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The problem of a mixture of two stimulants in a biological quantal
assay is investigated from a mathematical standpoint. The basic assump-
tion is made that the response region does not depend on biological con-
siderations - i.e., given a specified mixture of stimulants z , the response
region is defined by the point z' in the p-variate space where there are
p stimulants under consideration; instead, the probability functions,
themselves, may take on different forms. A general form is proposed and
investigated. Three analyti; models (one utilizing the bivariate normal
distribution, one a bivariate logistic distribution developed by Gumbel
(1961) , and one a bivariate Burr distribution developed by this author)
are employed in this investigation. The investigation includes the anal-
ysis of data, under the three analytic models, which had been classified
by previous investigators as examples of synergistic action, simple similar
action, independent action, and additive action. The residual analyses
are included as well as the FORTRAN IV subroutines used in evaluating the
functiéns, the partial derivatives and the weights.

The investigation lends some support to the assumption of a constant

response region for a diversity of mixtures of stimulants. The analytic
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model incorporating the bivariate Burr distribution is recommended for
all cases unless the number of parameters to be estimated is a primary
concern, in which case the analytic model utilizing the bivariate normal
distribution is recommended. The bivariate Burr distribution developed
in this paper is found to be more useful in application than that devel-

oped by Takahasi (1965).
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CHAPTER 1

1. Introduction

The joint action of mixtures of stimulants in a biological assay
has been investigated by Bliss (1939), Finney (1942), Plackett and Hewlett
(1967) , Ashford and Smith (1966), and others. Plackett and Hewlett have
made their investigations largely from the standpoint of biological con-
siderations such as the physiology of the biological organism being used
in experimentation. Ashford and Smith, on the other hand, have dealt with
the problem somewhat more within a mathematical framework. In this paper,
the problem will be approached mathematically.

For the purposes of this paper a biological assay of a mixture of
two stimulants will be conducted as follows: A population of N organisms
is divided at random into t groups, where the ith group is of size ni ’

n, + n, + oeee 4+ n, = N . The ith group receives a treatment of a pre-
determined mixture (zli ' Z2i) of two drugs, where zji is the quantity

of stimulant j measured in any convenient units. r, is the observed number
which manifest a prescribed quantal response. The observed relative
frequency of response p, = ri/ni is an estimate of the probability of an
organism responding if picked at random from the population. The proba-
bility that this organism picked at random will respond when treated by

the mixture (zli ' zZi) may be assumed to take on a general form, say,
Plzgy 2y + 9 -

Now the probability of r, responses with the ith combination of



levels of drugs can be written as

n,! rl n,-r,
i
Plry) = Tt z.01 [P(zll TR e)] [1 Plzyy v Zp5 0 Q)]
r, = 0,1, 2, *** , t (1)
=0 elsewhere.

A series of t combinations of doses is tested in an experiment. The prob-
ability of a particular set of ri's is equal to exp(L) , the likelihood,
where

t t

t
L = .Z r, In (B,) + -2 (n;-r;)1n(Q,) +<'Z Inln, 1/x, ! (n,-z,) 1] (2)
i=1 i=1 i=1

and Pi = P(Zli ’ 22i ’ Q), Q.

i = 1l - Pi . The maximum likelihood estimator

0 of a parameter O , O an element of O , must satisfy the relation

. (3)
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Direct solution for © is not in general possible, but iterative techniques
are available which give a convergent series of approximations to the
solution.

The following procedure for two parameters © and ¢ , O and ¢ elements
of 0 , is of completely general applicability and may easily be extended

for the estimation of a greater number of parameters. By the Taylor-

Maclaurin expansion of %%-, %% (See relation (3).) ignoring quantities

containing terms of higher than the first degree

2
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where the addition of the suffix 1 to © , ¢ indicated that the first
approximations are to be substituted after differentiation. The solutions

§. o 6¢ are adjustments to 0O which give the improved approximations

© 1’ ¢l
= + = + .
92 Ol GO ' ¢2 ¢l 6¢
Equations (4) may be simplified through the following procedure

which will be illustrated by means of the first of equations (4).
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At this stage the equation may be simplified by putting p, = P.l in
82L 32L
[4
362 8@13¢l

the last equation to give expected instead of empirical values. The last

the coefficients of , i.e., on the left hand side of

equation then reduces to

t n., [op.\? t n, [3P.\ /9P,
5 Z i i + 6¢ z i i i _ oL .
© 121 Bi \ i=1 B9 \%91/\%¢1/ 99,

The latter equation in (4) can be reduced by means of a similar procedure,

2’L %L
i.e., putting p, = Pi in the coefficients. of 3 " 30,50 .
8¢l 1771

Thus equations (4) are simplified to

t n, 3P, \2 t n, 3P, \ /5P, t n,(p,-P,.) [oP,
5 2 i i + 8 Z i i i _ E i~i }l i .
O 421 P119%1\99; ¢ 521 Pi1957 \%91/\2¢; i=1 Fi1%1 \%9

(5)
t n, 3P, \ /9P. t n, 3P, \2 t n, (p.-P..) /9P,

s z i i i + 6 z i i _ Z i*Fi il i .
© 321 Pi1%1 \%91/\%¢; ¢ 521 Pi19%q \3% i=1 Fi1%1  \?%;

Here the addition of the suffix 1 to Pil ’ Qil

indicates that the first

» 9) .

approximations are to be used in the evaluation of P(zli v 2oy 0

Equations (5) illustrate that only first derivatives are needed in this

iterative procedure.



2. Methodology for Obtaining Estimates

Now, it will be seen from what follows that relation (3) can be
solved by using a modified non-linear least squares [Moore and Zeigler

(1967)]. Assume that the data corresponds to the mathematical model

Yl=h(Equ)+€i r =1, 2, ¢+ , t (6)

where the yi are observed random variables, Ei is a vector of known
independent variables, a is a vector of unknown parameters, and Ei is a
random variable such that E(ei) =0, E(ei) = oi , and E(eiej) = 0 for
all i # j . Then the vector of unknown parameters may be estimated by

minimizing the weighted sum of squares,

2}
il
Il o~k

(yi - hiz, ., q))zwi ’ (7)

i=1

where Wi is an appropriate weight. If the usual procedure is modified so
that the partial derivatives are taken ignoring Wi , the normal equations

are

55 sh(z, , o)

t
=22--2 7 wly, -h(z, , 9)] —2=—T"-=0 , (8)
Bak i1 i*i i Bak

fork =1, 2, *** , 2 , where 2 is the number of unknown parameters. Now
by letting Wi = ni/PiQi (the reciprocal of the variance of Pi) v ¥y =Py
h(z, , a) =P, , 0, =1-P, , and . = O it can be seen that relation

-i - i i i k
(3) and equation (8) are equivalent. Thus the maximum likelihood estimate
can be obtained by means of a modified weighted non-linear least squares.

Relations (5) and their equivalent extensions are used in the modified

non-linear least squares fitting of equation (6).



3. Consideration of Necessary Conditions on P(zli P Zos Q)
%14
From this point onward the vector z, =\, will be considered
2i

from the standpcint of a mixture of stimulants where a transformation has
been applied to the original dosage levels so that —~~ is equivalent to
zero dosage and +» is equivalent to an infinite dosage. For the purposes

of this paper P(zli , Z » ©) must satisfy the following conditions

2i
P(zy; » % , Q) =Pl , 2z, ,0) =1, (9)
P(zli r =, 0) = Pl(zli ' Ql) ' (10)
and P(~> , Zyg 0 Q) = P2(22i ’ Qz) ' (11)

where Pl(zli ’ Ql) and P2(z2i ’ QZ) are not in general zero, but rather
are marginal probabilities, i.e., the probability of a random individual
biological organism responding if it is given a dosage of stimulant 3j

corresponding to zji . Conditions (9), (10), and (11l) imply the conditions

P(...oo r Ty @_)

1l
(@]

(12)

il
=
.

and P+ , += , Q) (13)

All five of these conditions are necessary in a bioassay of quantal response
data involving a mixture of two stimulants. Natural extensions of these
conditions for a mixture of more than two stimulants are now obvious.

Plackett and Hewlett (1967) proposed that

P = S f(zli , z2i)dzlidZZi (14)
R

where f(zli ’ z2i) is a bivariate density with the usual properties and

R is defined on the basis of biological considerations, thus implying that



the region of integration may, arbitrarily, be changed due to biological
considerations. Their papers do not indicate any homogeneity in the regions.

Nowhere is there a general formulation for P(zli , 2 ' Q) where the form

2i

of the region of integration is homogeneous, much less constant. It would
appear that the region of integration should be constant except possibly
for simple monotonic transformations of the original dosage levels, such
as a logarithmic transformation. The bivariate function itself might be,
in specific instances, of different types but still retaining a constant
response region.

Let Fl(z Ql), F2(z2 ’ Qz) be univariate distributions where the

l !

parameter vectors Ql ’ Qz are not, in general, equal. Note that Fl(zl ’ Ql),
F2(z2 ’ QZ) are not necessarily even from the same family of distributions,
+ Q) be a bivariate

e.g., the family of normal distributions. Let F3(zl ’ 22

9,)

distribution such that F3(z z, + 9,

1’ T, Q) =F1(Zl r Ql) and F3(+°° ’

- | I ' ' ' : s
F2(z2 ' QZ), where O (Ql R Qz , Q3) . Now, what is needed is a

function which satisfies conditions (9) through (13).

Let

1! 22 ’ Q) = Fl(zl ’ Ql) + Fz(zz ) 92) - F3(Zl r 2 ’ Q) . (15)

2

Then H(-» ,

IQ)=F2(22192)' H(z _OOIQ)=F1(21’Q)I

%2 1’ 1
H('k”lzzIQ)=1=H(ZlI+°°IQ)IH(_°°I_°°IQ)=OIa-IldH(+°°l+°°IQ)

=1 . Thus H(z1 ' 2y ©) does satisfy conditions ( 9) through (13) which

suggests that

z, » Q) (16)

Plzq; v 250 + 8) =F (2, Q) +F, (2, ,0) - Folz, , z,

2

is a general formulation for P(zli , 2 ©) where the responsé region

2i '

is constant. ©Note that the forms Fl(zli ’ Qf ’ F2(z2i R Qz) Y F3(zli R ZZi ¢ 9)



are completely general distributions whose forms can depend on biological,
chemical, or other considerations. At the same time the region of inte-
gration is constant and easily understood from a geometrical standpoint
as well as from other standpoints. It is noted here that the general

formulation for P(zli ¢ 2 » 9) can easily be extended for a vector of

2i
more than two stimulants. The utility of this form is quite general;

the only restrictions being conditions (9) through (13) which have been

imposed in the development of the general form in equation (16).



CHAPTER II

It is natural in the study of a mixture of two stimulants to con-
sider a bivariate probit or normit. Probit analysis has no advantage over
a normit analysis if the analysis is run on a high-speed computer. Also,
the analyses are equivalent. Almost all of the work that has been done
to date has been along the lines of a bivariate normit.

Bliss (1939) was among the first to study the action of mixtures
of two stimulants. He classified the joint action of two stimulants into
three biological categories: independent joint action, similar joint
action, and synergistic action. Independent joint action occurs when-
ever two components act on different vital systems in the organism and
do not interact with one another. Similar joint action is observed when-
ever two components act independently of one another but on the same vital
system. Synergistic action is characterized by a larger frequency of
response than could be predicted from experiments using the individual
stimulants. He mentions antagonistic action but did not treat this concept
at all. He stated that it is the reverse of synergistic action. Finney
(1942) suggested that antagonism is negative synergism and can thus be
treated in the same category as synergism.

Bliss (1939), for the category of independent joint action, plotted
expected response in probits against dosage of mixture in logarithms. At
each point the ratio of the amount of a given stimulant to the amount of

the other stimulant was held constant. These curves were not smooth but
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rather fell into two segments each of which appeared to be a straight
line. The transition from one straight line to the other was relatively

abrupt. He suggested the equation
Po =P, + Pl - p,)(1 - 1) (17)

where P, > Pp + P is the probability of response due to the effect of

A
stimulant 2 , Py is the probability of response due to stimulant B , r

is a measure of "association of susceptibilities," and Pa is the proba-
bility of death due to the combination of stimulants A and B . He did not
indicate what, if any, relation he assumed between equation (17) and the

plots of data.

For the category of similar joint action Bliss suggested equation

—4 ' + +
YC a b log(DA kDB) (18)

for the dosage response curve, where DA and DB are the respective doses
of stimulants A and B in the mixture and k is the ratio of the frequency
of response of the individual stimulants. The plots for this case are
thus straight lines.

Bliss suggested two possible equations for synergistic action. The
first, which relates the total amount of active material (DA + DB) and the

amount of the more active stimulant, say A , is
(D +D)Di—k (19)
A B A !

where DA and DB are in original dosage units, which implies the probability
of response to the combination of the two stimulants is determined by the
sum of the ingredients multiplied by some power of the amount of the more
active stimulant. The second equation, again with A being the more active

stimulant, is
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(1 + leA)D; = X, (20)

which was suggested for the cases where the proportion of A approaches
zero. It should be noted that these suggested equations do not bear
any clear logical relation one to another.

Plackett and Hewlett (1961) utilize the following biological

classification of joint drug actions:

Similar Dissimilar

Non-interactive Simple Similar Independent

Interactive Complex Similar | Dependent

Here the suggestion is that the actions of the stimulants are similar or
dissimilar respectively as the stimulants act on the same biological site
or on different ones, and as interactive or non-interactive depending on
the presence or absence of synergism (or antagonism). They, then, propose
mathematical equations (some in an implicit form) based on the above
biological classifications which, again, do not bear any clear logical
relation one to another. Finally, they introduce a statistical concept
into their presentation by making an assumption as to the bivariate
distribution of El ’ 22 where El ’ 22 are the respective tolerances to

stimulants A and B . They suggested that a reasonable assumption would

be that the log tolerances log z., , log Z,. are distributed bivariate

1 2

normally. They did not give examples of data fitting any of the proposed
models.
Ashford and Smith (1964) approached the problem somewhat differently.

