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MEDIAN TWO-PERSON GAME THEORY FOR MEDIAN COMPETITIVE GAMES
John E. Walsh
Southern Methodist University*

ABSTRACT

A form of discrete two-person game theory based on median con-
siderations is developed in ref. 1. Median game theory has very
strong application advantages over expected value game theory (ref.
~2). In particular, the class of median competitive games, where both
players can be simultaneously protective and vindictive, is huge
compared to the corresponding class for expected value game theory.
Moreover, the median approach is usable for games where the numbers
in one or both payoff matrices do not satisfy the arithmetical
operations (but can be ranked within each matrix). A subclass of
the medién competitive games is identified in ref. 1. The complete
class is specified in this paper and a method is given_for determining
median optimum strategies. In addition, the class of gémes where a
given player (but not necessarily the other one) can be simultaneously
protective and vindictive is identified. Also, a way of finding a
median optimum strategy for this player is developed. The evaluation
methods given are oriented toward minimum application effort (and do

not use preferred sequences).

*Research partially supported by Mobil Research and Development
Corporation. Also associated with ONR Contract N00014-68-A=-0515,



INTRODUCTION AND DISCUSSION

Only the case of two players with finite numbers of strategies
is considered. Separately, each player selects one of his strategies.
A specified pair of payoffs, one to each player, occurs for every
combination of a strategy for each player. The payoffs that a player
receives for the strategy combinations can be conveniently stated in
matrix form, where the rows correspond to his strategies and the
columns to the strategies of the other player.

A player is said to use a mixed strategy when the method of
selecting a strategy is random. That is, the player randomly selects
one of his possible strategies according to probabilities that he
specifies, The concept of mixed strategies introduqes probabilistic
considerations into game theory. When at least one player uses a
randomly chosen strategy, the payoff to each player is a random vari-
able (with a distribution determined by the probabilities used). The
distributions for these two random payoffs constitute the maximum
information that is available.

A basic problem of game theory is determination of optimum
mixed strategies for the players (given their payoff matrices). That
is, the problem is to make an optimum choice for the probabilities
that determine the mixed strategies (with unit probabilities possible).
Unfortunately, such a choice has many complications when all the pro-

perties of probability distributions are considered. However, this

determination can be greatly simplified by only considering some type
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of "representative value” for a distribution. The well established
expected-value approach uses the distribution mean (expected payoff
to the player) as the representative value. Another reasonable way
is to represent a distribution by its median. This is the fouﬁdation
for median game theory, whose basic properties are given in ref. 1.

The concepts of a player acting protectively for himself, or
vindictively toward the other player, are useful in determination of
optimum strategies. That is, a protective player tries to maximize
the payoff he receives, without consideration of the payoff received
by the other player. A vindictive player tries to minimize the pay-
off received by the other player, without consideration of the pay-
off to himself. When a player has a strategy that allows him to simul-
taneously be protective and vindictive, this is an optimum strategy
for him.

Let the players be designated as I and II. Median game theory
has the properties: A largest value PI (PII) occurs in the payoff
matrix for player I such that, when acting proteétively, he can assure
hiﬁself at least this payoff with probability at least 1/2. Also,

a smallest value Pi (PIi) occurs in the matrix for player I (II) such
that vindictive player II (I) can assure, with probability at least
1/2, that player I(II) receives at most this payoff. The inequalities
Pi < PI and PIi < PII hold, with equality possible.

Payoff matrices occur such that each player can simultaneously

be protective and vindictive (according to the median criterion).
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These situations are called median competitive. A subclass of the
median competitive games is identified in ref. 1. The complete class
is identified here and a method is given for determining strategies
that are median optimum for this class.

Consider the pairs of payoffs that correspond to the strategy
combinations for the players. Those pairs such that the payoff to

player I is at least P_ and also the payoff to player II is at most

I

PIi constitute set I. Those pairs such that both the payoff to

player II is at least P and the payoff to player I is at most Pi

II

constitute set II. Median Competitive Class: The payoff matrices

for the players result in a median competitive game if and only if
player I can assure, with probability at least 1/2 that a pair in
set I occurs; also, player II can assure, with probability at least
1/2, that a pair in set II occurs. The combinations of payoff
matrices that yield median competitive situations are extensive.

For expected-value game theory, the players can be simultaneously
protective and vindictive when the payoff matriceé satisfy a zero-
sum condition (sum of payoffs is zero for every strategy combination)
or one of some mild modifications of this condition. These "zero-
sum" situations are a very small subclass of the median competitive
situations that occur for the case where payoffs satisfy the arithme-
tical operations (are cardinal numbers). However, median competitive

situations can also occur when the payoffs are not cardinal numbers.



A sufficient condition for use of median game theory is that, separate~
ly for each matrix, the payoffs can be ranked.

Extensiveness of use is but one of the application advantages of
median game theory in comparison with expected-value game theory. A
discussion of the practical advantages of median game theory is given
in ref. 2.

