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CHAPTER I
INTRODUCTION

A well known result in statistical decision theory is that many mini-
max rules also solve related Bayes or extended Bayes problems. This paper
investigates the inverse of the above result which is that many Bayes or
extended Bayes rules solve related minimax problems. This relationship,
which does not seem to have been treated before, is an interesting one in
that it gives an "objective" justification for a Bayes rule. Because of
the similarity of this relationship to the duality principle in linear
programming it has been given here the name "duality property for Bayes
rules." A new concept called a "least favorable loss function," which shows
promise of being useful because it allows the introduction of prior infor-
mation into minimax problems, has been developed from the duality property.
The definition, structure, interpretation, and applicaﬁion of the duality
property are discussed in later chapters.

Since the proofs and discussions of this property of Bayes rules
require the notation and an understanding of statistical decision theory,
this chapter first reviews the necessary theory before introducing the con-
cept of a duality property. In addition, brief outlines of the other

chapters of this paper are presented.

Fundamental Ideas of Statistical Decision Theory

The notation and approach in this review of decision theory is taken

primarily from Ferguson [5]. The roots of decision theory can be traced



to game theory and utility theory as formulated by von Neuman and
Morgenstern [17]. Wald recognized the usefulness of game theory in
statistics; did research on this subject from 1939 to 1951, [18], [19],
[20], [21], and [22]; and published a book containing his results [23]
in 1950. Some of Wald's work was amplified in the text by Blackwell
and Girshick [1l] and in the text by Weiss [24]. Savage [14] employed
the utility theory formulated by von Neuman and Morgenstern [17] and the
personalistic definition of probability to justify and strengthen the
decision theory approach to statistics. A later important work in
decision theory and Bayesian statistics is by Raiffa and Schlaifer [12].
A sampling of the research that supported the above texts is reported
in [2], [31, [4], [el, [71, [8], [10], [11l], and [16].

The elements of game theory for a game in which nature takes the

role of one of the players and the statistician takes the role of the

other player are:

1. A non-empty set, 0, of possible states of nature,
referred to as the parameter space (space of actions

for nature).

2. A non-empty set, A, of actions available to the

statistician.

3. A loss function, L(8, a), a real valued function
with 6 in © and a in A [for this paper L(6, a) > 0].
The statistician's loss, or payoff, is L(6, a) when

his action is @ and nature's action is 6.

The game is for nature to choose a 6 in 0 (8§ is then said to be the "true
state of nature"); and the statistician, without knowledge of nature's
choice, is to select an action a4 in A. The game then terminates with the

statistician losing an amount L(86, a). Thus, the game is described by



the triplet (O, A, ). A very readable and entertaining introduction to
the theory of games is contained in [25].

Statistical decision theory alters game theory by introducing an
experiment that the statistician can use to gain knowledge about 6, the
true state of nature. In other words, the game is defined as in game
theory but with the statistician choosing an action without being totally
ignorant about nature's choice of 6. Therefore, a statistical decision
problem is defined to be a game (0, A, L) coupled with an experiment
involving a sample space X, a random variable X (with outcome x in X)
whose distribution function F(x|9) depends on the state 6 in 0 chosen
by nature. It should be noted that X, 4, and 6 might be vectors or even
of a more general nature.

On the basis of the outcome of the experiment, x, the statistician
chooses an action §(x). The function §, which maps X onto A is a non-
randomized decision rule or elementary strategy for the statistician. The
loss incurred by the statistician due to his use of § is hence a random‘
variable. The expectation of this loss as a function of 6 is termed the

"risk function," R(8, §), where

R(6, 8) = E[L(6, §)] =j L(9, §)dF(x|6)
X

In all the following work only non-randomized decision rules whose risk
functions exist are considered and the prefix "non-randomized" is dropped
in all further discussion.

The risk function is the sole criteria used by the statistician to
select decision rules. This use of the risk function is justified by

utility theory in [17], also see, for example, the discussions in {5] and



[12]. The ideal decision rule would be one with uniformly minimum risk
for all 6 in 0. However, since such an ideal decision rule does not
exist in general, other criteria for ranking decision rules must be con-

sidered.

Complete, Minimal Complete, and Admissible Classes

To aid in the explanation of procedures for ranking decision rules

the following definitions are made:

A decision rule 61 is said to be "as good as" a rule 62

if R(6, 61) < R(H, 62) for all 6 in 0.

A decision rule 61 is said to be "better than" a rule 62
if R(8, 61) < R(8, 62) for all 6 in 06, and R(6, 61) <
R(6, 62) for at least one 6 in 0.

A decision rule 61 is said to be "risk equivalent" to 62

if R(6, Gl) = R(86, 62) for all 6 in 0.

One method of partially ranking decisions rules is to separate them‘
into two sets —-- one being a set of rules anyone of which would be
"acceptable" and the other being a set of “unacceptable; rules. One such
set of acceptable rules is given by the definition of a "complete class"

as follows:

Let D be the set of all decision rules and C a subset. of
D, then C is said to be a "complete class" if given any
rule § in D not in C there exists a rule 60 in C that is

better than §.

If the statistician could find a complete class then he would select a
decision rule in C in preference to a rule not in C. It should be noted
that a complete class always exists since D, the set of decision rules,

itself is a complete class.



Rather than choosing a decision rule from just any complete class,
the statistician would prefer to identify and select a rule from the

smallest set or from the "minimal complete" class which is defined as:

A class C of decision rules is said to be "minimal complete"

if C is complete and if no proper subclass of C is complete.

For some problems every complete class if infinite and a minimal complete

class will not exist.

Another important concept is the one of "admissibility":

A decision rule § is said to be "admissible" if there
exists no rule better than §. The set of all admissible

rules is called an "admissible class" of decision rules.