They classified the mathematical model as interactive or non-interactive



12

rather than attempting to classify on the basis of biological considera-
tions. They define non-interaction as being equivalent to the condition

on P = P(z1 v 2, + 0), the probability of response, where z.  and z, are

2 1 2

the logarithms of dose, such that

2 2
W (B) = By (ByPy = PyPypy) + Py (ByPyy = PyPy) =0 (21)
2 3
where P = i , P = 2P , and P = 2P __ . Their mathematical
o 0z af 9z 0z aBy 3z 0z,0z
o a B a "By

classification is not equivalent to Plackett and Hewlett's. Ashford and
Smith remarked that no valid distinction can be made between similar and
dissimilar action purely on the basis of quantal response data.

Ashford and Smith published some trivariate data on exposure to
coal dust for which the response was the prevalence of pneumoconiosis for
groups of mine workers. The three dosage variables, respectively, were
the time spent in years at coalface coal-getting, coalface preparation,
and elsewhere underground. They assumed that the tolerances were normally
distributed. They then compared two models where the regions of response
were not only different but were each complicated functions of the dosage
levels. They applied chi-square goodness-of-fit tests (each with fifteen
degrees of freedom) to the models obtaining chi-square values of 12.73 and
16.86 , respectively, from which they quote the corresponding approximate
significance levels. They do not indicate explicitly the form of the
probability function used but rather only the functional forms indicating
the response regions.

Zeigler and Moore (1966) presented a paper at the 126t Annual Meeting
of the American Statistical Association on "Multivariate Quantal Response
Analysis Using Regression Methods." In this paper, in addition to showing

that weighted least squares can be used to converge on maximum likelihood
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estimates, they fitted a bivariate normal distribution to toxicity data
involving the direct sprays of Pyrethrins and D.D.T. in Shell 0il P31

applied to flour beetles (Tribolium castaneum). Using a chi-square

goodness-of-fit test with nineteen degrees of freedom, they obtained a
value of 12.17 and reached the conclusion that the fit was satisfactory.
None of the investigations up to this point have utilized the general
form suggested in Chapter I, although the specific form utilized by Zeigler
and Moore (1966) is equivalent for the special case where the tolerances

zy and 22 to drugs A and B are each distributed normally.
It would seem useful to do some numerical studies utilizing some
of the data in the literature with some analytic models which conform to
the general form in equation (16). For this purpose, seven sets of data
were utilized. Included among these were sets that have been classified
in the following categories by previous investigators: synergistic action,
simple similar action, independent action, and additive action.
Data set one, classified as synergistic by Bliss (1939), was first
published by Kagy and Richardson (1936). This set is from a study of the

combined action of 2-4~dinitro-6-cyclohexylphenol and petroleum oil

sprayed in emulsions against eggs of a plant bug (Lygueus kalmii Stal,).

Data set two, published by Plackett and Hewlett (1952), was classified by
them as simple similar action. This data set is from a study of the
combined action of D.D.T. and methoxychlor applied in Shell 0il P31 to
flour beetles.( Data set three, published by Hewlett and Plackett (1950),
was classified by them as independent action. This is the data set which
Zeigler and Moore (1966) fitted to a bivariate normal by means of weighted

least squares. Data sets four, five, and six, published by Martin (1942),
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were not classified by the investigator into any category. Data set
four is from a study of the toxicity of the combined action of rotenone
and a dequelin concentrate in a medium of 0.5% saponin containing 5% of

alcohol applied to chrysanthemum aphides (Macrosiphoniella sanborni).

Data set five is from a study of the toxicity of the combined action of
rotenone and %-elliptone under the same laboratory conditions as data set
four. Data set six is from a study of the toxicity of the combined action
of rotenone and f-oa-toxicarol under like laboratory conditions. These
three data sets showed some signs of synergism to the investigator, but
he did not find it to be significant in any one of the data sets. Data
set seven, published by Ashford and Smith (1964), is from a study of the
prevalence of pneumoconiosis in groups of mine workers where the years
spent on "coal-getting" is one imput and the other imput is years spent
in "haulage." This data set was classified as an example of additive
action by the investigators.

A bivariate normit analysis was run on the above seven sets of data.
The analytic model for the bivariate normit analysis was

a.+B.z

1711 - %‘ 1 9
Q) = S (2m) exp(- 5 t)dt

a2+B222 _
+ (21)

-—00

N[

1 2
exp (- 5 s )ds (22)

a,+B z,  a,+B,z, N
- S S 2/l - p2)

-0 -0

2
exp[-(t2 - 2pts + sz)/2(l - p )ldtds, -= < zl ’
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A modified least squares (see Chapter I) FORTRAN IV Computer program was
utilized on a Model 44 IBM 360 system. A resumé of the results is given
in Table 1.

The following is a brief explanation of the items listed in Table 1
as well as the next two tables: N is the number of stimulant combinations.
SSE is the weighted sum of squares due to error which is approximately dis-
tributed as a chi-square. SSR is the weighted sum of squares due to re-
gression and is computed as SST - SSE where SST is the weighted sum of
squares adjusted for the weighted mean. SSR is approximately distributed
as a chi-square. R2 , which is computed as SSR/SST , tells what portion
of SST is due to regression. Computing SSR as SST - SSE and R2 as SSR/SST
gives both a conservative estimate of the significance of regression and
a conservative coefficient of determination R? . The column entitled
"No. of significant chi-squares" tells how many of the chi—square statistics
computed at each dosage level (stimulant combination) exceeded 3.84 , the

.95 value of a chi-square with one degree of freedom.

Data No. of I l

Set N | Significant | SSE | d.f. ssR | a.f. R

No. Chi-squares I |
1 18 5 67.029 | 13 | 66041 | 4 .99899
2 10 1 21.775 | 5 | 598.86 | 4 .96491
3 24 0 11.805 | 19 | 11176 | 4 .99894
4 17 2 27.147 | 12 1656.0 | 4 .98387
5 12 2 28.947 | 7 | 921.36 | 4 .96954
6 15 0 10.145 | 10 30672 | 4 .99967
7 40 2 38.141 | 35 | 217.75 | 4 .85095

TABLE 1
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For all of the data sets the regression is found to be significant
using SSR as the indicator. However, the chi-square for departure from
the model is insignificant in only three of the cases, namely data sets
three, six, and seven, which include the cases of independent action and
additive action.

The synergistic data (data set 1) had sample sizes ranging from
240 to 479 (see Appendix I) at its eighteen data points. The bivariate
normit analysis indicated that five of these points differed significantly
from the bivariate normal model. Some of these points were marginal data
points and some were not. One of the data points contributed 34.266 to
the cumulative chi-square, slightly more than half of the total, but the
chi-square would still be significant even without this particular data
point. Upon examination of the residuals, the fit does look good with the
exception of the one data point, but with the large sample size at each
point, the fit would have to be extremely close in order for the cumulative
chi-square to be insignificant. On the whole, it is felt that the bivariate
normit analysis did quite well with the data and that the model does des-
cribe the phenomenon reasonably well, considering the significance of
regression (SSR), the weighted sum of squares due to error (SSE), along
with the sample sizes, and the coefficient of determination R2 .

The simple similar action data (data set 2) had sample sizes ranging
from 148 to 200 (see Appendix II) at its ten data points. The analysis
indicated that one of these points differed significantly from the bivariate
normal model. Again upon examination of the residuals, the fit does look
good although not quite as good as the previous data set. The conclusion
based on the analysis of the data is that the model does describe the

phenomenon fairly well, with the exception of the one data point.
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The independent action data (data set 3) had sample sizes ranging
from 48 to 50 (see Appendix III) at its twenty four data points. The
model does fit the data well and none of the data points differed
significantly from the model. The weighted sum of squares due to error
is 11.805 . Zeigler and Moore (1966) fitted this same data set and the
weighted sum of squares due to error for their model is 12.17 , thus
indicating the similarity of the fit.

Data sets four and five are quite similar. They had sample sizes
ranging from 28 to 51 (see Appendices IV and V) at their data points.

Each had two data points that differed significantly from the bivariate
normal model and examination of the residuals does not indicate as good

a fit as for any of the previous data sets. The model still does describe
most of the data points well, but it does not seem to do as well as for
the earlier cases.

Data set six had sample sizes ranging from 48 to 51 (see Appendix VI)
at its fifteen data points. The model does fit the data well and none of
the data points exhibit a significant deviation from the model. Two
bivariate normit analyses were run on this data set using slightly different
convergence criteria. The first run utilized the relative change in the
unweighted sum of squares due to error and the second the relative change
in the weighted sum of squares due to error. The first run after conver-
gence had the sum of squares due to error as 0.031265, while the weighted
sum of squares due to error was 0.78159 x 105 . The second run after
convergence had the sum of squares due to error as 0.032040 while the
weighted sum of squares due to error was 10.145 . Which criteria produces
the best fit becomes questionable at this point. It would seem that either
set of parameter estimates would have to be considered acceptable despite

the large chi-square value attributed to the first fit.
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Data set seven had sample sizes ranging from 2 to 135 (see Appendix VII)
at its forty data points. The model does fit the data well although there
are two data points which deviate significantly from the model. Ashford
and Smith (1964), who classified this data as an example of additive action,
fitted the data to a model, assuming the marginals to be logistic, using
a rather complicated response region which does not seem to have been
necessary.

In general the bivariate normit analysis seems to do quite weil with
a diversity of mixtures of stimulants, as is evidenced by the seven sets
of data analyses here. These analyses appear to lend support to the
assumption that the form of the response region should remain constant

irrespective of the biological considerations, at least in relation to a

bivariate normit.



CHAPTER III

A bivariate logit is, perhaps, as natural to cohsider in the study
of a mixture of two stimulants as a bivariate normit, even though very
little work has been done along these lines.

Ashford and Smith (1964) ran an analysis on data set seven assuming
the marginals to be logistic. They fitted the data to a model using a
complicated response region without explicitly defining the mathematical
model. There does not appear to have been any other examinations of
data by means of a bivariate logit in the literature

In the case of a bivariate logit, the first consideration is the
form of the bivariate distribution to be used. The bivariate logistic

distribution utilized in this study was

1+ exp(- x)1 11 + exp(- y)1°+

PoGy) = {0 {1+ agll+ expt- 017N+ exp(- )17
- expl-x-y)} , —~<x,y<e (23)
which was developed by Gumbel (1961). The density function is
-2
{exp(— X - y)*[l + exp(- x)]
« [1 + exp(- y)]_z} . {1 + ao[l - exp (- x)
f3(x'y) B - exp(-y) + exp(- x - y)1/[1 + exp(- x)
+ exp(- y) + exp(- x -'y)]}' y m© < X,y <® (24)

The correlation coefficient is
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(25)

A bivariate logit analysis was run on the seven data sets utilizing

the Gumbel bivariate logistic distribution.

bivariate logit analysis was

The analytic model for the

1

_l -
P(zy v 2, ,0) = {1+ exp[B, (z; + al)]} + {1+ exp[B, (z, + az)]}
{1+ exB (z. + a1} {1+ explB (z, + a )1} 7>
11 I 272 2
‘{l+a{l+ex_p[B (z +a)]}_l {1+ exp[B, (2, + a )1}
0 11 1 292 2
+ explBy(z) + a)) + B (z, + a2)]} :
-0 < zl ’ Z2 < oo
A resumé of the results is given in Table 2. The entries of Table 2 are
the same as those of Table 1.
Data No. of | ] 5
Set N | Significant | SSE | d.f. SSR | 4.f. R
No. Chi-squares | I
1 18 5 76.403 | 13 | 48773 | 4 .99844
2 10 4 29.262 | 5 574.90 | 4 .95157
3 24 0 15.603 | 19 3165.4 | 4 .99509
4 17 2 29.616 | 12 1365.2 | 4 .97877
5 12 3 30.169 | 7 675.69 | 4 .95724
6 15 0 11.976 | 10 | 20170 | 4 .99941
7 40 2 39.020 | 35 221.36 | 4 .85014

TABLE 2

(206)

1
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As was the case for the bivariate normit, the regression was found
to be significant for each of the seven data sets, and data sets three,
six, and seven have nonsignificant chi-squares indicating no significant
departure from regression.

For each data set, the SSE from the bivariate logit analysis was
larger than the corresponding SSE frém the bivariate normit analysis.
Similarly R2 from the bivariate logit analysis for each data set was
smaller than the corresponding R2 from the bivariate normit analysis.

The bivariate logit analysis indicated that the same number of data points
differed significantly from the bivariate logit model as was the case with
bivariate normit model for each data set with the exception of data set
two (simple similar action), and data set five. With data set two, the
bivariate logit analysis indicated that four out of the ten data points
differed significantly from the bivariate logit model as compared to one
out of ten in the bivariate normit analysis. With data set five, the
bivariate logit analysis indicated that three out of the twelve data
points differed significantly from the bivariate logit model as compared
to two out of twelve in the bivariate normit analysis.

On the whole, the bivariate logit analysis did not do as well as
the bivariate normit analysis, although it did nearly as well with six
out of seven of the data sets. It would seem likely that the main reason
that the bivariate logit model did not do as well was due to the fact
that the correlation coefficient of the model employed was restricted so
that Ipl < 0.30396 , approximately, and ISI >-.0.30396 for all seven data
sets in the bivariate normit analysis. It would be useful to extend this
investigation to include a bivariate logit model where the correlation

coefficient is not so restricted, i.e., where - 1 < p <1 inclusive.



CHAPTER IV

In this chapter the assumption that the margiﬁals follow the Burr
distribution will be made. This is a somewhat more general assumption
than the assumption that the marginals are normal (or logistic).
The general system of distributions referred to here was first
given by Burr (1942). Using as an expression for the distribution function
1-(1+)P X >0;b,p >0
F(x) = (27)
0] X <0
F(x) covers an important region of the standardized third and fourth central
moments in the following sense. Figure 1 shows that the system covers a
large portion of the curve-shape characteristics for Types I, III, IV, and
VI of the Pearson system. Figure (1) is drawn with coordinates az =B

3

and § = (Zoz4 - 3a§ - 6)/(a4‘+ 3), where ai is the ith standardized central

1

moment. The regions covered by the Pearson Types I (or beta), IV, and VI
are indicated, as well as Type III (or gamma) which lies on a curve, and
the normal, logistic,rectangular, and exponential distributions which are
represented by points. The subscript B refers to bell shaped functions
and J to J shaped functions. It can be seen from Figure (1) that this
system of distributions is quite general.

