. and three
d.f. chi-squares are close to one-half. The conclusion that the v-test
is not as non-robust as fhe F-test in these situations is warranted by the
unabridged data itself, in fact the unabridged data indicates that the
v-test tends to be only slightly non-robust when both populations have the
same non-normal distribution and in particular when the numerator sample
size is not less than the denominator sample size.

In order to compare the v-test with the modified F-test some further
sampling experiments were run. Before describing the results of these ex-

periments, the nature of the modified F-test will be reviewed. Box and
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Andersen (1955) developed a combined measure of kurtosis for the two popu-
lations involved and then proposed using this measure (by means of a certain
formula) to adjust the degrees of freedom to be used in a usual F-test.

In particular the modified F-test consists of the following; the usual
F-statistic is computed from the data, the measure of kurtosis is used to
adjust the degrees of freedom, and the computed F-statistic is compared

with the critical points for an F distribution having the adjusted degrees
of freedom.

In the sampling experiments which compared the v-test and the modi-
fied F-test the two populations were both sampled either 5 or 21 times.

For each of these two pairs of sample sizes two non-normal situations were
considered. First the numerator distribution was symmetric with a kurtosis
of 2.02 while the denominator was normally distributed, secondly both the
numerator and the denominator came from a symmetric distribution with a
kurtosis of 2.02. In each of these four sampling situations the V- and
modified F-statistic were calculated 1000 times each. The results of these
experiments are expressed as observed cumulative probabilities and are
given in Table 4.

The first six columns of Table 4 give the identifying parameters for
the adjoining block of observed cumulative probabilities. The normal cumu-
lative probabilities are the theoretical probabilities for the v-test under
normality for both populations.

On the basis of the data in Table 4 it appears that the v-test is more
robust than the modified F-test when the sample size is small but that the
reverse is true for large sample sizes. Furthermore, even at the larger of
the sample sizes, the upper tail probabilities for the v-test are closer to
the normal theory values than are the corresponding values for the modified

F-test when the denominator is normal and the numerator is non-normal.
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CUMULATIVE PROBABILITIES FOR THE V-STATISTIC AND THE MODIFIED F-STATISTIC

Numerator Denominator Test Normal Cumulative Probabilities
AB X4 sample A3 X4 sample .05 .10 .25 .75 .90 .95
size size
Observed Cumulative Probabilities
0 2.02 5 0O O 5 v .075 .151 .317 .760 .913 .963
mod F | .087 .159 .353 .718 .9209 .971
0 2.02 5 0 2.02 5 v .060 .134 .282 .696 .862 .929
mod F | .061 .123 .315 .653 .867 .928
0 2.02 21 0 0 21 v .107 .170 .358 .801 .922 .967
mod F | .088 .146 .319 .783 .933 .974
0 2.02 21 0 2.02 21 v .081 .138 .298 .697 .857 .923
mod F}.052 .105 .252 .711 .879 .926
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Because of the preliminary nature of the comparison study the results
above should be considered as indicative in nature only. To define areas
where each of the two alternatives to the F-test is best would require a
more extensive comparison between the two tests.

On the basis of all of the sampling experiments performed it would
seem to be advisable to use an alternative test whenever both populations
would tend to have the same shape, the v-test for small sample sizes and
the modified F-test for large sample sizes, and to use the regular F-tesf

otherwise.



CHAPTER V
SUMMARY

Because in most situations the population distributions are very
rarely known the use of criteria based upon specific distributions involves
certain risks. In order to avoid some of these risks criteria are sought
which will not mislead the statistician, and hopefully will even allow him
to obtain the desired information when the underlying assumptions are not
satisfied.

In choosing a test of hypotheses the statistician risks making ong of
two errors. A powerful test based upon some specific family of distribu-
tions may be chosen at the risk of encountering a distribution which is not
from that specific family, or a more general and less powerful test may be
chosen which is good for a larger class of distributions at the risk of
encountering a member of that specific family of distributions for which
the better test could have been used.