Admissible rules do not always exist, but if they do exist and can be
identified, then the class of all admissible rules is a set of acceptable
rules from which the statistician can choose. The class of all admissible
rules, A, and a complete class of rules, C, are related in that ACC. 1In
addition, if a minimal complete class exists, it consists of exactly the

admissible rules (Theorem 1, pg. 56 of Ferguson [5]).

The Bayes Principle

The complete and admissible concepts are methods of identifying sets
of acceptable decision rules from which the statistician can choose. Un-
fortunately these concepts do not produce a full ranking (i.e., a linear
ordering) of rules within the complete or admissible classes to provide
the statistician with definite advice about which decision rule to select.
The Bayes principle, which does produce such a full ranking among all de-

cision rules, provides a criterion by which the statistician can identify



an optimal rule. The Bayes principle introduces the notion of a distri-
bution called a "prior distribution," on 0, the parameter space. The
Bayes risk, r(G, &§), of a rule § with respect to the prior distribution,

G(8), is then defined as:
r(G, §) = E IR(6, §)] = j' R(8, 6)dG(6) .
C]

The prior distribution need not be interpreted as the distribution of the
random variable 6 for the Bayes principle to be useful. 2An alternate and
in some instances more appealing interpretation of the prior distribution
is that it is just a normalized risk weighting function (which, in some
cases, may be derived from information known about 6 prior to the experi-
ment). Regardless of the interpretation for the prior distribution the
Bayes risk is used to rank competing decision rules. A "Bayes rule" is

defined as:

A decision rule §* is said to be a "Bayes rule" with re-

pect to the prior distribution G(98) if
r(G, &*) = inf r(G, §) .
8
If more than one rule is Bayes, then, any admissible Bayes rule is selected
(if a Bayes rule is unique it will necessarily be admissible). In some
instances the Bayes rule may not exist, in which case the statistician might

select an "e-Bayes rule" which is defined as:

A decision rule §* is said to be an e-Bayes rule with respect to the

prior distribution G(6) if for € > O

r(G, &*) < inf r(G, §) + ¢ .
§

The statistician might prefer a stronger rule (if it exists) such as an



"extended Bayes rule" which is:

If &* is an e-Bayes rule for every e > O then &% ig @ -

said to be "extended Bayes."

The Minimax Principle

Another method for ranking decision rules is the minimax principle
which uses the quantity sup R(6, §) as a figure of merit. A "minimax
5 :

rule" is defined as follows:
A decision rule §* is said to be a "minimax rule" if
sup R(6, §*) = inf sup R(6, §) .
6 § §]

The derivation of the name "minimax" can be seen if min and max are sub-
stituted for inf and sup in the above definition. A minimax rule may

not be unique. In fact, if the supremum of the risk function is infinite
for all decision rules, then every rule is by definition a minimax rule.
Just as a Bayes rule may not exist a minimax rule may not exist for a
particular problem, leading to the definition of e-minimax and extended
minimax rules similar in spirit to the definitions of e-Bayes and extended
Bayes rules. In cases of non-uniqueness any admissible minimax rule is

selected. A unique minimax rule is necessarily admissible.

Relationship Between Bayes and Minimax Rules

In many problems minimax rules are related to Bayes rules in that
a minimax rule is also a Bayes rule for some prior distribution. The
prior distribution for which a minimax rule is also a Bayes rule is called
a "least favorable distribution." For many other problems minimax rules
are also éxtended Bayes rules. The condition for minimax rules to be

either Bayes or extended Bayes rules is that



sup inf r(t, §) = inf sup r(t, §)
T § ) T

as given in pg. 57 of [5], (the minimax theorem). The underlying conditions
for the minimax theorem to hold were derived by Wald in [20] and these
conditions are satisfied by a large number of practical decision theory
problems.

An extremely useful theorem (see [20] for a formal proof) providing
a method for finding minimax rules, for many statistical decision theory

problems is the following

Theorem: A Bayes rule or extended Bayes rule §* with constant risk,

R(6, 6*) = k, is a minimax rule.
We have one final definition:

Any Bayes rule with constant risk is called an "equalizer

rule."

A Duality Property for Bayes Rules

The above text discussed the Bayes principle witﬁout any mention of
the criticism which has been voiced to this approach. The principle
criticism centers on the prior distribution which the critics claim is
based on subjective judgements. It is said that the Bayes principle is
not as objective as classical procedures. Although more serious doubts
about the objectivity of some of the classical procedures have been
expressed, the taint of non-objectivity still hinders the full acceptance
of the Bayes principle as a useful statistical tool. Therefore, any
results which provide some "objective" justification for the Bayes principle

would be‘important additions to this area of statistics. One application



of the duality property for Bayes rules, as discussed in the following
paragraphs, provides one such "objective" justification for the Bayes
principle.

The relation that many minimax rules are also the solution for a
Bayes or an extended Bayes problem with a least favorable prior distri-
bution has been discussed above. This paper reports on some research on
an investigation of the inverse to the above relationship. That is:
is a Bayes rule (or extended Bayes rule) also the solution of a related
minimax problem? This research, reported in Chapter II, shows that indeed
a Bayes rule or extended Bayes rule (with modest restrictions on its risk
function) for a given loss function, sample distribution and prior distri-
bution is also the solution to a minimax problem with the same sample
distribution, but with a different (but related) loss function.