Takahasi (1965) developed a multivariate Burr distribution by using
the fact that a Burr distribution is a compound Weibull distribution with

a gamma-distribution as a compounder. That is, if

22



Figure 1. Upper and lower bounds of coverage in Bl , ¢
space for the general system of distributions as given

by Burr (1968).
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ebxb—le—@x
w(x;b,0) =( (28)

and 0 is a random variable such that

0P %) o> 0
g(eip,1) = | (29)
0 O < 0

then the resultant probability density function is Burr. The special case

of the bivariate density is

b.~-1 b_~1 b b
_ [(p+2) 1 1 2, - (pt2)
Exprx) =55 PrPafih*1 % (L+ zpx "+ ryx)) x>0 (i=1,2)
=0 elsewhere. (30)
The bivariate distribution is
b b b b
=1 - l,-p _ 2, -p 1 2. -p
F(xl ’ x2) =1 (1 + r Xy ) 1 + r2x2 ) + (1 + ry X + r2y )
x. <0
i 2
=0 elsewhere. (31)

It should be noted at this point that the r, are equal to one in the Burr
distribution as given by Burr (1942). 1If xi is set equal to Bi(zi + ai),
it is easily seen that the ri's are redundant. In addition, if the bi's
and p are held constant, e.g., the third and fourth standardized central
moments can be set equal to those of the normal distribution by proper
choice of the bi's and p , then the correlation coefficient is a constant.
It was attempted to find a form of a bivariate Burr distribution such

that the correlation coefficient would not be a fixed constant. The form

developed by the author is



- 2...
F(xl ,x2) =1- (1 + xl ) - 1+ x2

=0 elsewhere . (32)

The bivariate density is

b b b.-1 b -1 b b

2 1 1 2 1 2
= +
f(xl, x2) plp + 1)1 +rx2 Y (1 + rxy )blb2 Xy X, (1 + Xy X,
_ - b
+ r bl b2)-(P+2) - prb.b bl . b2 l(1 + xbl + xb2 + rxblx 2)—(p+l)
R ) Proq 0% % 1 2 1 %2 :
x, > 0
1=
0O<r<p+tl
=0 elsewhere . (33)

The marginals are of the form given by Burr (1942). The conditional

distribution of X given xj i#3 1is

b. b _
1+ x.j 1+ rx,:l b, p
F(x.lx.) =1-r —_d 1+ ——— x,l
it b. b. i
l+:['x.:l 1 + x_J
J ]
b
r-1 1+ rx,” bi - (p+l)
+ -
* b 1 b. x5 Xy 20
1+ rx.J 1+ xj:J
=0 elsewhere . (34)
The conditional density of 3 given x, is
b b.
j - (p+2
bi 1+ rxjJ bi—l 1 + rx.J bi (p+2)
= e tr—————— + .
f(xi|xj) (p+l)(1+rxi ) o bixi 1 ——————%f X,
1+ x.9 1+ x.9
J ]
b,
- (p+
b.-1 1+ rx,d b, (p+1)
- rb.x 1+ » xi . xl >0
1 + x,j
J

=0 elsewhere. (35)
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The correlation coefficient is

r 1 .
+-————F(p —-—-,l+-—;p+l;l-r)
pb, 21 b, 5
{Eﬁ(l + 5_>F< - §3>F(p) - P2<1 + §L>F2<p - §L> .
1 1 1 1

‘ 2
2 2 2 1\.2 1
r'f1 + —j\r ———T(p)—I‘(l+——>F<p--—>]} , (36)
[< b2>< bz) b2 b2 .

where 2Fl(a,8;y,z) is Gauss' hypergeometric function. If r =1 , then

o] =0 .
A bivariate Burrit analysis was run on the seven sets of data using
the bivariate Burr distribution described above. The analytic model for

the bivariate Burrit analysis was

b b
_ _ | [0 1
P(zl ' Zy o ) =1 1+ [Bl(zl + Zl)] + [B2(z2 + a2)]
b b
1 2l-p _ <
+ r[Bl(zl + al)] [B2(z2 + a2)] . a; < zy
—a2 f z2 < ©
=0 elsewhere . (37)

A resume of the results is given in Table 3. The rows corresponding to

eight parameters to be estimated constitute the general case of the Burrit



Data No. of No. of 1 I 2
set Parameters | N|Significant| SSE |d.f.| SSR|d.f.| R
No. |To be Estimated Chi-squares l |
8 2 41.646| 10 |67964 | 7 |.99939
1 7 18 5 64.694) 11 | 45745 | 6 |.99859
5 5 70.017' 13 | 70566 ' 4 |.99901
4 5 92.619| 14 |34582 | 3 |.99733
8 3 23.0271 2 |573.700 7 |.96146
5 7 10 4 38.279| 3 |544.20| 6 |.93380
5 3 26.296; 5 [577.20] 4 |.95643
4 5 46.538l 6 |559.00 3 |.02316
] ]
L T
8 0 13.227) 16 |4262.0) 7 | .99690
3 7 " 2 29.737' 17 |1178.8' 6 |.97539
5 2 32.579| 19 |8668.4| 4 |.99696
4 10 114.17) 20 |1309.0) 3 |.91978
8 2 27.125| 9 |1655.7] 7 |.98388
4 7 17 3 32.7682) 10 | 1683.0) 6 | .98089
5 2 27.130' 12 |1673.8' 4 |.98450
4 3 34.593| 13 |1483.8] 3 |.97722
8 2 20.221 4 |1081.9 7 |.97370
5 7 12 2 31.901] 5 [1508.3] 6 {.97929
5 2 29.379; 7 {862.11 4 |.96705
4 3 36,6031 8 |905.50 3 | .96115
| |
8 1 660, 7 5 | 9986
: 9.660 67305 | 7 | .999
p 7 15 2 13,6481 8 |13308 | 6 |.99808
5 0 12.047| 10 {23681 | 4 |.99949
4 1 23.480| 11 |6862.7) 3 |.99659
8 2 38.293| 32 |217.30] 7 |.85018
. 7 20 3 38.765 33 219.84) 6 | .85010
5 2 38.338' 35 |218.53 4 |.85075
4 2 38.766| 36 |219.06] 3 | .84964

TABLE 3
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analysis; the rows corresponding to seven parameters to be estimated
correspond to the special case with r = 0 which reduces to a Burrit analysis
using the bivariate Burr distribution developed by Takahasi (1965). The
rows corresponding to five and four parameters to be estimated have a3 =0,
a4 =3 (the third and fourth standardized central moments), which are the
same as the normal distributions' a3-and O, - The first of these is a
special case of the general Burrit analysis and the second, a special case
of the Burrit analysis using the Takahasi bivariate Burr distribution.

As was the case for both the bivariate normit and the bivariate logit,
the regression was found to be significant for each of the seven data sets
for all of the bivariate Burrit analyses (four on each data set). The
chi-square test was insignificant, indicating no significant departure
from regression for data set three with the general Burrit analysis, for
data set six for all but the analysis with four parameters to be estimated,
and for data set seven for all four of the analyses.

The SSE from the general case of the bivariate Burrit analysis was
significantly smaller than that from the bivariate normit analysis only
with the synergistic data (data set one). In no other case is there any
indication that the bivariate Burrit model is better than the bivariate
normit model in the actual fitting of these data to a model.

Each SSE from the bivariate Burrit analyses utilizing the bivariate
Burr developed in this paper is significantly smaller than the corresponding
SSE from the analyses utilizing the Takahasi bivariate Burr distribution
in all but three cases: both cases with data set seven, and the first case
with data set five (the case corresponding to the two analyses with eight

and seven parameters to be estimated). On the basis of these analyses it

would seem that the bivariate Burr developed in this paper would be, in
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general, more useful in application than the form developed by Takahasi.

In addition it may be noted that the marginal distributions for the
synergistic data, as characterized by a3 and a4 , do not lie in the same
Pearson curve area (see figure 2). The marginals for data set three also
display this characteristic but not to as high a degreé. The marginals
for data sets four through seven are all clustered around the normal dis-
tribution. The fact that the assumption that the marginals are Burr dis-
tribution does allow given marginal to have curve shape characteristics’
different from that of the other marginal suggests that the bivariate
Burrit analysis may be well adapted for the analysis of data where the
marginal distributions do not belong to the same family, e.g. the family
of normal distributions.

In summary, the bivariate analyses utilizing the general form indicated
by equation (16) seem to do quite well with a diversity of mixtures of
stimulants as is evidenced by the seven sets of data which have been ana-
lyzed in this paper. The bivariate normit model and the bivariate Burrit
model (general case, i.e., the case Qith eight parameters to be estimated)
seem to be best suited for these types of analyses. The bivariate normit
model would have to be recommended if the number of parameters to be esti-
mated is of concern, but otherwise the bivariate Burrit model could well

be the best model for these types of analyses.



Iv

Figure 2. Expanded portion of the coverage Bl , O space.
The x's mark six of the sample population points (Bl ; S),
from the data sets analyzed in this paper. Ni(N=l, 2, 3;

i=a, b) refers to the ith marginal of the Nth data set.
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APPENDIX T

Data of Kagy and Richardson (1936): The combined action of 2-4
dinitro-6-cyclohexylphenol and petroleum oil sprayed in emulsions against

eggs of a plant bug (Lygaeus Kalmii Stgl). The data as described by Kagy

and Richardson, the translated data, and the analyses on this set of data

(data set one) are in this appendix.
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DATA AS DESCRIBED IN TEXT TRANSLATED DATA

CONCENTRATION OF
N
Phenol Mixture Number Net
in 0il in of Kill X (1) X(2) P,
Mixture % Spray % Eggs %

0] 1 240 6.5 0 .01 .0667
0 2 479 40.1 0 .02 .4008
0 3 479 58.7 0 .03 . 5866
0.1 1 240 9.9 .00001 .00999 .1000
0.1 2 479 59.7 .00002 .01998 .5971
0.1 3 479 72.3 .00003 .02997 .7223
0.5 1 288 30.1 .00005 .00995 .3021
0.5 2 479 73.7 .0001 .0199 .7370
0.5 3 479 90.4 .00015 .02985 .9040
1.0 1 288 58.6 .0001 .0099 .5868
1.0 2 384 94.0 .0002 .0198 .9401
1.0 3 288 97.22 .0003 .0297 .9722
2.0 1 288 81.2 .0002 .0098 .8125
2.0 2 384 97.13 .0004 .019%6 .9714
2.0 3 288 99.65 .0006 .0294 . 9965
3.0 1 288 86.8 .0003 .0097 .8681
3.0 2 384 99.48 .0006 .0194 .9948
5.0 1 240 96.66 .0005 .0095 .9667

Here (Ni(ith Net kill %)/100) was rounded off to the nearest integer --
which should be ri, the number that responded to the ith mixture of stim-

ulants, and then p, was computed as ri/Ni.



BIVARIATE NORMIT ANALYSIS

Parameter Estimates Chi-square Analysis Table
al = 8.640 source d.f.
%l = 0.935 Due to Model SSR 4 66041
T 5.583 Departure from Model SSE 13 67.029
27 2 TOTAL ssT | 17 66107
?2 = 1.489 3
p = -0.379 Coefficient of Determination R = .99899

Residual Analysis

pi Pi Residual Chi-square
.0667 | .1016 | -.0349 3.201
.4008 | .4049 | -.0041 0.033
.5866 | .6417 | -.0551 6.317
.1000 | .1180 | -.0180 0.750
.5971 | .4637 .1334 34.266
.7223 | .7231 | -.0008 0.002
.3021 | .3596 | =-.0575 4.139
.7370 | .7675 | -.0305 2.490
.9040 | .9277 | -.0237 4.024
.5868 | .5859 -.0009 0.001
.9401 | .8986 .0415 7.266
L9722 | .9768 | -.0046 0.274
.8125 | .7986 | -.0139 0.346
.9714 | .9691 .0023 0.069
.9965 | .9950 .0015 0.137
.8681 | .8865 | ~-.0184 0.973
.9948 | .9870 .0078 1.809
L9667 | .9536 .0131 0.931




Parameter Estimates
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BIVARIATE LOGIT ANALYSIS

Chi-square Analysis Table
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-0.938 source a.f.
9.220 Due to Model SSR 4 48773
-1.690 Departure from Model SSE 13 76.402
TOTAL SST 17 48849
3.762
-2.413 Coefficient of Determination R2 = .99844
Residual Analysis
1 Pi Residual Chi-square
.0667 .1155 -.0488 5.597
.4008 .4103 ~-.0095 0.177
.5866 .6492 -.0626 8.246
.1000 .1352 -.0352 2.540
.5971 .4601 .1370 36.200
.7223 .7120 .0103 0.247
.3021 .3438 -.0417 2.220
.7370 .7627 -.0257 1.749
.9040 .9303 -.0263 5.117
.5868 .5837 .0031 0.011
.9401 .9013 .0388 6.503
.9722 .9774 -.0052 0.348
.8125 .8087 .0038 0.027
.9714 .9658 .0056 0.365
. 9965 .9929 .0036 0.520
.8681 .8917 -.0236 1.654
.9948 .9821 .0127 3.527
.9667 .9504 .0163 1.354




BIVARIATE BURRIT ANALYSES

l: General Case - Eight Parameters to be Estimated

Parameter Estimates

~

[oRAN ]
=

Ww> > W g o
N

NN

3.556
9.643
1.773
4.813
18.073
0.094
4.877
0.318

Chi-square Analysis Table

35

source d.f.
Due to Model SSR 7 67964
Departure from Model SSE 10 41.646
TOTAL SST 17 68006
. . . . 2
Coefficient of Determination R = .99939