In the first case the level of the test will usually be wrong, in the
second the power will be less than it could have seen.

In order to circumvent the first of these errors the idea of robustness
was developed. In particular, tests for which the probability of Type I
error remains relatively constant regardless of the original distribution
are considered robust. Some of the standard tests, such as the analysis of
variance test with fixed effects have proved to be robust, and therefore
extremely useful. However in many cases the standard tests are not robust
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and so non-parametric tests have been suggested as rcbust alternatives.
This however ignores the second of the two errors mentioned above, namely
loss of power when the more powerful test could have been used. Therefore
robustness alone is not an adequate criterion for judging an alternative
procedure.

The way to take the second kind of error into account is to consider
the power of the alternative test when the standard test would be valid.

If an alternative procedure is powerful under the standard test assumptiéns
and is robust for departures from those assumptions, then it should be used
instead of the standard test.

In Chapter III the power function of the v-test was approximated under
normality assumptions and this approximation was found to be very close to
the power function for the F-test. Therefore the problems represented by
the second kind of error are small when the v-test is used as an alternative
to the F-test.

Departures from normality can seriously affect the F-test on variances,
but unfortunately they also affect the v-test. In particular when the
denominator of the F-test comes from a population with non-normal kurtosis
and the numerator is normal, or when both the denominator and numerator are
from the same type of distribution with non-normal kurtosis the actual type
I error probability for the F-test changes greatly. It appears that the
v-test is similarly affected when the denominator is leptokurtic and the
numerator is normal, but when both numerator and denominator are from the
same type of distribution with non-normal kurtosis the v-test is not as
seriously affected as the F-test. Namely, the probability of a type I error
for the v-test does not differ from the normal theory value as much as does

the type I error probability for the F-test.
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Whenever the denominator is normally distributed and the numerator is
only moderately leptokurtic both the F-test and the v-test appear to be
robust. Therefore the v-test extends the region of robustness of the F-
test a certain amount and is less severely non-robust than the F-test for
an even larger region.

The modified F-test suggested by Box and Andersen (1955) was shown
to be better than an F-test for sample sizes of 20 for both numerator and
denominator. This was verified by the work done in comparing the modifiéd
F-test with the v-test. However when the numerator and denominator do not
have the same shape it seems that the modified F-test is not as good as
when the numerator and denominator are both from the same non-normal popu-
lation. Furthermore when the sample size drops to around 5 for both numer-
ator and denominator the v-test is clearly better than the modified F-test
for the cases considered.

In Appendix C the unabridged data from the sampling experiments is
given. Included along with the observed significance levels for the v-test
and the F-test is the combined obéerved significance levels for the two
tests considered as one test. These numbers were obtained by counting the
number of times that both the F-statistic and the V-statistic were signifi-
cant at the same level for the same sample. This count was divided by 2500
to obtain the numbers given in the tables in the appendix.

These numbers were originally obtained as an indicator of the similarity
between the v-test and the F-test. If these numbers were very small, then
the F-test and the v-test would have been giving different conclusions for
the same set of data, whereas if these numbers were generally near or equal
to their maximum possible values then a direct relationship between the two
tests would have been indicated. As it is these numbers indicate that the

v-test and the F-test are indeed di fferent, in accordance with the way they
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are obtained, but that the two tests do test basically the same thing. 1In
short, for a given sample, when one of these tests shows significance'or
non-significance then the other will very likely show significance or non-
significance also.

Because these combined observed significance levels are sampling
observations upon the joint significance levels for both the v- and F-tests
they are smaller than either of the corresponding significance levels.