The related minimax problem for which the Bayes rule is also a solu-
tion is called the "dual problem" in the following discussion. The result
that Bayes rules are solutions to both an original Bayes problem and a
dual minimax problem is similar to the duality principle that has proven
so useful in linear programming. Therefore, this dual problem result for
Bayes rules is called a "duality property." One of the most important re-
sults of the duality property is that it provides an additional justifica-
tion for the Bayes principle. As can be seen in the next chapter, the
dual and original problems are fundamentally different problems and not
simply restatements of the same problem. Therefore, a Bayes rule is a
solution of a different problem, which does not depend upon a prior dis-
tribution, and which may be as important as the original problem. Thus,
the duality property is an additional and "cbjective" justification for
application of the Bayes principle which is an important result for the

reasons discussed earlier.
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Other results of the duality property can be obtained through
interpretation and application of the dual problem as is done in
Chapte; III. The natural application of the duality property is as a
procedure for finding minimax rules. However, the most useful application
of the duality property might well result from the fact that the Bayes
rule is an equalizer rule for the dual minimax problem. One interpretation
of this result is that the new loss function for the dual problem is a
"least favorable loss function" that plays an analogous role to a least
favorable distribution. The concept of a least favorable loss function,
which is thought to be new, has the potential of being a valuable tool
in engineering design problems where prior information is available as
is illustrated in Chapter III. A collection of least favorable loss
functions and their associated minimax rules for several well known prob-

lems are included in Chapter 1IV.



CHAPTER II
PROOF AND STRUCTURE OF THE DUALITY PROPERTY

The first chapter introduced the concept of a duality property for
Bayes rules. This chapter defines this duality property more completely
and proves a theorem containing a set of sufficient conditions for a
rule to possess the duality property. An investigation of the structure

of the dual minimax problem is also made in this chapter.

Definition of the Duality Property

The duality property for Bayes rules of this paper is defined in
terms of decision theory problems, Bayes problems and minimax problems.
Therefore, a shorthand notation for these problems will be introduced
first to facilitate further discussion. A "decision problem" will be

designated by the symbols D(L, F) and is defined as:

A decision problem "D(L, F)" is to select a decision rule
§* when the loss function is L(6, 8) with 6 in © and the

sample distribution is F(x|6) with x in X.

A "Bayes problem" will be designated by the symbols B(L, F, G) and is

defined as

A Bayes problem "B(L, F, G)" is a decision problem D(L, F)

in which an optimum rule §* is any rule such that
r(G, &8*) = inf r(G, §)
8
for the designated prior distribution G(8).

11
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An "extended Bayes problem" will be designated by the symbols EB(L, F, G)

and is defined as:

An extended Bayes problem "EB(L, F, G)" is a decision
problem D(L, F) in which an optimum rule §* is an

extended Bayes rule.

A minimax problem is designated by the symbol M(L, F) and is defined as:

A minimax problem "M(L, F)" is a decision procblem D(L, F)

in which an optimum rule is any rule for which

sup R(6, &§*) = inf sup R(6, §) .
0 § 0

In any discussion about two or more of these problems we assume @
and A are the same and hence have not been included in the notation. (A
more general notation, for example, would have D(6, A, L, F) instead of
D(L, F).)

The duality property of this paper is defined to be:

let &§* be a Bayes rule for the problem B(L, F, G) or an
extended Bayes rule for the problem EB(L, F, G). Then
§* is said to possess the "duality property" if §* is a
minimax rule for the minimax problem M(L*, F) where L¥*

is some loss function.

In the following discussion the Bayes or extended Bayes problem of this
definition will be referred to as the "original problem" while the mini-

max problem of the definition will be called the "dual problem." Other
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useful duality properties might also be defined but the above definition
will be used exclusively in the following work. The duality property
theorem in the next paragraph gives a set of sufficient conditions for

Bayes or extended Bayes rule to possess the duality property.

Duality Property Theorem

Theorem: Let §* be a Bayes rule [or an extended Bayes rule] for the Bayes
problem B(L, F, G) [or for the extended Bayes problem EB(L, F, G)].

Then §* possesses the duality property, that is §* is a solution of

the problem M(L*, F), if

1. X and 0 are the real line;

2. R(6, 6*) > O for all 6 in 0O;

3. R(B, &§*) is bounded on every interval of 0;
4. r(G, §*) exists and is finite;

5. L*(8, §) = L(6, 8§)/R(B, §*).

Proof: First it is proven that H(6), where

R(t, &%)

H(B) (G, §%)

dG(t)
_is a distribution function. From the definitions of r(G, §*), G(6) and the
fact that R(t, §*) is strictly positive, it is easy to see that (i) 1lim
f > ~x
H(6) = 0, (ii) 1lim H(B) = 1, and (iii) H(a) - H(b) > 0 for all a > b in
0 > =
0.
To complete the proof that H(f) is a distribution function it is necessary

to show (iv) that H(9) is continuous on the right at every point eo in 9,

or that for all h > 0
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lim [H(®, + h) - H(6,)] =0 ,
0 0
h-=>0
ox
eo+h
1lim MdG(t) =0,
r(G, &%)
h~-+20 5
0

and since R(t,8%*) is bounded in the interval (60,60+h) where M is the
upper bound

+
60 h

lim —_— dg(t) | =0
*
} 0 r(G, &%)

14

or

lim [m)— (G(O +h) - G(eo))] =

h-+0

and since G(t) is a distribution function this is a valid expression.
Therefore, H(0) is continuous on the right and is a distribution function.

The next step is to show that if §* is a Bayes rule for the original
problem B(L, F, G) then §* is a Bayes rule for the problem B(L/R(S, §*),
F, H), where H is defined above. The Bayes risk for the problem

B(L/R(8, 8*), F, H) is r*(H, §) where

r* (H, 6) =j j ;Eg gl) aF (x| 0) aH (8)

L(6, &) R(B, &%)
I J R(8, 6%) 6*) aF (x]0) gty 4G (O)
=___L__IJL(9 §) dF (x| 6)ac(e)
r(.G: G*) @ X 7 ). _‘

1
—«Ea—)fe R(8, 9 as(®
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or

_ x(G, 9)

r*(H, 8) = T ey

and we want to choose § to minimize r*(H, ). It should be recognized
that r(G, 6*) in the expression for r*(H, §) is a constant and that since
§* minimizes r(G, §) it must also minimize r*(H, §). Therefore,

r*(H, 8*) = inf r*(H, §)
$

which is the desired result.