Residual Analysis

.0667
.4008
.5866
.1000
.5971
.7223
.3021
.7370
.9040
. 5868
.9401
.9722
.8125
.9714
. 9965
.8681
.9948
.9667

P,
1

.0602
.4273
.6289
.1018
.5054
.7202
.3471
.7743
.9211
.5627
.9010
.9755
.7823
.9711
. 9950
.8781
.9883
.9516

Residual Chi-square
. 0065 0.181
-.0265 1.377
-.0423 3.676
-.0018 0.008
.0917 16.107
.0021 0.010
-.0450 2.575
-.0373 3.821
-.0171 1.935
.0241 0.682
.0390 6.580
-.0033 0.130
.0302 1.540
.0003 0.014
.0015 0.137
-.0100 0.271
.0066 1.420
.0151 1.194
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2: Takahasi Burr - r = 0 ; Seven Parameters to be Estimated

Parameter Estimates Chi-square Analysis Table
Bl = 8.008 source d.f.
b, = 1.799 Due to model SSR 6 | 45745
S 6.239 Departure from Model SSE 11 64.694
po= 5 TOTAL sST | 17 | 45810
a; = 16.156
Bl = 0.113 5
~ Coefficient of Determination R™ = .99859
a, = 4.869
B2 = 0.291

Residual Analysis

P, Pi Residual Chi-square
. 0667 .0592 .0075 0.245
.4008 .4480 -.0472 4.318
.5866 .6599 -.0733 11.463
.1000 .0921 .0079 | 0.181
.5971 .5001 .0970 18.015
.7223 .7115 .0108 0.272
.3021 .3552 -.0531 3.544
.7370 . 7466 -.0096 0.231
.9040 .8874 .0166 1.319
.5868 .5958 -.0090 0.097
.9401 .8844 .0557 0.001
.9722 .9581 .0141 1.420
.8125 .8261 -.0136 0.370
.9714 . 9670 .0044 0.230
. 9965 . 92904 .0061 1.111
.8681 .9151 -.0469 8.167
.9948 .9875 .0073 1.656
. 9667 .9733 -.0066 0.403
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Five Parameters to be Estimated

Chi-square Analysis Table
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= 3 (Third and Fourth Standardized Central Moments) ;

4.383 source da.f.
13.485 Due to Model 4 | 70566
0.153 Departure from Model 13 70.017
TOTAL 17 70636
6.426
0.242 Coefficient of Determination R2 = ,99901
Residual Analysis
1} Pi Residual | Chi-square

.0667 .1057 -.0390 3.861

.4008 .4058 -.0050 0.049

.5866 .6443 -.0577 6.967

.1000 .1221 -.0221 1.090

.5971 .4603 .1368 36.090

.7223 .7168 .0056 0.073

.3021 .3594 -.0573 4.107

.7370 .7592 -.0222 1.296

. 9040 .9271 -.0231 3.794

.5868 .5829 .0039 1.873

.9401 . 8964 .0437 7.906

.9722 .9782 -.0060 0.483

.8125 . 7985 .0140 0.353

.9714 .9691 .0023 0.068

. 9965 .9954 .0011 0.073

.8681 .8876 -.0195 1.100

.9948 . 9869 .0079 1.847

. 9667 .9543 .0124 0.843
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Takahasi Burr - r = 0O

Standardized Central Moments); b

p:

6.158

Parameter Estimates
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=0 ; a

i 4

3

=b =

.874
1 5 4.87

Chi-square Analysis Table

.
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= 3 (Third and Fourth
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13.460 source a.f.
0.160 Due to Model SSR 3 34582
6.265 Departure from Model SSE 14 92.619
TOTAL SST 17 34674
0.259
Coefficient of Determination R2 .99733
Residual Analysis
P, Pi Residual Chi-square
.0667 .0957 -.0290 2.333
.4008 .4125 -.0117 0.270
.5866 .6674 -.0808 14.102
.1000 .1140 -.0140 0.463
.5971 .4596 .1375 36.464
.7223 .7144 .0079 0.147
.3021 .3799 -.0778 7.395
.7370 .7378 -.0008 14.954
.9040 .8911 .0129 0.822
.5868 .6188 ~.0319 1.246
. 9401 .8789 .0612 13.499
.9722 .9564 .0158 1.723
.8125 .8321 -.0196 0.796
.9714 . 9611 .0103 1.086
. 9965 .9877 .0088 1.844
.8681 .9128 -.0446 7.208
.9948 .9830 .0118 3.208
. 9667 .9680 .0013 0.013




APPENDIX II

Data of Plackett and Hewlett (1952): The toxity to Tribolium
castaneum of D.D.T., methoxychlor (MOC), and combinations of the two
applied in Shell 0il P31 as films on filter paper, six-day exposures.
The data as described by Plackett and Hewlett, the translated data, and

the analyses on this set of data (data set two) are in this appendix.
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DATA AS DESCRIBED BY PLACKETT AND HEWLETT

TRANSLATED DATA

40

D.D.T. MOC Nuﬂier Observed
Percent Percent of Mortality
w/v w/v Beetles Percent

0.4 199 7.5
0.0 0.8 148 29.7
0.0 1.6 199 77.9
0.2 0.0 200 14.5
0.2 0.4 150 26.0
0.2 0.8 151 63.6
0.4 0 149 43.6
0.4 0.4 148 66.2
0.4 0.8 150 78.7
0.8 0.0 199 70.9

X (1) X (2) Py
0.0 0.004 .0754
0.0 0.008 .2973
0.0 0.016 .7789
0.002 0.0 . 1450
0.002 0.004 .2600
0.002 0.008 .6358
0.004 0.0 .4362
0.004 0.004 .6622
0.004 0.008 .7867
0.008 0.0 .7085




Parameter Estimates
%1 = 5.787
Bl = 1.071
?2 = 6.925
?2 = 1.503
p = -0.9999

BIVARIATE NORMIT ANALYSIS

Chi-square Analysis Table

41

source d.f.
Due to Model SSR 4 598.86
Departure from Model SSE 5 21.775|
TOTAL SST 9 620.63
.. . . 2
Coefficient of Determination R~ = .96491

Residual Analysis

.0754
.2973
.7789
.1450
.2600

.6358

.4362
.6622
.7867
.7085

2
.0844
.3693
. 7606
.1920
.2764
.5613
.4491
.5335
.8184

.7306

Residual Chi-square
-.0090 0.210
-.0720 3.292

.0183 0.365
.0470 2.848
-.0164 0.203
.0745 3.405
-.0129 0.100
.1287 9.845
-.0317 1.013
-.0221 0.494
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‘Chi-Square Analysis Table
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-1.000 source da.f.
5.448 Due to Model SSR 4 574.90
-1.776 Departure from Model  SSE 5 29.262
TOTAL SST 9 604.16
4.645
-2,559 Coefficient of Determination R2 = ,95157
Residual Analysis
Py Pi Residual | Chi-square
.0754 .0958 -.0204 0.960
.2973 .3846 -.0873 4.760
.7789 .7865 -.0076 0.068
.1450 .2041 -.0591 4,297
.2600 .2944 -.0344 0.856
.6358 .5486 .0872 4.638
.4362 .4675 -.0313 0.586
.6622 .5401 .1221 8.811
.7867 .7312 .0555 2.351
.7085 . 7504 -.0419 1.864




BIVARIATE BURRIT ANALYSES

1l: General Case - Eight Parameters to be Estimated

Parameter Estimates

K>

o
=)

w> wW> > o> oY

o>
N N

N

5.271
2.351
6.755
4.271
7.252
0.270
8.206
0.21e

Chi-square Analysis Table
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source d.f.
Due to Model SSR 7 573.70
Departure from Model SSE 2 23.027
TOTAL SST 9 596.73
Coefficient of Determination R2 = .96141

Residual Analysis

.0754
.2973
.7789
.1450
.2600
.6358
.4362
.6622
. 7867
.7085

P,
i

.1009
.3814
.7764
.1889
.2862
.5423
.4835
.5643
. 7559
.7387

Residual Chi-square
-.0255 1.430
-.0841 4.440

.0025 0.007
-.0439 2.513
-.0262 0.504

.0935 5.321
-.0473 1.332

.0979 5.768

.0308 0.770
-.0302 0.943
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2: Takahasi Burr - r = 0 ; Seven Parameters to be Estimated

Parameter Estimates Chi-square Analysis Table

61 = 0.961 source d.f.

52 = 5.064 Due to Model SSR 6 | 544.20
~ 3.265 Departure from Model SSE 3 38.249
b= TOTAL SST 9 | 582.45
?1 = 6.399

B, = 0.

! 0.298 ,

a2 = 7.263 Coefficient of Determination R™ = .93433
52 = 0.290

Residual Analysis

pi Pi Residual Chi-square
.0754 | .0987 | -.0233 1.217
.2973 | .4096 | -.1123 7.723
.7789 | .7928 | -.0139 0.234
.1450 | .1774 | -.0324 1.440
.2600 | .2542 .0058 0.026
.6358 | .5004 .1354 11.071
.4362 | .5490 | -.1128 7.662
.6622 | .5844 .0778 3.685
.7867 | .7037 .0830 4.953
.7085 | .7240 | -.0155 0.239
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= 3 (Third and Fourth Standardized Central Moments) ;

4.874 ; p = 6.158 ; Five Parameters to be Estimated

Parameter Estimates

w> o> > > K>

NN

1]

7.158
9.108
0.176
7.272
0.245

Chi-square Analysis Table

.0754
.2973
. 7789
.1450
.2600
.6358
.4362
.6622
.7867
. 7085

source d.f.
Due to Model SSR 4 577.20
Departure from Model SSE 5 26.296
TOTAL SST 9 603.50
Coefficient of Determination R2 = ,95643
Residual Analysis
Pi Residual Chi-square
. 0946 -.0192 0.854
. 3869 -.0896 5.005
. 7805 -.0016 0.003
.2018 -.0568 4.002
.2928 -.0328 0.780
.5586 .0772 3.653
.4628 -.0266 0.424
.5410 1212 8.757
. 7490 .0377 1.133
.7484 -.0399 1.685




4.

Takahasi Burr — r = 0

Standardized Central Moments); b

p = 6.158 ; Four Parameters to be Estimated

Parameter Estimates

> > W> >

1
1
2
2

9.1%6
0.174
7.270
0.248

; a3 =0 ; a4 =

1°- P

= 4.874

3 (Third and Fourth

.
r

Chi-square Analysis Table
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source d.f.
Due to Model SSR 3 559.09
Departure from Model SSE 6 46.537
TOTAL SST 9 605.63
Coefficient of Determination R? = .92316

Res

.0754
.2973
.7789
.1450
.2600
.6358
.4362
.6622
.7867
.7085

Py
.0990
.4013
.7952
.2165
.2912
.5219
.4798
.5264
.6727

.7590

idual Analysis
Residual Chi-square
-.0236 1.239
-.1040 6.666
-.0163 0.324
-.0715 6.027
~-.0312 0.707
.1139 7.855
-.0436 1.135
.1358 10.953
.1140 8.857
-.0505 2.775




APPENDIX IIT

Data of Hewlett and Plackett (1950): A study of six day toxicity to

beetles (Tribolium castaneum) of direct sprays of Pyrethins, D.D.T., and

the two together in Shell 0il P31l. The data as reproduced by Zeigler and

Moore (1966), and the analyses on this set of data (data set three) are in

this appendix.
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DATA AS REPRODUCED BY

ZEIGLER AND MOORE

DEPOSIT

Insecticide (mg./10 sg. cm.) X (1) X(2) Ny Pi
1.2% w/v 2.52 .03024 0 48 | .0625
Pyrethins 3.30 03960 0 48 | .0625
4.25 .05100 0 50 | .1800

5.33 .06396 0 50 | .3200

7.15 .08580 0 50 | .4000

9.53 .11436 0 50 | .6000

12.28 .14739 0 49 | .7551

15.58 .18696 0 50 | .7000
2.0% w/v 2.45 0 .0490 | 49 | .1633
D.D.T. 3.18 0 .0636 | 50 | .1600
4.25 0 .0850 | 50 | .3200

5.48 0 .1096 | 50 | .4200

7.24 0 .1448 | 50 | .5000

9.54 0 .1908 | 50 | .5600

12.36 0 .2472 | 50 | .7000

15.54 0 .3108 | 50 | .7400

1.2% w/v 2.74 .02964 | .0494 | 50 | .2800
Pyrethins 3.20 .03840 | .0640 | 49 | .3673
plus 4.10 .04920 | .0820 | 50 | .4400
2.0% w/v 5.34 .06408 | .1068 | 50 | .7200
D.D.T. 7.11 .08532 | .1422 | 50 | .8400
9.60 .11520 | .1920 | 50 | .9000

12.45 .14940 | .2490 | 50 |1.0000

15.65 .18780 | .3130 | 50 |1.0000




Parameter Estimates
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Chi-square Analysis Table
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2.827 source d.f.
1.231 Due to Model SSR 4 11176
1.698 Departure from Model SSE 19 11.805
TOTAL SST 23 11188
0.882
-0.686 Coefficient of Determination R2 = ,99894
Residual Analysis
p; Pi Residual Chi-square
.0625 .0696 -.0071 0.037
.0625 .1257 -.0632 1.744
.1800 .2017 -.0217 0.146
.3200 .2888 .0312 0.237
.4000 .4225 -.0225 0.104
.6000 .5629 .0371 0.280
.7551 .6809 .0742 1.241
.7000 .7773 -.0773 1.727
.1633 .1677 -.0044 0.007
.1600 .2318 -.0718 1.447
.3200 . 3166 .0034 0.003
.4200 .4002 .0198 0.082
.5000 .4972 .0028 0.002
.5600 .5934 -.0334 0.231
. 7000 .6790 .0210 0.101
. 7400 .7476 -.0076 0.015
.2800 .2358 .0442 0.542
.3673 . 3506 .0167 0.060
.4400 .4896 —-.04%6 0.492
.7200 .6559 .0642 0.912
.8400 .8215 .0185 0.117
.9000 .9364 -.0364 1.109
1.0000 .9816 .0184 0.939
1.0000 .9954 .0046 0.231




Parameter Estimates

> W o

o>

LS SEE S )

It

BIVARIATE LOGIT ANALYSIS

Chi-square Analysis Table
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-1.000 source da.f.
2.338 Due to Model SSR 4 3165.4
-2.090 Departure from Model SSE 19 15,603
TOTAL SST 23 3181.0
1.960
-1.520 Coefficient of Determination R2 = .99509
Residual Analysis
1] Pi Residual | Chi-square
.0625 .0813 -.0188 0.227
.0625 .1346 -.0720 2.140
.1800 .2087 -.0287 0.250
. 3200 .2975 .0225 0.121
.4000 .4390 -.0390 0.309
.6000 .5879 .0121 0.030
.7551 .7079 .0472 0.528
. 7000 .7994 -.0994 3.082
.1633 .1674 -.0041 0.006
.1600 | .2301 | -.0701 1.385
. 3200 .3171 .0029 0.002
.4200 .4059 .0141 0.041
.5000 .5105 -.0105 0.022
.5600 .6133 -.0533 0.600
.7000 .7016 -.0016 0.001
. 7400 .7690 -.0290 0.237
.2800 .2442 .0358 0.347
.3673 .3493 .0180 0.070
.4400 .4754 -.0354 0.252
.7200 .6266 .0934 1.865
. 8400 .7816 .0584 0.999
.9000 .9002 -.0002 0.000
1.0000 .9578 .0422 2.201
1.0000 .9826 .0174 0.888




‘BIVARIATE BURRIT ANALYSES

51

1l: General Case - Eight Parameters to be Estimated

Parameter Estimates

@> Wy > B> oY D> K
NN

o>

6.323
3.933
2.941
5.323
4.863
0.239
4.760
0.183

Chi-square Analysis Table

d.f.