Since the non-robustness of both the F-test and the v-test in the cases
studied is in the direction of type I error probilities being larger than
stated, the combined significance levels will be closer to the individual
nominal significance level than will either of the actual individual levels.
This suggests that the combined test might be a robust alternative to the
F-test. The results of the sampling experiments do not conclusively indicate
the outcome of this question. 1In particular, in every case but one where
the data indicated that the combined test could be considered robust by the
same criterion used for the individual F-tests and v-tests either one or
both of the individual tests could also be considered robust. Because of
this further consideration of the combined test will be postponed until a
later time.

Furthermore, as an indirect outcome of this work the usefulness and
versatility of the Burr distribution as an approximation to various distri-
butions was established. Because only two parameters are required to deter-
mine the Burr distribution and because the Burr can be used to obtain fits
to four moments it seems that this family of distributions should find a
great deal of use when approximations are required.

In conclusion, the v-test, when considered as an alternative to the

F-test, seems to be an appropriate upper tail test in small sample situations
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where both the numerator and denominator are believed to follow distributions
with the same non-normal kurtosis. If the v-test is used in this situation
the departure from robustness will be less than would occur with the F-test,
and if prechance the distributions of numerator and denominator are normal
the power lost by using the v-test is inconsequential.

While risking a slightly greater loss in power under normality, the
modified F-test might be the best alternative to the usual F-test when both
populations have the same non-normal kurtosis and the sample sizes for both
populations are at least as great as 20. However any definite conclusions
on this matter will have to await further work on the modified F-test.

When considering upper tail tests in situations where only one of the
two populations is likely to have non-normal kurtosis it is preferable to
have the numerator non-normal instead of the denominator. If the denominator
is normally distributed and the numerator is only moderately non-normal in
kurtosis then either the F- or the v-test would be appropriate, and possibly
even robust as an upper tail test. But if the denominator has non-normal
kurtosis and the numerator is normal then both the F-test and the v-test
are equally bad. The behavior of the modified F-test, when only one popu-
lation is non-normal, is not known.

Finally whenever the only non-normality possible is skewness it appears

that both the F-test and the v-test are robust and equally appropriate.



APPENDIX A
A SYMMETRIC DOUBLE BURR DISTRIBUTION

In order to examine the effects of non-normality upon the v-test
and the F-test a symmetric distribution with variable kurtosis was desired.
Symmetric Burr distributions with kurtosis less than_k4 = 1.25 are obtain-
able but higher values of A4 were desired. Because skewed Burr distri-
butions with large values of A4 exist (see Figure 1) and because the
cumulative distribution function, c.d.£f., of a Burr distribution is easy
to work with it was natural to consider mixing two Burr distributions to
obtain a distribution of the desired shape.

Let the c.d.f. and the probability density function, p.d.f., of a

regular Burr distribution be denoted by F(x) and f(x) respectively, then

F(x) =1- (1 + xc)mk x>0
=0 x<0 (33)
and
fx) = kx T+ O FL x50 (34)
=0 x <0

and the first derivative of the p.d.f. is

c-2 c

£ (x) = kxS 21 + x9) F % (e-1) (1+x5) - ck+D)x] x> 0

=0 x <0 (35)

Thus by equating this last expression to zero and solving for x, the mode
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is found to be

_.\l/c
c-1 . (36)
ck+1
The transformation

u=x - [(c-1)/(ck+1)1%/C (37)

will translate the regular Burr distribution so that the mode of the new

distribution lies at the origin. This transformed p.d.f. and c.d.f. are

respectively
g(w = ck(wa) ML+ (a1t us -a
=0 u< -a (38)
and
Glu) = 1 - [1+ (wa)®]™® u> -a
=0 uc< -a (39)
where
a= [(c-1)/(ck+1) 1Y .

