THEMIS SIGNAL ANALYSIS STATISTICS RESEARCH PROGRAM

COMPETITIVE TWO-PERSON PERCENTILE GAME THEORY WITH
DIRECT CONSIDERATION OF PAYOFF MATRICES
by

John E. Walsh and Grace J. Kelleher

Technical Report No., 72
Department of Statistics THEMIS Contract

June 11, 1970

Research sponsored by the Office of Naval Research
Contract N00014-68-A-0515
Project NR 042-~260

Reproduction in whole or in part is permitted
for any purpose of the United States Government.

This document has been approved for public release
and sale; its :distribution is unlimited.

DEPARTMENT OF STATISTICS
‘Southern Methodist University



THEMIS SIGNAL ANALYSIS STATISTICS RESEARCH PROGRAM

COMPETITIVE TWO-PERSON PERCENTILE GAME THEORY WITH
DIRECT CONSIDERATION OF PAYOFF MATRICES
by

John E. Walsh and Grace J. Kelleher

Technical Report No., 72
Department of Statistics THEMIS Contract

June 11, 1970

Research sponsored by the Office of Naval Research
Contract N00014-68-A-0515
Project NR 042-~260

Reproduction in whole or in part is permitted
for any purpose of the United States Government.

This document has been approved for public release
and sale; its :distribution is unlimited.

DEPARTMENT OF STATISTICS
‘Southern Methodist University



INTRODUCTION AND DISCUSSION

Considered is the case of two persons who have finite numbers of
strategies and who act competitively toward each other. Separately and
independently, each player selects one of his strategies. ' The payoffs
to a player for the possible strategy combinations can be conveniently
expressed in matrix form, where the rows are his strategies and the col-
umns the strategies of the other player. Both players have knowledge of
both payoff matrices.

A player uses a mixed strategy when he assigns probabilities (that
sum to unity) to his possible strategies and randomly selects one of
them according to these probabilities. When at least one player uses a
randomly chosen strategy, the payoff to each player is a random variable.

The allowable payoffs can be of a very general nature. In fact,
some oOr ali payoff "values" need not even be numbers. For example, some
payoffs may designate categories. Also, the payoffs that are numbers need -
not be expressible in a common unit or even satisfy numerical operations.
However, consideration is restricted to situations where, within each
matrix, the payoffs can be ranked according to increasing desirability
(with equal desirability possible) separately by each player. These
rankings can be arbitrarily different and a player does not necessarily
know the rankings used by the other player. However, game solutions are
more easily interpreted when the players are in agreement on the rankings
(such as when an objectively determined ranking occurs for the payoffs of

each matrix; refs. 1 and 2 represent examples).



In many cases, the players may be satisfied with a "middle of the
road" viewpoint toward game solutions. Use of a median criterion has
this aspect. That is, both players adopt a 50-percentile criterion and,
using the rankings of payoffs, apply it to each matrix. Then, according
to his ordering, a largest desirability level Pi = Pi(1/2) occurs in the
payoff matrix for player i, (i = 1,2), such that, when acting protectively,
he can assure himself a payoff of desirability at least Pi with probabil-
ity at least 1/2. Also, according to the ordering by player i, a smallest
desirability level Pé = P3(1/2) occurs in the matrix for the other player
(called player 3j) such that player i, when acting vindictively, can assure
with probability at least 1/2 that the payoff to player j has desirability
at most Pé (to player i) . These results, in less generality and using two
slightly different methods, were initially developed in refs. 1 and 2.

For competitive behavior by the players, a median optimum solution

T

occurs for a player when, according to his rankings and the median crite-
rion, he can be simultaneously protective and vindictive. Then, the sit-
uvation is said to be one-player-median competitive (OPMC) for this player,
and can occur for him when it does not happen for Fhe other player. If
a game is OPMC for both players, it is said to be median competitive.
This material on median optimum solutions was initially given, with less
generality, in ref. 2.

There are several reasons why player i might want a percentile
criterion that differs from the median criterion. First, he may want

more, or less, assurance than is provided by use of the 50-percentile.



Second, the 50-percentile may not be achievable, in a protective and/or
a vindictive sense. That is, when acting protectively player i can
assure with probability greater than 1/2 that he receives at least Pi’
and/or when acting vindictively he can assure with probability greater
than 1/2 that player j receives at most Pé. Then, use of a percentile
exceeding the 50-percentile, rather than the 50-percentile, would seem
preferable for player i. Third, special characteristics of the payoff
matrices scmetimes can be exploited when the desirability levels of pay-
offs are of a quantitative nature. As an example, increasing the percen-
tile value substantially may not result in much change in the largest
desirability level that player i can assure himself or the smallest level
that he can impose on the other player. As another example, a small
decrease in the percentile might result in a substantial increase in the
desirability level that player i can assure himself and/or a substantial
decrease in the level that he can impose on the other player.