7 4258.4
16 13.227
23 4271.6

source

Due to Model SSR

Departure from Model SSE

TOTAL SST

Coefficient of Determination

Residual Analysis
P, Pi Residual Chi-square

.0625 .0622 .0003 0.000
.0625 .1216 -.0591 1.569
. 1800 .2025 -.0225 0.156
.3200 .2947 .0253 0.154
.4000 .4346 -.0346 0.244
.6000 .5784 .0216 0.095
.7551 .6963 .0588 0.802
. 7000 .7898 -.0898 2.429
.1633 .1666 -.0033 0.004
.1600 .2384 -.0784 1.691
.3200 .3298 ~-.0098 0.022
.4200 .4161 .0039 0.003
.5000 .5120 -.0120 0.029
.5600 .6034 -.0434 0.393
. 7000 .6820 .0180 0.075
. 7400 .7438 -.0038 0.037
.2800 .2261 .0540 0.832
.3673 .3475 .0198 0.085
.4400 .4875 -.0475 0.451
.7200 .6463 .0737 1.187
.8400 .8007 .0393 0.484
.9000 .9135 -.0135 0.115
1.0000 .9660 .0340 1.759
1.0000 .9873 .0127 0.644

R2 = .99690



2:

Takahasi Burr - r =

Parameter Estimates

p> W > K> oY o
[\S) N = N =

o>

]

3.831
2.939
6.740
4.675
0.243
4.701
0.176

0 ; Seven Parameters to be Estimated

Chi-square Analysis Table
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source d.f.
Due to Model SSR 6 1178.8
Departure from Model SSE 17 29,737
TOTAL SST 23 1208.5
Coefficient of Determination R2 = .97539
Residual Analysis
P, Pi Residual Chi-square

.0625 .0540 .0085 0.067

.0625 .1148 -.0523 1.292

.1800 .2011 -.0211 0.138

. 3200 .3017 .0184 0.080

.4000 .4552 -.0552 0.614

.6000 .6110 -.0109 0.025

.7551 .7346 .0205 0.106

.7000 .8282 -.1282 5.772

.1633 .1707 -.0074 0.019

.1600 .2469 -.0869 2.032

. 3200 . 3444 -.0244 0.132

.4200 .4361 -.0lel 0.053

.5000 .5373 -.0373 0.280

.5600 .6326 -.0725 1.132

. 7000 .7132 -.0132 0.042

. 7400 .7752 -.0352 0.355

.2800 .2137 .0663 1.310

.3673 .3256 .0417 0.387 .

.4400 .4503 -.0103 0.022

.7200 .5888 .1312 3.554

. 8400 .7267 .1134 3.234

.9000 . 8406 .0594 1.318

1.0000 .9088 .0912 5.019
1.0000 .9478 .0522 2.754




53

3: o, = 0 ; a, = 3 (Third and Fourth Standardized Central Moments) ;
bl = b2 = 4.874 ; p = 6.158 ; Five Parameters to be Estimated
Parameter Estimates Chi-square Analysis Table
r = 7.129 source d.f.
a; = 5.499 Due to Model SSR 4 8668. 4
A = 0.200 Departure from Model SSE 19 32.579
Al TOTAL SST 23 8701.0
?2 = 5.056 » 3
B2 = 0.207 Coefficient of Determination R = .99626
Residual Analysis
1 Pi Residual Chi-square

. 0625 .0679 -.0054 0.022

.0625 .1215 -.0590 1.566

. 1800 .1937 -.0137 0.060

. 3200 .2771 .0429 0.460

.4000 .4076 -.0076 0.012

.6000 .5483 .0517 0.540

. 7551 .6695 .0856 1.624

. 7000 .7699 -.0699 1.378

.1633 .0884 .0749 3.408

.1600 .1525 .0075 0.022

. 3200 .2532 .0668 1.178

.4200 .3654 .0546 0.644

.5000 .5046 -.0046 0.004

.5600 .6438 -.0838 1.530

.7000 .7602 -.0602 0.995

. 7400 .8431 -.1031 4.014

.2800 .1542 .1258 6.062

.3673 .2656 .1018 2.601

.4400 .4094 .0306 0.194

. 7200 .5903 .1297 3.477

.8400 .7803 .0597 1.041

.9000 .9197 -.0197 0.263

1.0000 .9767 .0233 1.193
1.0000 .9942 .0058 0.291




4:

Takahasi Burr - r

Standardized

p = 6.158

Parameter Estimates

W

>

w> o>

1
1
2
2

1]

4.932
0.246
4.585
0.237

0

Central Moments); b

; Four Parameters to be Estimated

; a3 =0 ; O

4

b

1 2

= 4,874 ;

Chi-square Analysis Table

= 3 (Third and Fourth

source da.f.

Due to Model SSR 3 1309.0

Departure from Model SSE 20 114.16

TOTAL SST 23 1423.2

Coefficient of Determination R2 = .91978

Residual Analysis
1 Pi Residual | Chi-square

.0625 .0377 .0248 0.813
.0625 .0849 -.0224 0.309
.1800 .1588 .0212 0.168
.3200 .2533 .0667 1.176
.4000 .4114 -.0114 0.027
.6000 .5849 .0151 0.047
. 7551 .7280 .0271 0.182
. 7000 .8357 -.1357 6.706
.1633 .0482 .1151 14,133
.1600 .0989 .0611 2,094
.3200 .1906 .1294 5.423
.4200 .3043 L1157 3.162
.5000 .4569 .0431 0.374
.5600 .6174 -.0573 0.696
. 7000 .7533 -.0533 0.764
. 7400 .8480 -.1080 4.521
.2800 .0827 .1973 25.672
.3673 .1693 .1978 13.626
.4400 .2940 .1460 5.132
.7200 .4632 .2568 13.259
. 8400 .6569 .1831 7.440
.9000 .8241 .0759 1.987
1.0000 L9172 .0828 4.513
1.0000 .9625 .0375 1.947




APPENDIX IV

Data of J. T. Martin (1942): The toxicities to Macrosiphoniella

sanborni of rotenone, a deguelin concentrate, and of a mixture. Tests

of 17 November 1938. Fivefold replication. Results one day after spraying.
Medium 0.5% saponin, containing 5% alcohol. Tattersfield apparatus. The
data as described by Martin, the translated data, and the analyses of this

set of data (data set four) are in this appendix.
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DATA AS DESCRIBED BY MARTIN

CONCENTRATIONS (mg./%.)

Nj
X(2) Number of
X (1) Deguelin Insects Percent
Rotenone Concentrate Used Mortality
10.2 0.0 50 88.0
7.7 0.0 49 85.7
5.1 0.0 46 52.2
3.8 0.0 48 33.3
2.6 0.0 50 12.0
0.0 50.5 48 100.0
0.0 40.4 50 94.0
0.0 30.3 49 95.9
0.0 20.2 48 70.8
0.0 10.1 48 37.5
0.0 5.1 49 32.6
5.1 20.3 50 96.0
4.0 16.3 46 93.5
3.0 12.2 48 79.2
2.0 8.1 46 58.7
1.0 4.1 46 47.8
0.5 2.0 47 14.9

TRANSLATED

56

DATA

. 8800
.8571
.5217
.3333
.1200
1.0000
.9400
.9592
.7083
.3750
.3265
.9600
.9348
.7917
.5870
.4783
.1489




BIVARIATE NORMIT ANALYSIS

Parameter Estimates Chi-square Analysis Table
31 = =2.,775 source d.f.
B. = 1.762 Due to Model SSR 4 | 1656.0
.1 _ Departure from Model SSE 12 27.146
a, = ~1.645 TOTAL ssT | 16 | 1683.1
B, = 0.823 -
2 2
6 = -0.530 Coefficient of Determination R = .98387

Residual Analysis

pi Pi Residual Chi-square
.8800 | .9059 -.0259 0.392
.8571 | .7940 .0631 1.193
.5217 | .5377 -.0160 0.047
.3333 | .3359 -.0026 0.001
.1200 | .1374 -.0174 0.128
1.0000 | .9432 .0568 2.893
.9400 | .9190 .0210 0.297
.9592 | .8773 .0819 3.053
.7083 | .7962 -.0879 2.284
.3750 | .6017 | =-.2267 10.297
.3265 | .3805 -.0540 0.605
.9600 | .9649 -.0049 0.036
.9348 | .9084 .0264 0.386
.7917 | .7893 .0024 0.002
.5870 | .5826 .0044 0.004
.4783 | .3170 .1613 |  5.528
.1489 | .1506 -.0017 0.001
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Chi-square Analysis Table
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-4.184 source da.f.
2.545 Due to Model SSR 4 921.36
—4.978 Departure from Model SSE 7 28.947
TOTAL SST 11 950. 30
1.618
-0.743 Coefficient of Determination R2 = ,96954
Residual Analysis
p. Pi Residual Chi-square
1.0000 .9577 .0423 1.236
.8500 .8396 .0104 0.032
.3750 .4846 -.1096 2.306
.0816 .0904 -.0088 0.046
.9216 .9145 .0071 0.032
.9184 .8172 .1012 3.359
.3878 .5467 -.1589 4.993
.0652 .2830 -.2178 10.753
.9200 .9217 -.0017 0.002
.6667 .6173 .0492 0.491
. 3182 .2258 .0924 2.149
.1020 .0458 .0562 3.548




BIVARIATE LOGIT ANALYSIS

Parameter Estimates Chi-square Analysis Table
éo = -1,000 source d.f.
a, = -1.611 Due to Model SSR 4 675.39
1
AT 509 Departure from Model  SSE 7 30.169
By = -3 TOTAL ssT | 11 | 705.56
a, = -3.136 -
/\2 2
B2 = =3.145 Coefficient of Determination R = .95724

Residual Analysis

P, Pi Residual Chi-square
1.0000 .9240 .0760 2.303
. 8500 .8159 .0341 0. 310
. 3750 .5164 -.1414 3.844
.0816 .1510 -.0694 1.841
.9216 .9221 -.0005 0.000
.9184 .8275 .0909 2.836
.3878 .5095 -.1217 2.904
.0652 .2133 -.1481 6.010
.9200 .8549 .0651 1.707
. 6667 .5743 .0924 1.678
.3182 .2141 .1041 2.835
.1020 .0441 .0579 3.902




BIVARIATE BURRIT ANALYSES

1: General Case - Eight Parameters to be Estimated

Parameter Estimates Chi-square Analysis Table
r = 7.345 source d.f.
Bl = 6.078 Due to Model SSR 7 1081.9
5 —= 5.388 Departure from Model SSE 4 29.221
2 TOTAL SST 11 1111.1
p = 6.345
al = 0.224 5
A Coefficient of Determination R = .97370
B1 = 0.373
a, = -0.48
?2 0 3
B2 = 0.260

Residual Analysis

1 Pi Residual Chi-square
1.0000 .9691 .0309 0.893
.8500 .8526 -.0025 0.002
.3750 .4718 -.0967 1.803
.0816 . 0896 -.0080 0.039
.9216 .9361 -.0145 0.180
.9184 .8434 .0750 2.087
.3878 .5585 -.1707 5.794
.0652 .2823 -.2171 10.704
.9200 .8784 .0416 0.811
.6667 .5871 .0796 1.254
. 3182 .2258 .0924 2.151

.1020 .0460 .0560 3.503
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Takahasi Burr - r = 0

Parameter Estimates
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|_l
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; Seven Parameters to be Estimated

Chi-square Analysis Table
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9.296 source d.f.
7.696 Due to Model SSR 6 1508.3
77.198 Departure from Model SSE 5 31.901
TOTAL SST 11 1540.2
1.655
0.183 5
0.700 Coefficient of Determination R™ = .97929
0.142
Residual Analysis
1 Pi Residual Chi-square
1.0000 .9804 .019%6 0.559
.8500 .8623 -.0123 0.051
. 3750 .4921 -.1171 2.631
.0816 .1317 -.0501 1.074
.9216 .9509 -.0293 0.935
.9184 .8434 .0751 2.089
.3878 .5262 -.1384 3.767
.0652 .2614 -.1962 9.171
.9200 .7874 .1326 5.253
.6667 .5364 .1304 3.280
.3182 .2376 .0806 1.577
.1020 .0602 .0418 1.515




3: o, =3 d, = 3 (Third and Fourth Standardized Central Moments) ;

3 4

bl = b2 = 4,874 ; p = 6.158 ; Five Parameters to be Estimated

Parameter Estimates Chi-square Analysis Table

r = 7.158 source d.f.