Consider the distribution with a c.d.f. given by
H(w = 1/2[6(w) + 1 - G(-w] . (40)
The corresponding p.d.f. is
h(u) = 1/2{g(u) + g(-w)} . (41)

And if U is distributed according to H(u) then

E(Ur) = j urh(u)du = % J‘ urg(u)du +% I urg(-u)du . (42)

=00 =00
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When r is even, letting z = -u gives
o0 o0
E(uY) = % J u"g(u)du + -;— J 2°g(z) dz
Q0 -0
00
. v
= .[ u g(u)du (43)
and when r is odd letting z = -u gives
00 00
r 1 r 1 r
E(U’) = 5'.( u g(u)du - 5-.[ z g(z)dz = 0 . (44)
— -0

Therefore H(u) is symmetric and by virtue of the fact that the mode of
g(u) is at the origin h(u) is unimodal. Furthermore by changing the
pérameters of the original Burr distribution the even moments about the
origin, namely the kurtosis, can be changedeithin a wide range of values.
Figure 2 shows the relationship between the kurtosis of the original

Burr distribution, F(x), plotted as the ordinate, and the kurtosis of the
symmetric double Burr distribution, H(u), derived from F(x).

Two distributions of the form of H(u), with A, = 2.02 and 3.02, were

4
used in the sampling experiments. Since the c.d.f. for distributions of
the form of H(u) cannot be solved explicitly in terms of the argument, u,
the following approach had to be used in order to transform a random

sample from a uniform distribution into a random sample from H(u).

The c.d.f. for H(u) is

H(u) = %4{1 - [1+ (u+a)c]_k + [1 + (a—u)cl—k} if —a < uc< a
=0 if u< -a
=1 if u> -a (45)

where a is the same as above. Breaking the non-trivial part of H(u) down
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into the two portions G(u) and 1-G(-u), solving each one explicitly for
u and averaging the result an approximation, say u, to the solution of
H(u) in terms of u is obtained. Next a smoothing function is chosen for
the particular H(u) of interest which will improve 1 as much as desired.
This is done by choosing H(u) to take on a set of values (such as the
values .01l to 1.0 in steps of .01) finding the approximate solution, u,
at each of these values, and then using U in H(u) to obtain a value to
compare with the chosen value of H(u). By the proper choice of a piece-
wise linear function with which to operate upon the original values of
H(u) the approximate solution, ﬁ, can be made as accurate as is desired.

In the work done the smoothing functions were chosen so that the
final value of H(u) was within .005 of the original value of H(u) at each
of the 100 values used. This seemed to be justifiable in the light of
Box and Andersen's (1955) statement to the effect that

"Since the assumptions on which 'exact' distributions
are determined are seldom justified in practice, and since
the mind cannot appreciate small differences in prcbability,

reasonable approximations to probability distributions are
all that are really required."

This approach to the use of H(u) seemed to provide reasonable approxi-

mations to the exact probability distribution for sampling purposes, and
so it was used for the two symmetric leptokurtic distributions mentioned

above.



APPENDIX B
A PSEUDO-RANDOM NUMBER GENERATOR

The pseudo-random number generator used comes from one developed
for the UNIVAC 1108 by Marsaglia and Bray (1968). The form actually
used is a modified form of the generator given by Marsaglia and Bray,

the modification being given by Grosenbaugh (1969).

It is called a pseudo-random number generator in that it can re-
generate exactly the same set of numbers given ehe same starting value,
otherwise the values generated by this generator are uniformly distrif
buted between zero and one. 1In order to assure fresh samples the last
value of one run was used as a starting value of the next run through-
out the sampling work.

The 1108 dependent version of this random number generator is given
below, Marsaglia and Bray (1968) give versions for other types of com-

puters.

FUNCTION URAND (KEY)
DIMENSION NN (128)
IF(KEY) 3, 3, 1
1 1=234175
M=616223
MI=65539
MM=33554433
MK=362436069
K=KEY
KEY=0
DO 2 I=1, 128
K=K*MK
2 NN(I)=K

49
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3 L=L*ML+ (ISIGN (1, L*ML)-ISIGN(1l, L))/2
M=M*MM+ (ISIGN (1, M*MM)-ISIGN(l, M))/2
J=1+IABS (L) /268435456
URAND=. 5+FLOAT (NN (J) +L+M) *.145519152E-10

=K*MK+ (ISIGN (1, K*MK)-ISIGN(1l, K))/2
NN (JJ) =K

RETURN

END

As can be seen from this listing this generator is a combination
of three separate generators which are combined to increase the periodic

length of the generator to the order of 108 or more. The starting value

is KEY which should be an odd positive integer of six places or more.