The final step in the proof is to show that §* yields constant
risk for the dual problem M(L/R(e, §*), F). The risk for the rule §%*,

R* (6, 6*), in the dual problem is

R*(6, &%)

L(g, §%)
J;(R(e, 5% I (x|8)

_ R(8, %) _
R(6, 6%)

[

which is the result needed.

In summary, the Bayes rule, §*, for the original problem B(L, F, G)
is an equalizer Bayes rule for the problem B(L/R(e, §*), F, H) and is
therefore a minimax rule for the dual problem M(L/R(e, §*), F) as required
to complete the proof of this part of the theorem.

Now suppose §* is an extended Bayes rule. Then for €, > 0 there

exists a prior distribution Go(e) such that

* i .
r(GO, §*) < 1gf r(Gy, 8) + g4 -

As before, r(GO, §*) is a known constant. Therefore, for every &€ > 0 there
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exists an € > 0 such that € = ei/r(GO, §*) and

r(Gy, &%) < inf x(G,, &) + ¢

0
8

1

since &* is an extended Bayes rule. Now consider

R(6, &*)

HO(G) = r(Go' )

dGO(e)

—00

and the problem EB(L/R(S, §*), F, HO) with Bayes risk

r(GO, 5)
* L= ee—————
r (Ho, §) (G 5% -
0
Therefore,
inf r(G., §)
s 0
inf r*(HO, §) + ¢ = + €
S r(Go, §*)

but from above

3 * -
inf r(G,, §) > r(G,, 8*) - ¢

s 1
and € = el/r(Go, §*) so
r(G,, §*) - ¢ €
0 1 1
inf r*(H_ , §) + e > r + *
s 0 r(GOI §¥) r(GOI §*)
§ r(GOI 5*)
- r(GOI (S*)
and this means that
inf r*(Hy, §) +e > r*(Hy, &%) .

8
Therefore, ¢* is an extended Bayes rule as well as an equalizer rule for

the problem, EB(L/R(e, §*), F, HO) and is consequently a minimax rule for
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the dual problem M(L/R(G, §*), F). This result completes the proof of

the theorem.

Structure of the Dual Problem

The dual minimax problem was constructed from the original Bayes
problem. The structure of the dual problem will be examined in more de-
tail with respect to the structure of the original problem. In particular,
it is shown in the following that if A is the class of all admissible
rules for the original problem then A is also the class of all admissible
rules for the dual problem. In a similar way it is shown that if C is a
complete class of decision rules for the original problem then C is also
a complete class for the dual problem. Since the two problems are equiv-
alent in these important properties, it is natural to inquire if the
application of the Bayes principle in the original problem and the mini-
max principle in the dual problem produce the same ranking of decision
rules. If the ranking were the same, it could then be said that for all
practical purposes the dual problem is simply a restatement of the original
problem. The answer to this ranking inquiry is given in the following
text by an example involving two rules 61 and 62 in which 51 is the pre-
ferred rule in the original Bayes problem and 62 is the preferred rule in
the dual minimax problem. In other words, the dual problem, although
similar to the original problem in several important properties, is not
simply a restatement of the original Bayes problem.

Consider first a complete class structure theorem for the dual prob-

lem as follows:

Theorem: ILet Cl be any complete class for the original problem , then Cl

is a complete class for the dual problem. Let C2 be any complete

class for the dual problem, then C_ is a complete class for the. original

2

Problem.
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Proof: The proof of both parts to the theorem is by contradiction. Suppose
Cl is any complete class of decision rules for the original problem D(L, F).
Suppose Cl is not a complete class for the dual problem D(L/R(e, 8*), F).

This means there exists a 61, not in Cl’ such that if R*(0, §) is the risk

function for the dual problem then
R* (9, 61) < R¥(0, §'")

for some §' in Cl and all 6 in @, and

R¥(8', §;) < R*(8', &)

for some §' in Cl and 6' in 0. But these inequalities can be expressed in

terms of the risk for the original problem as

R(®, §)/R(8, &%) < R(®, &')/R(6, &%)

and
R(O', 51)/R(6', §*) < R(6', 6')/R(6', &%)
and multiplying each side of both inequalities by R(6', §*) yields

R(8, ;) < R(8, 8")

R(6', 61) < R(B', &")

which says that 61 is also better than §' for the original problem. But

this contradicts the assumption that C. was a complete class. Therefore,

1
if Cl is any complete class for original problem it is also a complete
class for the dual problem. 1In a similar way (by retracing the above steps)

it can be shown that if C2 is any complete clasé for the dual problem

D(L/R(O, §*), F) then it is also a complete class for the original problem
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D(L, F). This then completes the proof of the theorem.
The next consideration is an admissibility theorem that shows that

the original and dual problems have the same class of admissible rules.

Theorem: Let Al be the class of admissible rules for the original problem

D(L, F) and A2 be the class of admissible rules for the dual problem

D(L/R(6, §*), F) then A, = A,.