51 = -0.085 Due to Model SSR 4 862.11

% = 0.414 Departure from Model SSE 7 29.379
1 TOTAL SST 11 891.49

= ~0.588
?2 0.58 5
B2 = 0.260 Coefficient of Determination R = .96705

Residual Analysis

1 Pi Residual Chi-square
1.0000 .9598 .0402 1.174
.8500 .8426 .0074 0.016
.3750 .4811 -.1061 2.166
.0816 .0925 -.0109 0.069
.9216 .9181 .0035 0.009
.9184 .8217 .0697 3.126
.3878 .5500 -.1622 5.205
.0652 . 2887 -.2235 11.188
.9200 .8762 .0438 0.883
.6667 .5942 .0725 1.046
.3182 .2333 .0849 1.773
.1020 .0504 .6516 2.723




4: Takahasi Burr - r = 0 ; u3 =0 ; a4 = 3 (Third and Fourth

Standardized Central Moments); bl = b2 = 4.874 ;

p = 6.158 ; Four Parameters to be Estimated

Parameter Estimates Chi-square Analysis Table
al = -0.080 source d.f.
él = 0.418 Due to Model SSR 3 | 905.59
A = -0.488 Departure from Model SSE 8 36.603
2 ) TOTAL SST 11 942.19
B2 = 0.254 5
Coefficient of Determination R = .96115

Residual Analysis

pi Pi Residual Chi-square
1.0000 .9659 .0341 0.989
. 8500 .8588 ~-.0088 0.025
. 3750 .5037 -.1287 3.179
.0816 .0993 -.0177 0.172
.9216 .9207 .0009 0.001
.9184 .8294 .0890 2.741
.3878 .5697 -.1819 6.615
.0652 .3118 -.2466 13.032
.9200 .7923 .1277 4.954
.6667 .5576 .1091 2,317
.3182 .2484 .0698 1.147
.1020 .0611 .0409 1.430




APPENDIX VI

Data of J. T. Martin (1942): The toxicities to Macrosiphoniella

sanborni of rotenone, R—a—toxicarol,.and of a mixture. Tests of

24 September 1941. Fivefold replication. Results one day after spraying.
Medium 0.5% saponin, containing 5% of alcohol. Tattersfield apparatus.
The data as described by Martin, the translated data, and the analyses of

this set of data (data set six) are in this appendix.
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DATA AS DESCRIBED BY MARTIN

CONCENTRATIONS (mg./%.)

Ny
Number of
X (1) X(2) Insects Percent
Rotenone f2-a-Toxicarol Used Mortality
1.06 0.0 51 100.0
0.85 0.0 48 97.9
0.64 0.0 48 93.8
0.42 0.0 48 62.5
0.21 0.0 48 12.5
0.0 9.75 49 100.0
0.0 7.80 48 97.9
0.0 5.85 52 98.1
0.0 3.90 49 87.7
0.0 1.95 48 50.0
0.53 4.88 48 100.0
0.42 3.90 48 100.0
0.32 2.93 49 89.8
0.21 1.95 50 82.0
0.11 0.98 50 30.0

TRANSLATED

72

DATA

Pi

1.0000
.9792
.9375
.6250
.1250

1.0000
.9792
.9808
.8776
.5000

1.0000

1.0000
. 8980
.8200
. 3000




1:

BIVARIA
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TE NORMIT ANALYSIS

Using Relative Change in Weighted Sum of Squares Due

To Error as Part of the Convergence Criteria

Parameter Estimates

o> >
N N M

> W >

Chi-square Analysis Table

2.372 ‘source da.f.
2.212 Due to Model SSR 4 30672
-0.580 Departure from Model SSE 10 10,144
TOTAL SST 14 30682
1.328
-0.432 Coefficient of Determination R2 = .99967
Unweighted Sum of Squares Due to Error = .03204
Residual Analysis
pi Pi Residual | Chi-square
1.0000 .9938 .0062 0.318
.9792 .9779 .0013 0.004
.9375 .9169 .0206 0.267
.6250 .6747 -.0497 0.541
.1250 .1401 -.0151 0.090
1.0000 .9928 .0072 0.357
.9792 . 9845 -.0053 0.089
.9808 .9614 .0194 0.528
.8776 .8903 -.0127 0.081
. 5000 .6207 -.1207 2.971
1.0000 .9985 .0015 0.072
1.0000 .9893 .0107 0.518
.8980 .9385 -.0405 1.391
.8200 .7130 .1070 2.796
. 3000 .2780 .0220 1.210




74
BIVARIATE NORMIT ANALYSIS

2: Using Relative Change in Unweighted Sum of Squares

Due to Error as Part of the Convergence Criteria

Parameter Estimates Chi-square Analysis Table
al = 2.279 source d.f.
B = 2.063 Due to Model SSR a | .19-10!8
S = -0.589 Departure from Model SSE 10 .78+101°
8 = 7 TOTAL SST 14 .19-1018
?2 = 1.290 3
p = -0.9999 Coefficient of Determination R = .99592
Unweighted Sum of Squares Due to Error = .03127

Residual Analysis

p, Pi Residual Chi-square
1.0000 | .9918 .0082 0.422
.9792 | .9740 .0052 0.050
.9375 | .9129 .0246 0.367
.6250 | .6878 -.0628 | 0.882
.1250 | .1736 -.0496 0.790
1.0000 | .9906 .0094 0.465
.9792 | .9808 -.0016 0.006
.9808 | .9545 .0263 0.828
.8776 | .8784 -.0008 0.000
.5000 | .6074 -.1074 2.321
1.0000 |1.0000 .0000 0.000
1.0000 |1.0000 .0000 0.000
.8980 {1.0000 -.1020 0.78+101°
.8200 | .7810 .0390 0.445
.3000 | .2806 .0194 0.928




Parameter Estimates

>
o

> W> >

>

N N

BIVARIATE LOGIT ANALYSIS

Chi-square Analysis Table

75

~-1.000 source da.f.
1.053 Due to Model SSR 4 20170
-4.027 Departure from Model SSE 10 11.975
: TOTAL SST 14 20182
~0.436
-2.332 Coefficient of Determination R2 = .99941
Residual Analysis
1 Pi Residual Chi-square
1.0000 .9888 .0113 0.580
.9792 .9731 .0061 0.069
.9375 .9201 .0174 0.198
.6250 .6786 ~-.0536 0.632
.1250 .1146 .0104 0.051
1.0000 .9865 .0135 0.670
.9792 .9779 .0014 0.004
.9808 .9570 .0238 0.717
.8776 . 8962 -.0186 0.183
.5000 .6317 -.1317 3.579
1.0000 .9979 .0021 0.102
1.0000 .9869 .0131 0.635
. 8980 .9286 -.0306 0.690
. 8200 .6976 .1225 3.554
. 3000 .2652 .0348 0.311




BIVARIATE BURRIT ANALYSES

1: General Case - Eight Parameters to be Estimated

Parameter Estimates

r = 8.817
?1 = 5,045
?2 = 5.469
p = 7.826
a) = 2.869
?1 = 0.339
a, = 3.055

= 0.184
B, =0

Chi-square Analysis Table

76

source a.f.
Due to Model SSR 7 67305
Departure from Model SSE 7 9.6604
TOTAL SST 14 67314
Coefficient of Determination R2 = ,99986
Residual Analysis
p; Pi Residual Chi-square
1.0000 .9948 .0052 0.266
.9792 .9797 -.0005 0.001
.9375 .9144 .0231 0.327
.6250 .6434 -.0184 0.070
.1250 .1202 .0049 0.011
1.0000 .9932 .0068 0.335
.9792 .9851 .0059 0.113
.9808 .9612 .0196 0.536
.8776 . 8850 -.0074 0.026
.5000 .6025 -.1025 2.107
1.0000 .9994 .0006 0.030
1.0000 .9920 .0080 0.385
.8980 .9355 -.0375 1.140
.8200 .6866 .1334 4.135
. 3000 .2734 .0266 0.179




2: Takahasi Burr — r = 0 ; Seven Parameters to be Estimated

Parameter Estimates Chi-square Analysis Table
51 = 4,451 source da.f.
132 = 5.250 Due to Model SSR 6 13398
~ Departure from Model SSE 8 13.648
b= 7.940 TOTAL ssT | 14 | 13412
a; = 2.746
?l = 0.346 Coefficient of Determination R? = ,99898
?2 = 2.909
32 = (0.192

Residual Analysis

P, Pi Residual Chi-square
1.0000 .9932 .0068 0.349
.9792 .9769 .0023 0.011
.9375 .9139 .0236 0.339
.6250 .6637 -.0387 0.321
.1250 .1385 -.0135 0.073
1.0000 .9953 .0047 0.229
.9792 .9894 -.0102 0.472
.9808 .9708 .0100 0.183
.8776 .9067 -.0291 0.492
.5000 .6402 -.1402 4.095
1.0000 .9854 .0146 0.711
1.0000 .9590 .0410 2,051
.8980 .8865 .0115 0.064
.8200 .6844 .1356 4,255
. 3000 .2967 .0033 10.003




= 3

4.874 ;

Parameter Estimates

Wy > K>
N [\ [l [l

w> >

P:

6.158 ;

Chi-square Analysis Table

Five Parameters to be Estimated

(Third and Fourth Standardized Central Moments) ;

78

source d.f.
Due to Model SSR 4 23681
Departure from Model SSE 10 12.047
TOTAL SST 14 23693
. . . . 2
Coefficient of Determination R = .99949

Residual Analysis

Py
1.0000
.9792
.9375
.6250
.1250
1.0000
.9792
.9808
.8776
.5000
1.0000
1.0000
. 8980
. 8200

. 3000

I

Ei
.9943
.9808
.9267
.6934
.1561
.9826
.9697
.9397
.8637
.6229
.9980
.9868
.9297
.7131

.3326

Residual Chi-square
.0057 0.294
-.0016 0.006
.0l108 0.083
-.0684 1.056
-.0311 0.353
.0174 0.869
.0095 0.148
.0411 1.549
.0139 0.081
-.1229 3.086
.0020 0.095
.0132 0.642
-.0317 0.755
.1069 2.792
.0326 0.240




4:

Takahasi Burr - r = 0 ; o_ = 0 ; o, = 3 (Third and Fourth

3 4

Standardized Central Moments); b, = b_ = 4.874 ;

1 2 !

p = 6.158 ; Four Parameters to be Estimated

Parameter Estimates

@ > >

v 3
N N

Chi-square Analysis Table

79

2.741 source da.f.
0.357 Due to Model SSR 3 6862.7
3.171 Departure from Model SSE 11 23.480
TOTAL SST 14 6886.2
0.189
Coefficient of Determination R2 = ,99659
Residual Analysis
1 Pi Residual Chi-square
1.0000 .9857 .0143 0.741
.9792 .9567 .0225 0.586
.9375 . 8604 .0771 2.374
.6250 .5544 .0706 0.969
.1250 .0863 .0387 0.911
1.0000 .9914 .0086 0.423
.9792 .9840 -.0048 0.070
.9808 .9648 .0160 0.393
.8776 .9088 -.0312 0.575
.5000 .6934 -.1934 8.444
1.0000 .9773 .0227 1.114
1.0000 .9479 .0521 2.640
. 8980 .8801 .0179 0.148
. 8200 . 7154 .1046 " 2.685
. 3000 .3814 -.0814 1.405




APPENDIX VIT

Data of Ashford and Smith (1964): Exposure to dust and prevalence
of pneumoconiosis for groups of mine workers. The data as described by
Ashford and Smith, the computed pi , and the analyses on this set of data

(data set seven) are in this appendix.
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DATA AS PRESENTED BY ASHFORD AND SMITH COMPUTED DATA

Period Spent (Years)
i
Ny Number
X (1) X(2) Number of Observed With
Coal-Getting Haulage Men Pneumoconiosis P;
2.1 0.5 135 3 .0222
1.9 6.6 18 2 L1111
1.6 12.0 16 1 .0625
1.4 16.9 17 3 .1765
0.7 21.6 14 2 .1429
1.1 27.6 12 3 .2500
1.2 32.4 22 5 .2273
1.5 37.2 31 7 .2258
2.4 41.6 25 5 .2000
1.4 47.1 17 5 .2941
6.6 0.4 80 7 .0875
6.3 6.7 10 1 . 1000
7.1 12.0 14 5 .3571
6.4 17.5 8 2 .2500
6.3 21.9 21 11 .5238
6.9 27.2 14 5 .3571
6.2 32.3 13 7 .5385
7.2 37.3 10 7 .7000
12.2 0.2 71 19 .2676
12.0 6.9 8 1 .1250
11.8 11.8 4 2 .5000
11.0 16.7 7 2 .2857
11.5 22.5 6 3 .5000
12.8 29.5 10 ) .6000
12.5 37.8 4 2 .5000
17.0 0.3 106 53 .5000
16.2 6.6 5 2 .4000
16.8 13.2 5 2 .4000
19.5 17.0 6 4 .6667
17.2 21.5 4 1 .2500
21.8 0.2 58 34 .5862
24.7 7.7 3 0 0.0000
26.0 10.8 4 1 .2500
22.0 23.7 3 1 .3333
26.8 0.2 66 43 .6515
27.5 18.2 4 3 .7500
32.5 13.0 2 2 1.0000
31.7 0.2 33 22 .6667
36.8 0.2 20 11 .5500
42.2 1.0 10 8 . 8000




Parameter Estimates

W > W o

~

©

1
1
2
2

I

BIVARIATE NORMIT ANALYSIS

Chi-square Analysis Table

82

-2.818 source a.f.
0.937 Due to Model SSR 4 217.75
—2.446 Departure from Model SSE 35 38.141
TOTAL SST 39 255.89
0.501
-0.320 Coefficient of Determination R2 = .85095
Residual Analysis
P, Pi Residual | Chi-square