APPENDIX C
TABLES OF OBSERVED SIGNIFICANCE LEVELS

The following tables give the observed significance levels as obtained
from the sampling experiments. Each group of three rows contains the ob-
served significance levels coming from one group of 2500 V and F values
along with some additional information and the identification information
for that group of test statistics. As was mentioned previously both the
upper and lower tails of the empirical distributions of F and V were used
to obtain observed significance levels. Therefore for each group of
2500 values of V and F there are six observed significance levels for each
of the two tests.

The first three significance levels for V and F come from the lower
tail and were obtained by using the inverse of the upper tail critical
points for situations where the numerator and denominator are reversed
from the way they are given in the identification information accompanying
the significance levels.. Thus these firét three observed significance
levels are upper tail levels for a situation where the distributions and
sample sizes are reversed. The last three significance levels for V and
F are the upper tail levels for the situation identified at the left of
that group of three rows. Because they come from the same group of ob-
servations there is some correlation between the two sets of observed
significance levels, just how much has not been determined.

The identification information for each group of observed significance

levels is contained in the first two columns of each three row groups.
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The information given is respectively the numerator sample size and the
denominator sample size on the first row, the numerator population shape
parameters on the second row and the denominator population shape para-
meters on the third row.

After the word both in each group of three rows, six numbers which
resemble observed significance levels are given. These numbers represent
the number of times both the V and the F statistics exceeded their respec-
tive critical points for the same set of sample values. The number of
times both statistics exceeded their critical points was divided by 2500
to obtain these six numbers which are directly comparable with the two
observed significance levels directly above them. As these numbers in-
dicate the v- and the F-tests treat a given sample in very much the same
way, and when one test is significant the other is very likely to be

significant also.



.05 .10 .25 .25 .10 .05

.0508 .0880 .2404 .2560 .0972 .0532
.0532 .0952 .2384 .2508 .1040 .0532
.0492 .0844 .2240 .2396 .0936 .0476

.0432 .0936 .2612 .2344 .0976 .0432
.0452 .0984 .2604 .2428 .0976 .0496
.0408 .0892 .2460 .2228 .0896 .0416

.0428 .0884 .2420 .2444 .0936 .0428
.0456 .0952 .2436 .2456 .0976 .0444
.0396 .0824 .2260 .2312 .0896 .0384

.0392 .0952 .2440 .2488 .1020 .0488
.0416 .0992 .2392 .2548 .0992 .0460
.0372 .0920 .2300 .2392 .0912 .0416

.0548 .1052 .2632 .2484 .0960 .0468
.0572 .1092 .2660 .2484 .0944 .0468
.0496 .0980 .2496 .2336 .0856 .0420

.0432 .0944 .2372 .2604 .0976 .0444
.0484 .0948 .2376 .2572 .1036 .0496
.0388 .0856 .2164 .2420 .0900 .0416

.0452 .0988 .2528 .2332 .0892 .0468
.0484 .1072 .2476 .2388 .0908 .0500
.0412 .0968 .2404 .2240 .0852 .0464

.0424 .0904 .2372 .2528 .1004 .0440
.0464 .0888 .2432 .2540 .0996 .0464
.0396 .0848 .2252 .2412 .0904 .0400

.0436 .0876 .2388 .2612 .0952 .0464
.0456 .0908 .2412 .260§ .1080 .0516
.0392 .0808 .2264 .2480 .0896 .0432