Proof:  First, it is shown that A, is a subclass of A_, then that A, is a

1 2 2

subclass of Al and as a consequence of these two relationships Al = A2'
The proof is by contradiction and is similar to the proof of the complete
class theorem above. Suppose Al is not a subclass of A2. This means that

for any §' in Al there exists a 51 and 8' such that if R*(6, §) is the risk

for the dual problem then
R* (8, Gl) < R*¥(9, &")
for all 6 in 0, and
R*(g', 61) < R*(p', &")

which (when operated upon as in the proof of the above complete class

theorem) leads to

R(6, 61) < R(6, 8'")
for all 6 in 9, and

R(6', &,) < R(8', §")

which implies that 61 is better than §' for the original problem and this

contradicts the assumption that Al is the class of admissible rules for

the original problem.
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b

o=+

§* =

K

+ N[

1
) =10 (2x + 1)
4

N
+

and the risk is
1 .
R(6, 8*) = — [1 + 12 6(1 - 6)1]

100

now consider the rules (estimators)

which yield risks and Bayes risks of

R(6, 61) r (G, 81)

36 !

1 1
R(8, 62) Z-e(l -98) , r(G, 62) .

Therefore, 61 is preferred to 62 in the original Bayes problem because 51

has the smaller Bayes risk.

For the dual minimax problem the risk function becomes

1 100
* = —
RE(8, 6)) = 3¢ (1 ¥ 1z 6(1-6))
with

100

max {R*(e, Gl)} = 6

6

R* (0, 62) =

o=

100
61 - e)<1 + 12 e(l—e))

now to determine max R*(8, 6,) let x = 6(1 - 0); which means 0 < x <
0

|

; then



100 X
* =
R* (8, 62) 4 (l + l2x>

*
drR* (9, 62) 100 {1 + 12x - 12x) _ 100 1 )

dx 4\ 1+ 1232 4\ 1+ 1252

1 .
which is not O for any x such that 0 < x < 7 Therefore the maximum of
R* (0, 52) must occur on a boundary point and since R* (0, 52) = 0, the

. 1 .
maximum must occur when x = Z—or 0 = %-Whlch means that

100 _ 100 _ 100
T 4+16 64

max R* (0, 52) = 5
0 4(1 + 12/4)

and

max R*(6, &§.) > max R*(0, &)
0 1 0 2

and 62 is preferred to 61 in the dual problem of this example.

The conclusion can be drawn that although the two problems are equiv-

alent with respect to admissihility and complete class concepts as well as

having a common optimum solution, they are not totally equivalent in a
practical sense because they do not necessarily provide the same ranking

of rules as was shown in the above example.



CHAPTER III
INTERPRETATION AND APPLICATION OF THE DUALITY PROPERTY

The duality property for Bayes rules is similar to the duality prin-
ciple of linear programming in many respects (see [15] for an explanation
of linear programming). The duality principle plays an important role in
linear programming problems, for example, it reduces the computational
requirements to solve linear programming problems through application of
the primal-dual algorithm. 1In addition, in some problems the dual problem
has been interpreted to be as significant as the primal problem. As an
example, in economics problems the primary variables might be interpreted
as unit costs with the objective of the primal problem being to minimize
total costs. The dual problem in this instance has unit prices as variables
with the objective of maximizing total profit.

If a similar important interpretation of the duality property for
Bayes rules could be made, then the significance of this property would
be greatly enhanced. Unfortunately, research has revealed no simple uni-
versally recognizable interpretation of the duality property similar to
the cost-price duality relationship of linear programming. However,
several interpretations and applications have been made and are recorded
in the following text.

First, and most importantly, the duality property provides an
"objective" justification for Bayes rules. Applications of the duality

property to problems with indefinite loss functions are presented. A

23
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new concept called "least favorable loss function" which can be used to
introduce prior information into minimax problems is developed. The
"least favorable loss function" concept appears to be different from the
G-minimax idea which also considers prior information. Finally, the
application of the duality property as a technique for finding minimax

rules is illustrated by several examples.

An "Objective" Justification for Bayes Rules

The most straight forward and important interpretation of the duality

property is to view it simply as an additional property of Bayes rules.
The fact that many Bayes (or extended Bayes) rules also solve a dual prob-
lem provides an additional and "objective" justification for using the
Bayes rules. This justification is important because Bayes rules have not
gained universal acceptance due to the criticism that they are not "objectiwve."
The argument is that the prior distribution is based upon subjective judge-
ments and for this reason Bayes rules are not "objective." This type of
argument is very common and we need not document it extensively here. We
will just guote Kempthorne who in [9] made the followiné statement:

"It would be wonderful (perhaps) if one could get

a Bayesian type of answer without the total arbi-

trariness of the Bayesian arguments."”
The duality property provides an answer of sorts to this request because
many Bayes rules are also solutions to dual minimax problems which do not
depend upon an "arbitrary" prior distribution.

The Bayes rule of the original problem is a minimax rule for the

dual problem which has a modified loss function. A minimax rule can be
thought of as protecting against the worst case. A worst case design
criteria is popular in engineering, therefore, this justification for

Bayes rules may appeal to engineers.
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In addition to being a minimax rule for the dual problem the original
Bayes rule is also an equalizer rule for the dual problem. The appeal of
an equalizer rule is that it protects against error equally for all values
of 6. This equal protection in the dual problem with a modified loss function
should also appeal to engineers because it also represents a worst case
viewpoint together with the equal protection property.

Another point that should not be overlooked is that if the original
Bayes rule is admissible in the original problem then it is also admissible
in the dual problem (as was proven in Chapter II). There is a wide set of
conditions under which Bayes rules are admissible (see pages 60, 61, 62,
and 69 of [5]). Therefore in many cases the original Bayes rule is likely
to be an admissible rule for the dual problem.

From this discussion it can be seen that the original Bayes rule is
an equalizer, minimax rule that in many instances is admissible for the
dual problem. These are strong attributes for this decision rule and they

enhance the "objective" justification provided by the duality property.