This paper extends the previous median results for competitive play-
ers (with direct consideration of the payoff matrices) to the case where
pPlayer i selects a percentile criterion 100ai, (i = 1,2), with 0 < o < 1.
In general, and according to his ordering, a 1argcst desirability level
occurs among the payoffs to player i such that, when acting protectively,
he can assure himself at least this level with probability at least di.
Also, according to the ordering by player i, a smallest desirability level
Pé(di) occurs in the matrix for playér j such that, when acting vindictive-
ly, player i can assure with probability at least o, that player j receives

a payoff with at most this desirability level (as ranked by player 1i).



For specified ai and competitive behavior, a game has an overall
optimum solution for player i when he can be simultaneocusly ai—protective
and ai—vindictive. A game with this property is said to be one-player-
ai—competitive (OPaiC) for player i. An optimum strategy for player i
inmloPaiC game is said to be ai-optimum for him. A game is both-player-
o1 —-og~competitive if and only if it is OPw;C for player 1 and also OPxaC
for player 2. That is, the game is @; -optimum for player 1 and also og-
optimum for player 2.

For player i acting protectively, ai has an achievable value when
player i cannot assure himself at least Pi(ai) with probability exceeding
ai. For player i acting vindictively, di has an achievable value when
player i cannot assure that player j receives at most P%(ai) with proba-
bility greater than 1/2. Identification of achievable di for OPuiC games
is discusséd later. Use of achievable di seems highly desirable.

These percentile results have the same desirable application proper-
ties that occur for the corresponding median results. That is, knowledge
of the ranking of payoffs within each matrix, and of the "values" of the
payoffs corresponding to the desirability levels Pi(ai), Pi(aj) in the
matrix for player i, (i = 1,2), is sufficient for épplication. Moreover,
the locations of payoffs with levels Pi(ai), Pi(dj) in the matrix for
player i are determined by the orderings within this matrix. This, much
of the effort that could be needed for evaluation of payoffs is avoided.
For example, suppose that each player has 500 (pure) strategies, which is
not large for nontrivial practical situations. Then, each matrix contains

250,000 payoffs. Two orderings of 280,000 payoffs and evaluation of
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several payoffs ordinarily requires a very small fraction of the effort
needed to evaluate 500,000 payoffs.

The concept of a competitive game was introduced in ref. 1. Some
extensions of this concept (for example, to individual players) are con-
sidered in this paper. Also, generation of OPdiC games by one~player
games of extended competitive types is considered.

The next section contains a statement of the results for protective
pPlayers. This is followed by a section with a statement of the results
for vindictive players. The next to last section is devoted to statement
of the results for games where an overall optimum solution exists for one
or both players. The extensions of competitive games are considered in
this section. The final section contains an outline of the basis for the

stated results.

PROTECTIVE RESULTS

Suppose that player i is acting protectively. Determination of the
payoff, or payoffs, that correspond to Pi(ai) is considered first. This
determination is based on a marking of payoffs in the matrix for player i
(according to his ranking for that matrix). That is, the position(s) in
his matrix of the payoff(s) with largest desirability level are marked
first. This marking, according to decreasing desirability level, is
contimued until the first time that player i can assure a payoff §f the
marked set with probability at least‘di. Then, Pi(di) is the desirability
level of the payoff(s) marked last. An optimum ai—protective strategy for
Player i can then be determined on the basis of the payoffs whose desira-

" bility level is at least Pi(di).
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In more detail, consider a method for determination of Pi(ai). The
cases of ai < 1/2 and ai > 1/2 are treated separately, with ai < 1/2
occurring first. The initial step consists in continuing the marking of
the matrix for player i, according to decreasing desirability level, un-
til the first time that marks in all columns are obtainable from at most
1/01i rows. Player i can always assure a marked payoff with probability
at least ai when this situation occurs. Then, remove the mark(s) for
the payoff(s) with the smallest desirability level and determine whether
a payoff of the remaining marked set can be assured with probability at
least o by player i.

To make this determination, replace the (remaining) marked payoffs
in the matrix for player i by unity and the unmarked payoffs by zero.
Consider the resulting matrix of ones and zeros to be for player i in a
zero-sum game with an expected-value basis. Player i can assure a payoff
of the marked set with probability at least o if and only if the value
of this game (to player i) is at least o, -

When player i cannot assure a payoff of the remaining marked set with
probability at least o then Pi(ai) is the desirability level of the
payoff(s) with marking(s) removed. Otherwise, remove the mark(s) for the
payoff (s) with the smallest of the remaining desirability levels and
determine whether a payoff of the resulting marked set can be assured with
probability at least ai. If not, Pi(ai) is the desirability level of the

payoff(s) with marking(s) removed last.