.0496 .1016 .2492 .2420 .0880 .0448
.0520 .1052 .2504 .2420 .0868 .0440
.0460 .0968 .2352 .2268 .0796 .0400

.0476 .0916 .2440 .2592 .0988 .0544
.0500 .0924 .2436 .2572 .1004 .0556
.0428 .0856 .2300 .2420 .0896 .0488

.0340 .0904 .2536 .2356 .0948 .0520
.0408 .0928 .2528 .2404 .0972 .0536
.0316 .0820 .2340 .2200 .0872 .0468
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.05 .10 .25 .25 .10 .05
.0504  ,0948  .2324  ,2524  .0968  .0480
.0536  .1008  .2316  .2556 .0988  .0504
.0476  .0920  .2196  .2440 .0912  .0448
.0528  .1028  .2564  .2356 .0960  .0512
.0576  .,1048  .2624  .2360 .0968  .0580
.0488  .,0976  .2456  .2164  .0896  .0492
.0516  .1092  .2616  .2612  .0928  .0440
.0548  ,1120  .2620 .2560 .1016  .0504
.0480  .1012  .2492  .2424 .0872  .0416
.0520  .0984  .2408  .2244  .0952  .0436
.0564  ,1020  .2432  .2316  .0912  .0452
.0504  .,0944  .2268 .2140 .0836  .0380
.2456 ° .0972  .2440  .2424  .1008  .0508
.0500  .1052  .2476  .2416  .0976  .0564
.0436  .0904  .2292  .2260 .0908  .0476
.0456  .0956  .2492  .2452  .0908  .0408
.0544  ,1020  .2544  .2460  .0956  .0444
.0440  .0892  .2340 .2280 .0820  .0360
.0556  .1024  .2420 .2764  .1120  .0628
.0588  .1088  .2520  .2760  .1180  .0660
.0532  .0976  .2332  .2624 .1084 .0604
.0492  .0912  .2464  .2856  .1344  .0700
.0512  ,0984  .2480 .2800 .1280 .0712
.0456  .0880  .2368 .2660 .1176  .0652
.0476  .0988  .2508  .2856  .1380  .0804
.0556  .1092  .2572  .2820  .1336  .0804
.0428  ,0932  .2372 .2684 .1284  .0760
.0484  .0984  .2392  .2680  .1084  .0604
.0508  ,1056  .2448  .2628  .1048  .0512
.0464  .0944  .2288  .2504  .0960  .0472
.0484  .0920  .2324  .2748  .1344  .0748
.0564  .1052  .2584  .2636  .1272  .0680
.0476  .0888  .2248  .2524 .1204  .0636
.0524  .,1000 .2500 .3068 .1352  .0700
.0628  .1124  .2648  .2960  .1332  .0728
.0492  ,0920  .2372  .2824 .1200  ,0628
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.05 .10 .25 .25 .10 .05
.0628  .1228  .2832  .2324 .0944  .0484
.0640  .1280 .2812  .2336 .1016  .0524
.0584  .1188  .2708  .2224  .0912  .0460
.0576  .1200 .2816  .2492  .1124  .0628
.0604  .1232  .2812 .2500 .1096  .0664
.0548  .1136  .2700  .2372  .1036  .0592
.0592  .1212  .2784  .2548 .1012  .0504
.0648  .1212  .2728  .2624  .1128  .0556
.0556  .1124  .2600 .2416 .0960  .0476
.0580  .1052  .2692  .2400 .1036  .0532
.0560  .1084  .2660 .2476  .1040  .0548
.0544  .0996  .2532  .2300 .0940  .0472
.0692  .1312  .2964  .2392 .1080  .0564
.0732  .1336  .2984  .2500 .1152  .0648
.0640  .1248 .2808 .2276  .1024  .0536
.0744  ,1400 .2960  .2456  .1024  .0504
.0776  .1360  .2864  .2608 .1172  .0672