.0222 .0195 .0027 0.053

.1111 .0800 .0311 0.236

.0625 .1236 -.0611 0.551

.1765 .1579 .0186 0.044

.1429 .1834 -.0405 0.153

.2500 .2200 .0300 0.063

.2273 .2451 -.0179 0.038

.2258 .2703 -.0445 0.311

.2000 .3030 -.1030 1.256

.2941 .3091 -.0150 0.018

.0875 .1488 -.0613 2.375

.1000 .2025 ~-.1025 0.651

.3571 .2719 .0852 0.514

. 2500 .2886 -.0386 0.058

.5238 .3120 .2118 4.390




Residual Analysis—-Continued

Py
.3571
.5385
. 7000
.2676
.1250
.5000
.2857
.5000
.6000
.5000
.5000
.4000
.4000
.6667
.2500
.5862

0.0000
.2500
.3333
.6515
. 7500

1.0000
.6667
.5500
.8000

»,
.3573
.3611
.4099
. 3185
.3735
.4047
.4146
.4580
.5186
.5417
.4365
.4717
.5267
.5947
.5744
.5287
.6260
.6594
.6586
.6047
. 7069
. 7376
.6638
.7132
.7591

Residual Chi-square
-.0002 0.000
.1773 1.772
.2901 3.480
-.0509 0.847
-.2485 2.112
.0953 0.151
-.1289 0.479
.0420 0.043
.0815 0.266
-.0417 0.028
.0635 1.737
-.0717 0.103
-.1267 0.322
.0720 0.129
-.3243 1.721
.0575 0.771
~-.6260 5.022
-.4094 2,985
-.3253 1.412
.0468 0.606
.0431 0.036
.2624 0.712
.0029 0.001
-.1632 2.603
.0410 0.092
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BIVARIATE LOGIT ANALYSIS

Parameter Estimates Chi-square Analysis Table
30 = -1.000 source d.f.
al = -2.996 Due to Model SSR 4 221.36
A3 = -1.627 Departure from Model SSE 35 39.020
1 : TOTAL SST 39 260.38
a, = -4.527
A2 2
B2 = -1.049 Coefficient of Determination R = .85014

Residual Analysis

1} Pi Residual Chi-square
.0222 .0291 -.0069 0.226
.1111 .0802 .0309 0.233
.0625 .1211 -.0586 0.516
.1765 .1567 .0197 0.050
.1429 .1828 -.0399 0.150
.2500 .2280 .0220 0.033
.2273 .2592 -.0320 0.117
.2258 .2912 -.0654 0.643
.2000 .3297 -.1297 1.903
.2941 . 3416 -.0475 0.170
.0875 .1446 -.0571 2.111
.1000 .1909 -.0909 0.535
.3571 .2575 .0996 0.727
.2500 .2787 -.0287 0.033
.5238 .3063 .2175 4.674




Residual Analysis--Continued

Py
.3571
.5385
. 7000
.2676
.1250
.5000
.2857
.5000
.6000
.5000
.5000
.4000
.4000
.6667
.2500
.5862

0.0000
.2500
.3333
.6515
.7500

1.0000
.6667
.5500
.8000

i
.3564
.3674
.4202
.3106
.3586
.3897
.4020
.4515
.5213
.5533
.4362
.4631
.5200
.5945
.5748
.5361
.6290
.6632
.6666
.6178
. 7145
. 7447
.6798
.7302
.7746

Residual Chi-square
.0007 0.000
.1710 1.636
.2796 3.209

-.0429 0.612
-.2336 1.898
.1103 0.205
-.1163 0.394
.0485 0.057
.0787 0.248
-.0533 0.046
.0638 1.753
-.0631 0.080
-.1200 0.288
.0722 1.298
~.3248 1.727
.0501 0.5806
-.6290 5.086
-.4132 3.058
-.3333 1.500
.0338 0.318
.0355 0.025
.2553 0.686
-.0132 0.026
-.1802 3.295
.0254 0.037
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BIVARIATE BURRIT ANALYSES

1: General Case - Eight Parameters to be Estimated

Parameter Estimates

¥ = 8.582
b, = 4.714
b, = 5.933
p = 7.582
?1 = 1.127
B, = 0.147
a, = 3.533
B, = 0.082

Chi-square Analysis Table

86

source d.f.
Due to Model SSR 7 217.30
Departure from Model SSE 32 38.293
TOTAL SST 39 255.59
.. . . 2
Coefficient of Determination R = .85018

Residual Analysis

.0222
.1111
.0625
.1765
.1429
.2500
.2273
.2258
.2000
.2941
.0875
.1000
.3571
.2500
.5238

E_j;
.0183
.0734
.1170
.1528
.1809
.2208
.2489
.2774
. 3145
.3223
.1500
.1997
.2711
.2908

.3171

Residual Chi-square
.0039 0.113
.0377 0.377

-.0545 0.459
.0236 0.073
-.0381 0.137
.0292 0.060
-.0217 0.055
-.0516 0.412
-.1145 1.520
-.0282 0.062
-.0625 2.448
-.0997 0.622
.0860 0.524
-.0408 0.064
.2067 4.142




Residual Analysis--Continued

Py
.3571
.5385
. 7000
.2676
.1250
.5000
.2857
.5000
.6000
.5000
.5000
.4000
.4000
.6667
.2500
.5862

0.0000
.2500
.3333
.6515
. 7500

1.0000
.6667
.5500
. 8000

i
.3670
.3737
.4274
.3174
.3704
.4050
.4188
.4677
.5355
.5653
.4344
.4689
.5303
.6034
.5866
.5275
.6271
.6642
.6754
.6048
.7200
. 7466
.6653
. 7160
. 7619

Residual | Chi-square
-.0099 0.006
.1648 1.509
.2726 3.037
~-.0498 0.811
-.2454 2.065
.0950 0.150
-.1331 0.510
.0323 0.025
.0645 0.167
-.0653 0.069
.0656 1.856
-.0689 0.095
-.1303 0.341
.0632 0.100
-.3366 1.869
.0587 0.802
-.6271 5.045
~.4142 3.076
-.3420 1.601
.0467 0.603
.0300 0.018
.2534 0.679
.0013 0.000
-.1660 2.712
.0381 0.080




2:

Takahasi Burr - r = 0

Parameter Estimates

Lo 2
=

w> > W> > D> O

\V]

NoNOE

5.074
5.026
6.351
1.369
0.149
3.850
0.075

; Seven Parameters to be Estimated

Chi-square Analysis Table

88

source d.f.
Due to Model SSR 6 219.84
Departure from Model SSE 33 38.765
TOTAL SST 39 258.60
. . . 2
Coefficient of Determination R = .85010

Residual Analysis

.0222
L1111
.0625
.1765
.1429
.2500
.2273
.2258
.2000
.2941
.0875
.1000
.3571
.2500
.5238

P,
i

.0222
.0980
.1436
1779
.2034
.2383
.2622
.2857
.3144
.3224
.1510
.2117
.2752
.2908
.3117

Residual Chi-square
.0000 0.000
.0131 0.035
-.0811 0.856
-.0014 0.000
-.0605 0.317

.0117 0.009
-.0349 0.139
-.0598 0.544
-.1144 1.517
-.0282 0.062
-.0635 2.519
-.1117 0.748

.0819 0.471
-.0408 0.064

.2121 4.402




Residual Analysis--Continued

Py
.3571
.5385
. 7000
.2676
.1250
. 5000
.2857
.5000
.6000
.5000
.5000
. 4000
.4000
.6667
. 2500
.5862

0.0000
.2500
.3333
.6515
. 7500

1.0000
.6667
.5500
.8000

2
. 3507
.3554
. 3960
. 3165
.3683
. 3937
.4001
.4364
.4876
.5059
.4342
.4615
.5057
.5663
.5428
.5276
.6110
.6388
.6218
.6056
.6760
.7149
.6666
.7176
.7632

Residual Chi-square
.0064 0.003
.1831 1.903
. 3040 3.865

-.0489 0.784
-.2433 2.036
.1064 0.190
-.1144 0.382
.0636 0.099
.1125 0.506
-.0059 0.001
.0658 1.867
-.0615 0.076
-.1057 0.223
.1004 0.246
-.2928 1.382
.0586 0.798
-.6110 4,712
-.3888 2.620
-.2885 1.062
. 0460 0.584
.0740 0.100
.2851 0.798
.0001 0.000
-.1676 2.773
.0368 0.075
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b2 =

=3

(Third and Fourth Standardized Central Moments) ;

4.874 ; p = 6.158 ; Five Parameters to be Estimated

Parameter Estimates

> > > > K>
O S

]

1

4.742
1.259
0.151
3.405
0.078

Chi-square Analysis Table

90

source d.f.
Due to Model SSR 4 218.53
Departure from Model SSE 35 38.338
TOTAL SST 39 256.87
.. . . 2
Coefficient of Determination R = .85075

Residual Analysis

.0222
1111
.0625
.1765
.1429
.2500
.2273
.2258
.2000
.2941
.0875
.1000
.3571
.2500
.5238

2
.0211
. 0205
.1340
.1670
.1913
.2261
.2499
.2740
. 3061
.3103
.1528
.2139
.2820
.2978

. 3199

Residual Chi-square
.0011 0.008
.0206 0.093

~-.0715 0.704
.0094 0.011
-.0485 0.212
.0239 0.039
-.0226 0.060
-.0481 0.361
-.1061 1.326
-.0162 0.021
-.0653 2.634
-.1139 0.772
.0752 0.391
-.0478 0.087
.2039 4.013




Residual Analysis--Continued

Py
.3571
.5385
. 7000
.2676
.1250
.5000
.2857
.5000
.6000
.5000
.5000
.4000
.4000
.6667
.2500
.5862

0.0000
.2500
.3333
.6515
. 7500

1.0000
.6667
.5500
.8000

s
.3631
. 3660
.4127
. 3187
.3793
.4103
.4198
.4615
.5201
.5420
.4353
.4749
.5294
.5964
.5760
.5273
.6278
.6612
.6598
.6039
.7086
.7396
.6638
.7139
. 7605

Residual Chi-square
-.0060 0.002
.1725 1.666
.2873 3.405
-.0511 0.854
-.2543 2.198
.0897 0.133
-.1341 0.517
.0385 0.036
.0800 0.256
-.0419 0.028
.0647 1.806
-.0749 0.112
-.1294 0.336
.0703 0.123
-.3260 1.740
.0589 0.807
-.6278 5.059
-.4112 3.018
-.3265 1.425
.0477 0.626
.0414 0.033
.2604 0.704
.0029 0.001
-.1639 2.632
.0395 0.086
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4: Takahasi Burr - r = 0 ; a3 =0 ; a4 = 3 (Third and Fourth

Standardized Central Moments); bl = b2 = 4.874 ;

p = 6.158 ; Four Parameters to be Estimated

Parameter Estimates Chi-square Analysis Table
él = 1.313 source d.f.
B, = 0.150 Due to Model SSR 3 | 219.06
5 = 3.7 Departure from Model SSE 36 38.766
a, = 3.783 TOTAL ssT | 39 | 257.83
B, = 0.074
2 2

Coefficient of Determination R = .84964

Residual Analysis

12 Pi Residual Chi-square
.0222 .0240 -.0018 0.018
L1111 .1007 .0104 0.021
.0625 .1456 -.0831 0.888
.1765 .1791 -.0026 0.001
.1429 .2037 -.0608 0.319
.2500 .2380 .0120 0.010
.2273 .2613 -.0341 0.132
.2258 .2845 -.0587 0.524
.2000 .3135 ~-.1135 1.496
.2941 .3200 -.0259 0.052
.0875 .1566 -.0691 2,894
. 1000 .2179 -.1179 0.815
.3571 .2809 .0763 0.403
.2500 .2956 -.0455 0.080
.5238 . 3159 .2080 4,202




Residual Analysis--Continued

Py
.3571
.5385
. 7000
.2676
.1250
.5000
.2857
.5000
.6000
.5000
.5000
.4000
.4000
.6667
.2500
.5862

0.0000
.2500
.3333
.6515
. 7500

1.0000
.6667
.5500
.8000

i
. 3542
.3581
.3983
.3210
.3735
.3984
.4045
-4399
.4899
.5075
.4363
.4645
.5079
.5669
.5441
.5271
.6096
.6369
.6209
.6027
.6734
.7108
.6619
. 7115

.7563

Residual Chi-square
.0029 0.001
.1804 1.841
.3017 3.799

~-.0534 0.930
~.2485 2.110
.1016 0.172
-.1188 0.410
.0601 0.088
.1101 0.485
-.0075 0.001
.0637 1.750
-.0645 0.084
-.1079 0.233
.0997 0.243
-.2941 1.395
.0591 0.814
~-.6096 4.685
-.3869 2.588
-.2876 1.054
.0489 0.658
.0766 0.107
.2892 0.814
.0048 0.003
-.1615 2.542
.0437 0.104
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APPENDIX VIII

Listings of FORTRAN subroutines used in evaluating the functions,

partial derivatives, and the weights are in this appendix.
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16

1. Bivariate Normal Subroutines

DOUBLE PRECISION FUNCTION F (X,A)
BIVARIATE NORMAL FUNCTION

DIMENSION X (1) ,A(1)

DOUBLE PRECISION X,A,AA,B,R,S,GOFU,THA ,C,D
ARA=A (1)+A(2) *X (1)

B=A (3)+A (4) *X (2)

IF (DABS(A(5)).LE.0.9999D+00) GO TO 16
A(5)=DSIGN (0.9999D+00,A(5))

=A(5)

=DSQRT (1.-R*R)

C=GOFU (A7)

D=GOFU (B)

F=C+D-THA (AA,B/AA) -THA (B,AA/B)

1+THA (AA, (B-R*AA) / (AA*S) ) +THA (B, (AA-R*B) / (B*S) ) -C*D

RETURN
END

SUBROUTINE PD(X,A,FXA,P)
DIMENSION X(1),A(1),P(1)