A one-player form of the median competitive situation can occur.
That is, player I (II) can assure, with probability at least 1/2, that
a pair in set I (set II) is obtained, but player II (I) cannot necess-
arily assure that a pair in set II (set I) occurs with probability at
least 1/2. Then player I (II) can be simultaneously protective and
vindictive but this is not necessarily the case for player II (I).
This one-player median competitive situation, called OPMC, seems to
have no analogue in expected=-value game theory and is a further appli-
cation advantage of median game theory.

P

The next section provides simplified way to evaluate PI’ 1’

Pi, PIi and a method (oriented toward minimum effort) of obtaining
median optimum strategies for median competitive and OPMC situations.
The final section presents justification for material stated previous-

ly, including the identification of median competitive and OPMC games.

RESULTS

p', P_'! is considered first.

ination p_, P
Determina of values for 1 Prp Pp Pyp

This can be accomplished by a marking of some of the values in the

payoff matrices. The method given here is a simplification of the
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procedure in ref. 1 (and is not based on development and use of pre-
ferred sequences).

For player I (II) acting protectively, first mark the position(s)
in his matrix of the largest payoff value. Then also mark the posi-
tion(s) of the next to largest payoff value. Continue this marking,
according to decreasing payoff value, until the first time that marks
in all the columns can be obtained from two or fewer of the rows (then
a marked value can be assured with probability at least 1/2, perhaps
greater than 1/2). Now, remove the mark(s) for the smallest of the
payoffs used and (by the following method)determine whether some one
of the remaining marks can be assured with probability at least 1/2.
This cannot occur unless there are still marks in all the columns.
When all columns are still marked, replace every marked payoff by the
value unity and every unmarked payoff by zero. Consider the resulting
matrix of ones and zeroes to be for a zero-sum game with an expected
value basis and solve for the value of this game to player I (II), Some
one of the remaining marks can be obtained with #robability at least 1/2
if and only if this game value is at least 1/2.

When protective player I (II) cannot assure a remaining mark with
bProbability at least 1/2, the value of PI (PII) is the payoff value in
the matrix of player I (II) that had its marking(s) removed last.
Otherwise (a game value of at least 1/2), those of the remaining
marks that correspond to the smallest of the remaining marked payoffs
are removea. Then, as just discussed, determine whether some one of
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the marks remaining now can be assured with probability at least 1/2.

If not, P (PII) equals the payoff in the matrix of player I (II)

I
that had its marking(s) removed last. If a probability of at least

1/2 can be assured, continue in the same way (removing the mark(s)

for the smallest of the remaining payoffs with marks) until the first
time that some one of the remaining marks cannot be assured with
probability at least 1/2. Then PI (PII) is the payoff in the matrix

of player I (II) that had its marking(s) removed last. It is to be
noted that PI and PII are often the payoffs which provided the first
time that two or fewer rows contained marks in all columns of the
respective matrices.

For player I (fI) acting vindictively, first ma;k the position(s)
in the matrix for player II (I) of the smallest payoff value. Then
also mark the position(s) of the next to smallest payoff value. Con-
tinue this marking, according to increasing payoff value, until the
first time that marks in all the rows can be obtained from two or fewer
of the columns (assures that a marked value can bé obtained with proba-
bility at least 1/2). Next remove the marks for the largest of the pay-
offs used and (by the following method) determine whether some one of
the remaining marks can be assured with probability at least 1/2. This
is not possible unless there are still marks in all the rows. When all
rows still contain marks, replace every marked payoff by the value zero
and every unmarked payoff by unity. The resulting matrix of ones and

zeroes is considered to be for a zero-sum game with an expected value basis,
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with rows corresponding to strategies for player II (I). Solve this
game for ité value to player II (I). Some one of the remaining marks
can be obtained with probability at least 1/2 by player I (II) if and
only if this game value is at most 1/2.

When vindictive player I (II) cannot assure a remaining mark
with probability at least 1/2, the value of PIi (Pi) is the payoff
value in the matrix of player II (I) that had its markings removed

'last. Otherwise (a game value of at most 1/2), those of the remaining
marks that correspond to the largest of the remaining marked payoffs
are removed. Then, as just discussed, determine whether some one of
the marks still remaining can be assured by player I (II) with prob-
ability at least 1/2. If not, PI% (Pi) equals the payoff in the matrix
of player II (I) that had its marking(s) removed last. If a probabi-
lity of at least 1/2 can be assured, continue in the same manner (re-
moving the mark(s) for the largest of the remaining payoffs with
marks) until the first time that some one of the remaining marks can~
no; be assured by player I (II) with probability at least 1/2. Then
Pli (Pi) is the payoff in the matrix of player II (I) that had its
marking (s) removed last. Often, Pli and Pi are the payoffs which fur-
nished the first time that two or fewer columns contained marks in all
the rows of the respective matrices.