Otherwise (for this case of ai < 1/2), continue removing marks,
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according to smallest desirability level, until the first time a payoff
of the resulting marked set cannot be assured with probability at least
di. Then, Pi(di) is the desirability level of the payoff(s) with mark-
ing(s) removed last.

Now consider determination of Pi(di) for the case of di > 1/2.
Continue the marking, according to decreasing desirability level, until
the first time that no.less than (lﬁyi)fl columns are needed to obtain un-
marked payoffs in all rows. Player i can assure a marked payoff with proba-
bility at most di, but ordinarily near ai, when this situation occurs.

If the smallest number of columns in such a set equals (lﬂyi)_l, determine
whether a payoff of this marked set can be assured by player i with prob-
ability at least o . If the smallest number of such columns exceeds
(lﬂyi)-l, the only other possibility, also mark the position(s) of the
payoff(s) with the largest desirability level among the unmarked payoffs.

To make the determination, for both possibilities, replace the
marked payoffs by unity and the other payoffs by zero. Consider the re-
sulting matrix to be for player i in a zero-sum game with an expected-
value basis. Player i can assure a payoff of the marked set with proba-
bility at least di if and only if the game value kto him) is at least di.

If the game value is at least ai, for either possibility, Pi(ai) is
the smallest of the desirability levels for the marked payoffs. Other-
wise, also mark the position(s) of the payoff(s) with the largest desir-
ability level among the remaining unmarked payoffs and determine whether

a payoff of the marked set can be assured with probability at least di.



If so, Pi(ai) is the desirability level for the payoff(s) marked last.

Othexrwise (for this case of ai > 1/2), continue marking the positions
of the payoffs according to decreasing desirability level until the first
time that a payoff of the marked set can be assured with probability at
least o . Then, Pi(ai) is the desirébility level for the payoff(s) mark-
ed last.

Finally, consider determination of an optimum ai-protective strategy
for player i. 1In the matrix for player i, let all payoffs with desirabil-
ity level at least Pi(ai) be replaced by unity while all others are re-
rlaced by zero. Consider the resulting matrix to be for player i in a
zero-sum game with an expected-value basis. An optimum strategy for
player i in this game is an optimum ai—protective strategy for him.

VINDICTIVE RESULTS

Now suppose that player i is acting vindictively (toward player 3j).
Determination of the payoff(s) corresponding to P%(ai), in the matrix for
player j, is considered first. This determination is based on a marking
of payoffs in the matrix for player j (according to the ranking by player
i for that matrix). That is, the position(s) of the payoff(s) with
smallest desirability level are marked first. This marking, according
to increasing desirability level, is continued until the first ﬁime that
player i can assure a payoff (to player j) of the marked set with proba-
bility at least o . Then, Pé(ai) is the desirability level of the pay--
off (s) marked last.

First, consider detailed determination of Pa(ai) for the case of
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di < 1/2. The initial step is to continue marking of the payoff matrix
for player j, according to increasing desirability level, until the first
time that marks in all rows are obtainable from at most 1/di columns.
Player i can assure a marked payoff with probability at least di when
this situation occurs. Then remove the mark(s) for the payoff(s) with
the largest desirability level and determine whether player i can assure
a payoff of the remaining marked set with érobability at least di.

To make this determination, replace the marked payoffs by zero and
the unmarked payoffs by unity. Consider the resulting matrix to be for
player j in a zero-sum game with an expected-value basis. Player i can
assure a payoff of the marked set with probability at least di if and
only if the value of this game, to player j, is at most di.

When player i cannot assure a payoff of the remaining marked set
with probability at least di, then Pé(di) is the desirability level of
the payoff(s) with marking(s) removed. Otherwise, remove the mark(s)
for the payoff(s) with the largest of the remaining desirability levels
and determine whether player i can assure a payoff of the remaining set
with probability at least o, . If not, Pé(di) is tpe desirability level
of the_payoff(s) with marking(s) removed last. Otherwise (for this case
of di < 1/2), continue removing marks, according to largest desirability
level, until the first time that player i cannot assure a payoff of the
resulting marked set with probability at least di. Then, Pé(di) is the
desirability level of the payoff(s) with marking(s) removed last.