.0680  .1248  .2728  .2328 .0964  .0480
L0652  .1132  .2676  .2732  .1200 .0604
.0664  .1180 .2760  .2760  .1260  .0680
.0604  .1084 .2588  .2640 .1124  .0588
.0556  .1100  .2716  .2576  .1316  .0792
.0604  .1192  .2820 .2600 .1288  .0836
.0524  .1052  .2632  .2424  .1232  .0752
.0724  .1232  .2808 .2668  .1276  .0692
.0764  .1340 .2824  .2724  .1364  .0752
.0664  .1172  .2648  .2508  .1200  .0640
.0592  .1080 .2720 .2676 .1256  .0744
.0600  .1156 .2776  .2620 .1224  .0700
.0560 .1048  .2588  .2476  .1128  .0668
L0652  .1220  .2724  .2908 .1424  .0864
.0736  .1336  .2844  .2952  .1464  .0920
.0620 .1164  .2620 .2696  .1332  .0788
.0676  .1228 .2704 .2808 .1296  .0708
.0764  .1360 .2776  .2868  .1432 0840
.0640  .1144  .2500 .2584 .1200  .0660
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.05 .10 .25 .25 .10 .05
.0364 .0868 .2280 .3060 .1452 .0780
.0424 .0944 .2392 .2972 .1492 .0836
.0352 .0816 .2204 .2868 .1392 .0756
.0412 .0824 .2208 .3080 .1484 0772
.0444 .0916 .2304 .2984 .1420 .0792
.0380 .0796 .2108 .2860 .1340 .0736
.0396 .0868 .2116 .3308 .1572 .0968
.0468 .0932 .2228 .3088 .1548 .0944
.0376 .0800 .2020 .2084 .1460 .0872
.0384 .0764 .1944 .3192 .1524 .0836
.0436 .0856 .2088 .2972 .1352 .0736
.0364 .0724 .1872 .2896 .1300 .0696
.0336 .0752 .1968 .3384 .1676 .0960
.0420 .0908 .2108 .3100 .1484 .0788
.0324 .0732 .1872 .3004 .1424 .0760
.0300 .0656 .1848 .3688 .1940 .1152
.0384 .0800 .2104 .3312 .1788 .1080
.0284 .0628 .1768 .3240 .1700 .0984
.0888 L1476 .3088 .2236 .0968 .0516
.0896 .1556 .3052 .2316 .1016 .0536
.0844 .1432 .2924 .2156 .0924 .0484
.0784 .1516 .3244 .2348 .1044 .0464
.0808 .1548 .3200 .2408 .1104 .0480
.0724 .1452 .3096 .2236 .0992 .0424
.0892 .1596 .3332 .1984 .0764 .0356
.0940 .1548 .3212 .2164 .0876 .0412
.0840 .1432 .3068 .1908 .0736 .0336
.0892 .1548 .3496 .2104 .0864 .0492
.0932 .1616 .3496 .2188 .0916 .0472
.0868 .1496 .3340 .2016 .0808 .0436
L1116 L1772 .3516 .2056 .0804 .0392
.1120 .1748 .3348 .2200 .0880 .0396
.1024 .1664 .3240 .1948 .0724 .0348
.1028 .1824 .3704 .1704 .0640 .0328
.0920 .1640 .3308 .2016 .0820 .0368
.0852 .1560 .3212 .1656 .0616 .0300
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.05 .10 .25 .25 .10 .05
.0740  .1376  .2936  .2684  .1244  .0684
.0796  .1440  .2920 .2736  .1272  .0716
.0700  .1348 .2788  .2552  .1192  .0656
.0688  .1308 .2792 .2776  .1404  .0780
.0768  .1424  .2896  .2732  .1340  .0788
L0656  .1256  .2712  .2564 .1276  .0724
.0860  .1400 .2888  .2884  .1392  .0816
.0888  .1496  .2864  .2872  .1452  .0852
.0796  .1332  .2688  .2680 .1280  .0740
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