Statement of results for one-player median competitive (OPMC)

games is sufficient. That is, a game is median competitive if and

only if it is OPMC for each player.
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To determine whether a OPMC situation occurs for player I (II),
mark the positions of his matrix for his payoffs in the pairs of set
I (II). If marks in all columns qan be obtained from two or fewer
rows, the situation is automatically OPMC for player I (II). If at
least one column contains no marks, the situation is not OPMC for
player I (II). Otherwise, replace every marked payoff by unity and
every unmarked payoff by zero. Consider the resulting matrix to be
for a zero-sum game with an expected value basis. The situation is
OPMC for player I (II) if and only if the value of this game is at
least 1/2.

Now, consider determination of an optimum strategy for player I
(II) when the situation is OPMC for him. Use the same marking as for
the preceding paragraph and replace marked values by unity and unmarked
values by zero. BAgain treat the resulting matrix as a zero-sum game
with an expected value basis. An optimum strategy for player I (II)
in this zero-sum game is a median optimum OPMC strategy for that player.
The probability that player I (II) receives at leést P (PII) and

I

simﬁltaneously player II (I) receives at most PI& (Pi) is at least
equal to the game value. This method of choosing a median optimum
OPMC strategy tends to maximize the game value and also tends to mini-
mize the application effort. Other methods based on choice of a pre-
ferred sequence order for the pairs of payoffs (see ref. 1) can be

developed in a straightforward manner, but only this method is con-

sidered here.



Incidentally, a similar method, in which all payoffs at least
equal to PI‘(PII) are marked in the matrix for protective player I (II),
could be used in determining protective median optimum strategies (rather
than the method in ref. 1 that uses preferred sequences). This tends

to maximize the probability of player I (II) receiving at least P_ (P__),

I II
also to minimize the application effort (since a preferred sequence is
not developed and the determination of PI (PII) requires evaluation of

at most one zero-sum game). Likewise, the method in which all payoffs

at most equal to P!

1 (PIi) are marked in the matrix for player I (II)

could be used in determining a vindictive median optimum strategy for

player II (I).

JUSTIFICATION OF MATERIAL

First, consider identification of median competitive and OPMC
games. Player I (II) is simultaneously protective and vindictive if
and only if he can simultaneously assure, with probability at least 1/2,
that he receives at least PI (PII) and that player II (I) receives at

most PIi (Pi). Evidently, this occurs if and only if player I (II) can
assure the occurrence of a pair in set I (set II) with probability at
least 1/2.

The assertions about the probability properties when two or fewer

rows contain marks in all columns follow from:

THEOREM I, When the marked payoffs in a player's matrix are such

that marks in all columns can be obtained from two or fewer rows, the

>gl§yer can assure occurrence of a marked value with probability at
east 1/2,
e e LA
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PROOF. When one row is fully marked; the probability is unity

that some one of its values can be assured by the player.

Suppose that two rows are needed to provide marks in all the
columns. Iet p;, . . ., p_ and s ¢+ e5 9 be the mixed strategies
used (where the matrix has r rows and s columns), with a unit probability

value being possible. The probability of obtaining a marked payoff is

r
i=1

where Qi is the sum of the g's for the columns that have marked payoffs
in the i-th row. The largest value of this probability that the player

can assure, by choice of Pys « + «5 Py is

G = min (max Q.) .
ql""’ qs i Ql

Iet i(1) and i(2) be two rows that together contain marked values in
all columns. For any minimizing Qs -+ 05 9 both Qi(l) and Q.

i(2)

are at most G. Hence

2G 2 Qi(l) + Qi(2) 21

and a probability of at least 1/2 can be assured. In fact, use of
= = ked value in one of rows

pi(l) Pi(2) 1/2 guarantees that a marke

i(1) and i(2) can be assured with probability at least 1/2. However,

the value of G may exceed the probability assured by use of this mixed

strategy.

The value of G is exactly 1/2 when the marking is such that two
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- columns together contain ummarked payoffs in all rows (then, analogously,
some one of the unmarked payoffs can be assured with probability at
least 1/2). The probability is also 1/2 when there are two columns
that have an unmarked payoff in row i(l) or i(2), and are such that
no row of the matrix has marks in both of these columns.

The assertion about the probability properties when two or fewer
columns of the other player's matrix contain marks in all rows is
verified in a similar fashion. Specifically, a vindictive player can
assure a marked value with probability at least 1/2 if and only if
the other player can assure some one of the unmarked values (in his
matrix) with probability at most 1/2. This happens if and only if the
game value (to the other player) is at most 1/2,

Now consider probability statements based on expected-value solu-
tion of zero-sum games whose payoff matrices contain only ones and
zeroes.

THEOREM 2. A lower bound on the probability that a player can

assure some payoff of a specified subset of the payoffs in his matrix,

and corresponding optimum strategies, can be determined by solution

of a zero-sum game with an expected value basis. The matrix for this

game has ones at all payoffs in the specified subset and zeroes else-

where.
A ——————

PROOF. Let each player use an arbitrary mixed strategy (with a

unit probability possible). The expression for the expected payoff

with these strategies is also the expression for the probability that
12



some one of the payoffs in the specified subset occurs. This theorem
can also be applied to the vindictive case when the other player's
matrix is considered and the unmarked values are replaced by unity (see
the discussion following Theorem 1).
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