Next, consider determination of P%(ai) for the case of di > 1/2.
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Continue the marking (of the matrix for player j), according to increas-
ing desirability level, until the first time that.no.less than (l-a,) 1 rows
are needed to obtain unmarked payoffs in all columns,'éPlayer:i can-assure
a marked value with probability at most o but usually near o when
this situation occurs. If the smallest number of rows in such a set
equals (l-ai)'l, determine whether player i can assure a payoff (to
player j) of the marked set with probability at least di. If the small-
est number of such rows exceeds (l—di)—l, the other possibility, also
mark the position(s) of the payoff(s) with the smallest desirability
level among the unmarked payoffs.

To make the determination, for both possibilities, replace the
marked payoffs by zero and the unmarked payoffs by unity. The resulting
matrix is considered to be for player j in a zero-sum game with an ex-
pected-value basis. Player i1 can assure a payoff (to player j) of the
marked set with probability at least o, if and only if the value of the
game, to player j, is at most di.

If the game value is at most di, for either possibility, Pé(ai) is
the largest of the desirability levels for the marked payoffs. Other-
wise, also mark the position(s) of the payoff(s) Qith the smallest desir-~
ability level among the remaining unmarked payoffs and determine whether
player i can assure a payoff of the unmarked set with probability at
least o . if so, Pé(di) is the largest of the desirability levels for
the payoffs in the resulting marked set. Otherwise (for this case of

di > 1/2), continue marking the positions of the payoffs according to



increasing desirability level until the first time that player i can
assure a payoff of the marked set with probability at least ai. Then,
Pg(ai) is the desirability level for the payoff(s) marked last (and

the largest of the desirability levels for the payoffs in the resulting
marked set).

Finally, consider determination of an optimum ai—vindictive strategy
for player i. In the payoff matrix for player j, let all payoffs with
desirability level at most Pa(di) be replaced by zero and all others
replaced by unity. The resulting matrix is considered to be for player
j in a zero-sum game with an expected-value basis. An optimum strategy
for player i in this game is an optimum ai—vindictive strategy for him.

OVERALL OPTIMUM SOLUTIONS

iThe results for OPdiC games are stated first. Then, competitive
games, extensions of the concept of competitive games, and generation of
OPuiC games are considered.

A pair of payoffs, one to each player, occurs for every possible
combination of a (pure) strategy for each player. These pairs of payoffs
are the possible ocutcomes for the game.

Let si(di) consist of those cutcomes where tﬁe desirability level of
the payoff to player i is at least Pi(ai) and also the desirability level
of the payoff to player j is at most Pﬁ(ai)' A game is OPaiC for player
i if and only if he can assure an outcome of si(di) with probability at
least di.

To determine whether a game is OPaiC for player i, first mark the
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positions in his matrix of the outcomes in si(di). Then replace the
marked positions by unity and the unmarked positions by zero. Consider
the resulting matrix of ones and zeros to be for player i in a zero-
sum game with an expected-value basis. The game is OPaiC for player i
if and only if the value of this game (to him) is at least di.

When the value of the zero-sum game is at least di, an optimum
strategy for player i in this game is an di-optimum strategy for player i.

A valge of di is achievable for a game that is OPaiC for player i
if and only if player i cannot assure an outcome of si(di) with probabil-
ity greater than di. That is, player i can assure an outcome of si(ai)
with probability at least o, but not exceeding di.

Now, consider competitive games and some extensions. A game is one-
pPlayer-competitive for player i if and only if the possible ocutcomes can
be arranged in a sequence so that, according to the rankings by player i,
the desirability level of the payoffs to player 1 is nondecreasing and
also the desirability level of the payoffs to player 2 is nonincreasing.
A game is competitive when it is one-player-competitive for both players.
| Next, consider a one-player extension for player i that depends on
the value used for di. A game is ai-one-player-cémpetitive (diOPC) for
Player i if and only if, according to the rankings by player i,vall cut-
comes whose payoffs to player i>have desirability levels at least'Pi(ai)
contain payoffs to player j whose desirability levels are at most Pé(di);
also, these ocutcomes can be arranged in sequence so fhat the desirability

level of the payoffs to player i is nondecreasing and simultaneously the
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desirability level of the payoffs to player j (as ranked by player i)
is nonincreasing. A game can be diOPC for one value of o, but not for
another value. Also, for di = dj' a game can be diOPC for player i but
not djOPC for player j. If a game is one-player-competitive for player
i, however, it is aiOPC for him with any permissible value for di.

A game is said to be o -0g-competitive when it is @3 OPC for player
1 and also agOPC for player 2. A competitive game is &3 -og-competitive
for all permissible values of o; and og.