Applications to Problems with Indefinite Loss Functions

In many decision theory problems a great deal of work is expended
in developing definite loss functions related only to that problem. 1In
many other problems the loss functions are selected with much less thought
and are therefore of an indefinite nature. Modifications to these indefinite
loss functions should be viewed without alarm and accepted if they are
interpretable and useful. The duality property suggests that the statis-
tician, after solving for the Bayes (or extended Bayes) rule in a problem
with an indefinite loss function, should also egamine the dual problem
to determine if it can be interpreted and explained to strengthen the case

for the Bayes rule he has found.
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There are three types of loss functions commonly used in estimation

problems:

Il

L (8, 8) = (8-6)°

L,®, 8) = |6-8]

Ly®, §) =0 if [8-8] < c

1 if 68| >c

The following examples, each based on one of the above indefinite loss
functions in the original problem, show that the modified loss function in
the dual problem can be just as meaningful as the original loss function
in some instances.

The first example is to find a Bayes estimator for the parameter, 6,
in the Poisson distribution with a sample of size 1, loss function L(8, §)
= (6-6)2, and a gamma prior distribution with parameters (5, .1l). The

‘distribution functions are: x = value of the observation

X e—eei
F(x|0) = ) T if x =0, 1, s+
i=0
& .1 -5t -.9
5 .
G(8) = S ———%T-I§——— dt ife>0 .

The posterior distribution in this case is

0 x+.1 x-.9
6 t -6t .
K(8]x) -s e, e 4t if e8>0
Q
. . . . 2,
The Bayes estimator in this problem where the loss is L(6, §) = (6-68) is

the mean of K(e!x) (see page 46 of [5]). Therefore, §* the Bayes rule
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_ 36 (6-5)°

25 e2

L* (8, §)

The constant multiplier %g-in this loss function does not influence the

choice of §. Therefore, the dual problem for all practical purposes can

be said to have the loss function

(6-8) >
92

L*(6, §) =

This loss function is the square of the percentage loss which is another

x+.1

much used loss function. Therefore, &% = solves a dual minimax prob-

lem which is just as meaningful as the original Bayes problem for which it
is also a solution.

Another problem that illustrates this application of the duality
property is as follows. The problem is to find the Bayes estimator for ©

in the uniform distribution with one ocbservation when

X
F(xle) = s %-dt , 0 <x< 8
0
L(e, §) = |6-6]
° 1
G(p) = ot

S 100te ~ -dt
0

The Bayes rule, §*, for this problem is
§* = x - .1 In(.5) = x + .069315 .

And, the risk for this rule is

R(B, &*) = 5%‘[(6 - .069315)2 + .005]
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This means that the modified loss function for the dual problem, L*(6, §),

is

26| =6 |
L*(6, §) =

(6-—.069315)2 + .005

and that except for small 6's, L*(6, §) is approximately

26| 6-6]
L*(6, &) = —— ’
14 62
or
2| 6-6]
L*(6, §) = Ea— ;

And, L*(96, §) is approximately twice the percentage loss. This means that
§* is a rule that for all practical purposes minimizes the maximum mean
percentage loss. In addition, the percentage loss is just as meaningful a
loss function as the absolute error loss function of the original problem.
The modified loss function in the next example is not immediately
interpretable and its meaning is questionable. The proﬁlem is to find the
Bayes estimator for 6, the mean of a normal distribution with unit var-

iance, from one observation where

- -;-(t—e)2
F(x|6) =] —e ac ,
Y21
-0
L(8, 8) =0 if |e-8| <1
=1 if |6-8] > 1,
0 _%tz
G(6) = — at .

1
e
Y21

=00
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The Bayes rule, § *, for this problem is

§*% =

(ST

The risk function for §* is

RO, §%) =1 - ¢(06+2) + ¢ (6-2)

where ¢ (+) is the standard normal distribution in this instance the modi-

fied loss function, L*(6, §), becomes

L*(6, §)

it

0 if |e-§] <1

1

1/11 - ¢(6+2) + ¢(6-2)1 if |6-§| > 1 .

It is not immediately apparent that this loss function has inherent meaning
and the statistician would have to make an intensive numerical investigation
of L*¥(0, §) to. see if it was at all relevant to the prablem at hand. This
example has been included to show the form of the modified loss function

when the original loss function is

L(6, §) =0 if |6-8] < c

1 if |6-8] > ¢ .

In addition, the example illustrates the fact that additional work might
be required to interpret the modified loss function.

It can be concluded from these examples that after a Bayes (or extended
Bayes) problem has been solved then it is well worth the effort to examine
the dual problem to see if this problem will enhance the value of the Bayes

rule.
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Least Favorable Loss Function

One interpretation of the duality property is that the loss function
in the dual minimax problem plays a role similar to that of the least
favorable distribution used in constructing many minimax rules. Therefore,
the new loss function could be called a "least favorable loss function" as
is done in the following discussion. This new concept could be applied
in the following way. Consider a problem in which there were some control
over the selection of the loss function or some uncertainty as to the
appropriate loss function and a constant risk rule is required. The duality
property allows the selection of both a least favorable loss function and
an associated minimax rule in parametric form. These parameters can be
selected to introduce prior information into the problem.

One practical example where a least favorable loss function approach
might be useful is in the design of electronic sensing equipment. Suppose
the objective of the equipment is to provide an image of the radiation (in-
frared, radiometric,.ultraviolet, etc.) in the sensors field of view. The
radiation is converted by a linear transformation to an.electronic signal,
X, by a detector and preamplifier. Noise in the atmosphere, detector,
and amplifier are superimposed on the true signal, 6. Therefore, x is a
random variable. Suppose the distribution function for x is normal with

mean & and variance 1, that is
Fx|o) =| ——e a .
The problem now is to determine an estimate § (a function of the measurement

x) of the true signal 6. 1In this instance, there is considerable experi-

mental information available on targets of interest such as trucks, artillery,
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etc. Suppose this prior information indicates that most of the targets

of interest have values of 9 between 10 and 30 with the peak at 20. This
prior information can be introduced into the problem by the use of a least
favorable loss function L(6, &) =‘X(9)(6—6)2 where A(6) is a weighting
function to be based upon the prior information. A least favorable loss

function for this problem is:

__p?
82 + (6-a)

2
L* (6, 9) (6-3) a>0,B8>0.
The problem now is to determine o and B8 to reflect the prior information.

The weighting function

_

2

A (0)
8% + (8-0)2

is maximized when 6 = o for a fixed B. This means that in this example

o = 20. Then, since very few targets of interest will have 6 < 10, B can

be selected such that

B2
.m'b—)—=.2 , or —|/——m———=,2 , or B =5

8% + 100
which means that the weight given to signals outside the interval 10 < 6 < 30
will be less than twenty percent of the weight given to the signal at 6 = 20.
This means the system will be designed to be most sensitive in the region
that the most important targets will appear, which is the desired result.
The minimax estimate for the above least favorable loss function in this

problem with.a = 10, B = 5, is

s* = 10 + 5x
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If the sensing equipment is designed to display §*, as defined above, then
it can be said that the design is optimum in the sense that the maximum
weighted mean square risk has been minimized with the weighting function
reflecting available prior information. This example illustrates the

use of the least favorable loss function concept in concrete engineering
design terms.

Another application of this concept is in structuring the following
reliability experiment in which the prior information is quite vague. The
object of the experiment is to estimate the mean time between failure, 6,
of a particular type of equipment. The manufacturer and buyer have agreed

that a proper loss function would be of the form:
2
L(6, §) = Ax(8)(6-8)" .

They also agree that they wish to select X(8) and the estimate § to provide
a constant risk which does not favor either side. In other words they are
searching for a least favorable loss function and the related minimax rule.
Further it is agreed that three units of the equipment would be tested to

failure and the three times to failure xl, x2, x3 would be used to form
the estimator. The times to failure are assumed to be exponentially dis-

tributed with distribution function

X, t
i -

F(x,|6) = Le®at;i=1,2, 3 x. >0

i 6 i

3 Q

I =,

e

Here x = s is a sufficient statistic and therefore x is the statistic

that will be used to form the estimator. Using the duality property with

L@, §) = (6-6)2 ,
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F(x|8) = (—) te ° at , x>0

and using the inverted gamma distribution as a prior

o

o "% B(I)B+l

e o \f
G(0) = dat , 6 >0

0 I'(B)

the least favorable loss function is
(8+2) 2 - 2
L*(6, &) = (6-8)

[(6-1° + 3]6% - 2a(p-1) 6 + o

and the associated minimax rule is

* = O + X
§ 2+ 2
Now X (8), where
(g+2) >

s [e-12 + 3]6% - 2a(8-116 + o®

is a modifier of the term (6-6)2 in L*(6, 68) which shapes L* (6, §) for
different values of 6. Suppose now that both the manufacturer and buyer
are agreed that the equipment probably has a 6 on the order of 100 hours
and that ) (6) should peak at this wvalue. Also there is little chance that
6 will be 50 hours or less and it is agreed that X(6) for all 6 < 50 hours
should be less than 1/3 of the value of A(6) for 6 = 100 hours. Also, if
6 > 100 hours both parties will be equally happy. Therefore, they are
indifferent to the value of A(6) in the region in which 6 > 100 where X(6)

can assume as small a value as needed to assure that the above two re-

quirements are met. The problem now is to determine o and B so that the
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two conditions are met. A trial and error procedure was used to find
that if a = 560, 8 = 6 then the maximum of A(6) occurs at 6 = 100, and

that

A6 < 50)
X(6 = 100)

1A

1
3

These values mean that the least favorable loss function is

L* (8, §) = 36 (6-68)2

2862 - 56006 + 313,600

for which

- 560 + x

*
8 8

is the associated minimax rule.

A Procedure for Solving Minimax Problems

Some statisticians prefer to approach statistical problems from a
minimax point of view. These statisticians might intefpret the duality
property as providing another tool with which to solve minimax problems.
The following application illustrates the usefulness of the duality prop-
erty in minimax problems.

The problem is to find minimax estimators for 6, the parameter of
a Bernoulli distribution from a sample of size n; (xl, x2, see xn),

x, = 0, 1; for the following set of loss functions:

(6-6) 2

L(8, §) =
of (1-0)°

where r = 0, 1; s = 0, 1. Each of these loss functions are interpretable

and have been used previously in minimax problems of this type. To apply
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the duality property, the first step is solve a Bayes problem with loss

function
L(6, §) = (6-8)2

and a Beta prior distribution with parameters (o, B). This loss function
and prior were selected because it is known from previous work (page 91
of [5]) that the resultant risk function is of the form ae2 + b + c, with

a, b, c depending on o and 8. This means the modified loss function of

the dual problem will be of the form

(6-8)°

ab + bo6 + c

L*(6, §) =

which has at least the potential (if o and B are selected correctly) of
being one of the loss functions

2
L(p, §) = —2=8)

oF (1-0)°

0, 1; s=0, 1.