Finally, consider the implications of competitive, one-player-
competitive, diOPC, and oy ~0g-competitive games with respect to occurrence
of OPaiC games. A competitive game is OPaiC for player i for i = 1,2 and
all permissible values of ai. A one-player-competitive game for player i
is OPaiC for player i for all permissible values of ai. An diOPC game
for plaver i is OPuiC for player i with this value of @, and an oj -Op—
competitive game is OPw;C for player 1 and also OPwaC for player 2 (with
the stated values for o; and «g).

BASIS FOR RESULTS

First, consider the method that was employed in marking positions
of payoff matrices. This method requires that thé positions of all pay-
offs of equal desirability be marked at the same time. Use of this method
tends to minimize the application effort and also to maximize the proba-
bilities for marked sets. Other methods, such as establishment of pre-
ferred sequence orders for the outcdmes (see ref. 1), could be developed
in a straight forward manner. However, only the stated method is con-

sidered here.
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Next, consider the basis for the statements of protective, vindic-
tive, and OPdiC results. Motivation for the first steps in identifying
P.(¢,) and P! (¢.) follows from

itvi i

THEOREM 1. Let the number of strategies for player i be denoted by r(i),

(i = 1,2). When the marked payoffs in the matrix for player i are such

that marks in all columns can be obtained from r(i) - t(i) rows, with

t(i) 2 0, player i can assure a marked payoff with probability at least

[r(i) - t(i)]_l, or at least @ when r(i) - t(i) < 1/ai.

COROLLARY. When the unmarked payoffs in the matrix for player j are

such that unmarked payoffs in all columns can be obtained from

r(j) - t(j) rows, player j can assure an unmarked payoff of his matrix

with probability at least [x(3) - t(j)]-l. Thus, player i can assure

. . s . . -1
a marked value in this matrix with probability at most 1 -~ [r(j) - €(3)] 7,
1

or at most o, when r(j) - t(j) < (1-ai)‘

PROOF OF THEOREM 1l: When r(i) - t(i) = 1, so that a row is completely

marked, some one of the marked outcomes can be assured with unit proba-~

bility by player i.

Suppose that r(i) - t(i) = 2. Let pa(u),...,przﬁz be the mixed

strategy used by player u, (u=1,2), where a unit probability (pure strategy)

is possible. The probability that a marked value occurs is

ri) ,.. (3
(i)
El PV % ’

v

where Qv(j) is the sum of those of ;4(3),...,pr§g;-for the columns that
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have marks in the v-th row. The largest value of this probability

that player i can assure, through choice of Pl(l)""'PrE;;' is

(1) _ - (3)
= . -min . .
R T ) (??x % )
PiiieeeerPrgy
Let v[1],...,v[r(i)-t(1)] identify r(i) ~ t(i) rows that together contain
marked payoffs in all columns. For any minimizing choice of the values
(1) (3) (»

v (3
for ;T aeearP 5y @11 OF QT g QT )~ (i) ]

are at most G(l). Thus,

. oy (1) (3) (a: -
[r(i) - t(D ]G = Qv[l] toe.oF Qv [r(i)-t(i)] =1

and a probability of at least [r(i) - t(i)]_l, for obtaining a marked
payoff, can be assured by player i.

The remaining results, including determination of when a game is
OPaiC for player i and determination of optimum strategies, can be
verified by appropriate use of

THEOREM. 2. A sharp lower bound on the probability that player i can assure

some payoff of a set that is marked in his matrix, and one or more corre-

sponding optimum strategies for him in accomplishing this, are determined

by the solution of a zero-sum game with an expected value basis. The

value of this game (to player i) is the sharp lower bound and an optimum

strategy for player i in this game is optimum with respect to assuring a

payoff of the marked set. The payoff matrix, for player i, in this zero-

sum game has value unity at all marked positions and zero at the unmarked

positions.
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COROLLARY. A sharp upper bound on the probability that player i can

assure some payoff of a set that is marked in the matrix for player j,

and one or more corresponding optimum strategies for player i, are

determined by solution of a zero-sum game with an expected-value basis.

Unity minus the value of this game (to player j) is the sharp upper

bound and an optimum strategy for player i in this game is optimum with

respect to assuring a payoff of the marked set. The payoff matrix, for

player j, in this zero-sum game has zero value at all marked positions

and unit value at all unmarked positions.

PROOF OF THEOREM 2: Let each player use an arbitrary but specified mixed

strategy (with pure strategies possible) for the zero-sum game. The
expression for the expected payoff to player i with these strategies is
also the expression for the probability of occurrence of some one of the

payoffs that are marked in the actual payoff matrix for player i.
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