And these are the loss functions of the minimax problem outlined above.
n

For this problem x = z X, is a sufficient statistic and will therefore
i=1
be used as the sample value. This means the elements of the Bayes problem

are
[x] n i n-i
F(Xle) = 2 ;)8 (1-6) ' 0<x<n ,
i=0
0
G(6) = ?%é%%%%?’ 2 aof e , 0<coc1
and 0
Lo, 8) = (6-8)° .
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The Bayes rule (estimator) for this problem is

o+x

* =
§ o+ B+n

and the risk for &* is

2 2 , 2
R(o, %) = L8)" - nle” + [n - 2(a+p)]0 + o

(n+o+B) 2

o+x . . .
is also a minimax estimator for © when
o+B8+n

By the duality theorem §* =

the loss function is

2 2 2
L*(0, §) = RES-GQ*) _ (n+0+B) “ (6-8)

[(a+8)2 - n]G2 + [n - 20(a+B) 16 + az ’

If o and B could take on the value of 0 then the minimax problem could

be solved as follows:

(1) If a=8= !%
2

then L*(8, §) = i@.inﬂ_ (6-6) 2
which means r = 0, s = 0

vn

—2-+ X
and the minimax rule is §* = .

Vo + n

(2) 1fa=0, 8=1vn

(n + vﬁ)z ,(6—6)2
n 0

then L*(6, §)
which means r = 1, s = 0

and the minimax rule would be §' =
o+ n
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(3) Ifo=vn, B=0

then 1*(g, §) = 2% A2 (e-0)°

n 1-6
which means r = 0, s = 1
and the minimax rule would be §' = §4t—4g .
n + \/n
(4 1f 0 =0, 8 =20
2

* _ n(6-9)
then L*(6, &) = 5(1Tg)
which means r = 1, s = 1
and the minimax rule would be §' = f- .

But o > 0, and B > 0 therefore the above results in (2), (3) and (4) are
not Bayes rules. However, these rules can be shown to be extended Bayes
rules and are for this reason minimax rules for the dual problems. Thus,
(1) (2), (3) and (4) are solutions to the minimax problem posed at the
first of this section.

To illustrate the proof that these rules are exténded Bayes rules

it is shown that i:— [from (4)] is an extended Bayes rule in the following

text.

The Bayes risk for the Bayes rule, &§*, is

2
r(B, &*) = 0‘2 i[(a;*:%_'_l_ = ] (at+l) + n - a(a+8)} .
(n+o+B)  (a+B) '
The Bayes risk for the rule §' = %:— is

=1 af |
r(B, §') = _ [(a+5+1) (ot+B)] )
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Now let o = B. Then Y

. o
r(B, 6" = Sge) (2er D)
and
1) = e
r(B, ') = 2n (20+1)

Iet € > 0. An o > 0 is sought such that

r(B, §') < r(B, 6*) + ¢
or

o o
2n (20+1) ~ 2 (n+2a) (2o+1)

+ €

or

o [ 1 1 ]
v | —— - < g
2(20+1)L n n+2ad -

1 . ‘ . .
let oy = €. Then T Gatl) w11; always be a positive fraction as

. 1 1
is [.n . and therefore

% 1 1
220 +3)Ln  m2o <€
0 b

as required and §' is an extended Bayes rule.

This example illustrates the use of the duality property to find
minimax rules. Other minimax problems can be attacked in exactly the same
way. One bonus that may accompany this technique is that many Bayes rules
are also admissible and as is seen in Chapter II these rules are also
automatically admissible minimax rules in the dual problem.

These interpretations and applications of the duality property have

been presented here for two reasons. First, to indicate that there are
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reasonably important problems for which the duality property yields use-
ful results. Second, the derivations and results are intended to provide
a clarification of the duality property theorem of Chapter II. The next
chapter contains a collection of least favorable loss functions and their

associated minimax rules in hopes they prove useful.



CHAPTER IV
SOME "LEAST FAVORABLE LOSS FUNCTIONS"

Chapter III introduced the concept of a least favorable loss function
and discussed two examples illustrating their use. This chapter presents
least favorable loss functions for several well known problems for ref-
erence and to illustrate their forms. First, three least favorable loss
functions will be discussed for the problem D(L, F) where F(x|6) is the
normal distribution with unknown mean and known variance. Least favorable
loss functions for other problems are presented in a table with little
comment.

First consider the problem D(L, F) where F(xle) is normal and 02 is

known, that is

.
F(Xle) - 1 2 (X—e)
2
2m o o]
and a sample of size n is taken. Let
n
u = z X./n
i=1
then
2
g o + Bu
0% = — ' where g > O
g
— +
n B

is the minimax rule for all three of the following least favorable loss

41
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functions:
2 2
Lt (0, §) =]5——5°—}f_l~
(1+a)
k|6-6|
L;_‘(e, §) = 3
[|a| (2¢{a} - 1) + 2exp<— —:— >:|
1
L*(6, &) = if |e=§| > ¢
l—¢{a+‘/gck;+¢{a—/gckl
o o
=0 if [6-8] <c
where
a= (6-a) —=
BVh
n
k = (l + ——2— )/8
o}
and
¢{*} = cumulative standard

normal distribution function.

These three least favorable loss functions are all fof the same problem
and therefore can be compared and the one most appropriate for the problem
at hand can be used. Also these three loss functions (each of which was
derived from a different loss function L in an originalvBayes problem

B(L, F, G)) show the variation in least favorable loss functions caused

by the choice of loss function in the original Bayes problem.

Of the three loss functions‘Li(e, §) is the simplest and is the
easiest to work with. The o:iginal loss from which Li(e, §) was derived
was L(6, §) = (6—5)2. Table 1 contains least favorable loss functions and
other information for several important problems when the original loss

function is L(6, §) = (6—6)2.
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The first column of the table lists the sample distribution for
each problem considered. The least favorable loss function, as a function
of two parameters, is listed in the second column. The minimax rule,
which are also equalizer rules, for the problem M(F, L*)} is also included
in the table. The last column contains the definition of the statistic
used in the minimax rule. Note the similarity of all of the least favor-
able losses and the related minimax rules.

These least favorable loss functions have been included here to
encourage their use in the problems as outlined above. In addition, it
is hoped that this entire discussion will stimulate the application of

least favorable loss functions wherever appropriate.
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