DOUBLE PRECISION X,A,AA,R,S,B,FXA,P,WATE,GOFU,GPRIME,C,D

Al=ALPHA],A2=BETAl,A3=ALPHA2 ,A4=BETA2 ,A5=RHO
BIVARIATE NORMAL PARTIALS
AA=A(1)+A(2)*X (1)
=A(3)+A (4) *X (2)
R=A(5)
S=DSQRT (1.-R*R)
C=GPRIME (AA)
D= (B-R*AA) /S
P (1)=C*(1.-GOFU(D))
P (2)=X(1)*P (1)
P (3)=GPRIME (B) * (1.-GOFU( (AA~R*B) /S))
P (4)=X(2)*P(3)
P (5)=-C*GPRIME (D) /S
RETURN
END
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DOUBLE PRECISION FUNCTION GPRIME (X)
DOUBLE PRECISION X,Al,A2,A3
Al =X*X*(-0.5D 0)

IF (Al1.LE.-150) GO TO 15
A2=DEXP (Al)

A3 = .398942280401433D+00
GPRIME = A2*%A3

GO TO 16

GPRIME=0

RETURN

END

DOUBLE PRECISION FUNCTION GOFU (U)
DIMENSION Y (160)

DOUBLE PRECISION U,GU,X,XSET,DELTA,GPR,DELK,DELTAX,Y,SUM,TOP

IF(Y(17)-.69146246127D+00)2,5,2

Y( 1) = .50000000000D+00
Y( 2) = . 39894228040D+00
Y( 3) = .00000000000D+00
Y( 4) = -.66490380066D-01
Y( 5) = .00000000000D+00
Y( 6) = .99735570100D-02
Y( 7) = .00000000000D+00
Y( 8) = -.11873282155D-02
Y( 9) = .59870632568D+00
Y( 10) = . 38666811680D+00
Y( 11) = -.48333514600D-01
Y( 12) = -.60416893250D-01
Y( 13) = .11831641595D-01
Y( 14) = .84709519078D-02
Y( 15) = -.19305085421D-02
Y( 16) = ~.93949992204D-03
Y(17) = .69146246127D+00
Y( 18) = .35206532676D+00
Y( 19) = -.88016331691D-01
Y( 20) = -.44008165845D-01
Y( 21) = .20170409346D-01
Y( 22) = .45841839423D-02
Y( 23) = -.30714032413D-02
Y( 24) = -.32635023779D-03
Y( 25) = . 7733726476 3D+00
Y( 26) = .30113743216D+00
Y( 27) = -.11292653706D+00
Y( 28) = -.21957937761D-01
Y( 29) = .22938202840D-01

Y( 30) =

.14703976180D-03
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31)
32)
33)
34)
35)
36)
37)
38)
39)
40)
41)
42)
43)
44)
45)
46)
47)
48)
49)
50)
51)
52)
53)
54)
55)
56)
57)
58)
59)
60)
61)
62)
63)
64)
65)
66)
67)
68)
69)
70)
71)
72)
73)
74)
75)
76)
77)
78)
79)
80)

]

Il

1

Il

Il

1

|

.30400470751D-02
.34322406302D-03
.84134474606D+00
.24197072452D+00
.12098536226D+00
.00000000000D+00
.20164227043D-01
.40328454087D-02
.20164227043D-02

.76816103022D-03

.89435022633D+00
.18264908539D+00
.11415567837D+00
.17123351755D-01
.13674898971D-01
.59872275061D-02
.57598079906D-03
.81561889341D-03
.93319279874D+00
.12951759567D+00
.97138196750D-01
.26982832430D-01
.60711372969D-02
.58687660536D-02
.65770654049D-03
.55772550961D-03
.95994084314D+00
.86277318827D-01
.75492653974D-01
.29657828346D~-01
.39319090611D-03
.43110574348D-02
.13098172060D-02
.18576682170D-03
.97724986805D+00
.53990966513D-01
.53990966513D-01
.26995483257D-01
.44992472094D-02
.22496236047D-02
.13497741628D-02
.11783742691D-03
.98777552735D+00
.31739651836D-01
.35707108315D-01
.21490389264D-01
.61371592417D-02
.46183673081D-03
.99147667294D-03
.26370836740D-03
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82)
83)
84)
85)
86)
87)
88)
89)
90)
91)
92)
93)
94)
95)
96)

[l

I

]

]

1]

97) =

98)
99)

Y (100)
Y (101)
Y (102)
Y (103)
Y (104)
Y (105)

Y (106)

Y (107)
Y (108)
Y(109)
Y (110)
Y (111)
Y (112)
Y (113)
Y (114)
Y (115)
Y (116)
Y (117)
Y(118)
Y (119)
Y (120)
Y (121)
Y (122)
Y (123)
Y (124)
Y (125)
Y (126)
Y(127)
Y (128)
Y (129)
Y (130)

I

Il

I

i

1]

1]

il

It

[}

.99379033467D+00
.17528300494D-01
-.21910375617D-01
.15337262932D-01
-.59340600629D-02
.66644059169D-03
.51352442853D-03
-.26273974729D-03
.99702023677D+00
.90935625017D-02
~.12503648440D-01
.99460839861D-02
-.47539913338D-02
.11227826357D-02
.11925680315D-03
-.18051548644D-03
.99865010197D+00
.44318484120D-02
-.66477726180D-02
.59091312160D-02
-.33238863090D-02
.11079621030D-02
-.11079621030D-03
-.84416160226D-04
.99942297496D+00
.20290480573D-02
-.32972030931D-02
.32337953413D-02
-.20779248659D-02
.86558186169D-03
-.19180019295D-03
-.13995370141D-04
.99976737091D+00
.87268269505D-03
-.15271947163D-02
.16362800532D-02
-.11772125938D-02
.57860680771D-03
-.18055895865D-03
.21397716502D-04
.99991158271D+00
.35259568237D-03
-.66111690444D-03
.76763018349D-03
-.60946714628D-03
.34195583218D-03
-.13246010895D-03
.30251745009D-04
.99996832876D+00
.13383022576D-03
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10
11
12
13
14
141

142
100

15
16

201

Y (131)
Y (132)
Y(133) =
Y(134)
Y (135)
Y (136)
Y (137)
Y (138)
Y (139)
Y (140)
Y (141)
Y (142)
Y(143)
Y (144)
Y (145)
Y (146)
Y (147)
Y (148)
Y {149)
Y (150)
Y (151)
Y(152)
Y (153)
Y (154)
Y (155)
Y (156)
Y (157)
Y (158)
Y (159)
Y (160) =

li

1]

1]

-.26766045153D-03
.33457556441D-03
-.28996548916D-03
.18178605667D-03
-.82528639221D-04
.25518025191D-04
.99998931147D+00
.47718636540D-04
-.10140210265D-03

.13569987266D-03

-.12728076426D-03
.87833668723D-04
-.45244746779D-04
.17013635696D-04
.99999660233D+00
.15983741107D-04
-.35963417490D-04
.51281169385D-04
-.51697412642D-04
.38835495972D-04
-.22233633626D-04
.96697768581D-05
.99999898292D+00
.50295072886D-05
-.11945079810D~-04
.18074791818D-04
-.19472968649D-04
.15788101444D-04
-.99025178234D-05
.48400297796D-05

IF(U) 11,10,12

GU=.5D+00
GO TO 100
X=DABS (U)
GO TO 13
X=U

IF(X-7.0D+00)15,14,14
IF(U)141,10,142

GU=0.0D+00
GO TO 100
GU=1.0D+00
GOFU=GU
RETURN

IF (X-4.87499D+00)16,16,40
XSET=X*4.0D+00
XSST=XSET+.5D+00

I=IFIX (XSST)

XSET=DFLOAT (I)
DELTA=X- (XSET*. 25D+00)

K=I*8+1
I=K+7
SUM=0.0D+00
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100

DO 20 J=K,I,1
L=K+I~J
SUM=SUM¥*DELTA
SUM=Y (L) +SUM
20 CONTINUE
IF(U) 21,10,22
21 GU=1.0D+00 =-SUM
GO TO 100
22 GU=SUM
GO TO 100
40 XSET=-X*X
IF (XSET.LE.-300) GO TO 101
GPR= (DEXP (XSET*.5D+00) ) *.398942280401433D+00
GO TO 102
101 GPR=0
102 DELTA=1.0D+00/X
SUM=DELTA
TOP=1.0D+00
41 DELK=TOP/XSET
DELTAX=DELTA*DELK
IF (DABS (DELTA)-DABS (DELTAX) )45,45,43
43 DELTA=DELTAX
SUM=SUM+DELTA
IF (DABS (GPR*DELTA)-.5D~9)45,45,42
42 TOP=TOP+2.0D+00
GO TO 41
45 SUM=GPR*SUM
IF(U) 22,10,21
END

DOUBLE PRECISION FUNCTION THA (HX,AX)
DOUBLE PRECISION HX,AX,AA,U,H,A,SUM,C,DA,TA,TX,X,Y,Z ,GOFU
DIMENSION AA(9),U(9)
DATA AA(1),AA(9),AA(2) ,AA(8) ,AA(3),AA(7),AA(4),AA(6),AA(5)/2*.4063
17194181E-1,2*.90324080347E-1,2*.1303053482,2*.15617353852,.1651196
2775/,U0(1),0(2),0(3) ,U(4),U(5),U0(6),U(7),U(8),U(9)/.15919880246E~-1,
3.81984446337E-1,.19331428365,.3378732883,.5, .6621267117,.806685716
435,.91801555366,.98408011975/
H=HX
A=AX
IF (DABS (H) .LE.5.77)G0O TO 10
11 THA=O.

RETURN
10 IF (DABS(A).LE.1.)GO TO 13
12 H=A*H \

IF (DABS(H).LE.5.77)GO TO 15
GO TO 16

15 A=1./A



13

6l

16
17
14

18
21
20

SUM=0.

DO 61 M=1,9,1
DA=1.+A** 2% (M) ¥*2
C=-.5*H**2%DA

TA=DEXP (C)/DA * ARA (M)
SUM=SUM+TA

CONTINUE
TX=2/6.2831853072*SUM
GO TO 17

TX=0.

IF (DABS (AX).LE.1.)GO TO 20
X=GOFU (HX)

Y=GOFU (H)

Z=X*Y
TX=.5%X+.5%Y-2-TX

IF (AX)21,20,20
TX=TX-.5D+00

THA=TX

RETURN

END
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2. Bivariate Logistic Subroutines

DOUBLE PRECISION FUNCTION F (X,A)

BIVARIATE LOGISTIC (GUMBEL) FUNCTION
DIMENSION X (1),A(1)

DOUBLE PRECISION X,A,C,CC,B,BB,D,E,BC,DE

IF (DABS(A(1l)).GE.1.0D+00) A(1)=DSIGN(1l.0D+00,A (1))
C=A(3)* (X(1)+A(2))

IF (DABS(C).GT.150.0D+00) C=DSIGN (150.0D+00,C)
CC=DEXP (C)

B=A(5)* (X(2)+A(4))

IF (DABS (B).GT.150.0D+00) B=DSIGN (150.0D+00,B)
BB=DEXP (B)

D=1./(1.+CC)

E=1./(1.+BB)

BC=BB*CC

DE=D*E

F=D+E-DE* (1.+A (1) *BC*DE)

RETURN

END

SUBROUTINE PD(X,A,FXA,P)

BIVARIATE LOGISTIC (GUMBEL) PARTIALS
A(1)=ALPHA 0,A(2)=ALPHAl,A(3)=BETAl,A(4)=ALPHA2,A(5)=BETA2
DIMENSION X (1),A(1),P(1)

DOUBLE PRECISION X,A,P,FXA,WATE,C,CC,B,BB,D,DD,E,EE,BC,DE,R,S,T,Z
C=A(3)*(X(1)+Aa(2))

IF (DABS(C).GT.150.0D+00) C=DSIGN (150.0D+00,C)
CC=DEXP (C)

B=A(5) *(X(2)+A(4))

IF (DABS (B).GT.150.0D+00) B=DSIGN (150.0D+00,B)
BB=DEXP (B)

D=1./(1.+CC)

DD=D*D

E=1./(1.+BB)

EE=E*E

BC=BB*CC

DE=D*E

Z=1.+A (1) *BC*DE

P (1)=-DD*EE*BC

T=A (1) *P (1)

R=DD*CC* (E*Z~1.)+T* (1.-D*CC)

P (2)=A(3)*R

P(3)=(X(1)+A(2))*R

S=EE*BB* (D*Z-1.)+T* (1.~-E*BRB)

P (4)=A(5) *s

P(5)=(X(2)+A(4))*sS

RETURN

END
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3. Bivariate Burr Subroutines

DOUBLE PRECISION FUNCTION F (X,A)

BIVARIATE BURR R (FD) FUNCTION
Al=R,A2=Bl,A3=B2,A4=P,A5=ALPHAl,A6=BETAl,A7=ALPHA2 ,A8=BETA2
DOUBLE PRECISION X,A,B,BB,C,CC,D,DD
DIMENSION X(1),A(1)
IF(A(l).GT.A(4)+1.0D+00) A(1)=A(4)+1.0D+00
IF(A(1).LE.0.0D+00) A(1)=0.0
B=A(6)*(X(1)+A(5))

IF (B.GT.0.0D+00) GO TO 17

BB=0

GO TO 18

IF (A(2)*DLOG(B).LT.150.0) GO TO 19
BB=DEXP (150.0D+00)

GO TO 18

IF (A(2))13,14,15

BB=1./(B**DABS (A (2)))

GC TO 18

BB=1.0

GO TO 18
BB=B**A (2)

C=A(8)* (X (2)+A (7))

IF (C.GT.0.0D+00) GO TO 16

CC=0

GO TO 10
IF(A(3)*DLOG(C).LT.150.0) GO TO 20

CC=DEXP (150.0D+00)

GO TO 10

IF (A(3))9,11,12

CC=1./(C**DABS(A(3)))

GO TO 10

CC=1.0

GO TO 10

CC=C**Aa (3)

D= (1.0+BB+CC+A (1) *BB*CC)
IF (A(4)*DLOG(D).LT.150.0) GO TO 21

DD=DEXP (-150.0D+00)

GO TO 22

DD=1.0/(D**A (4))

F=1.0D+00-DD

RETURN

END

103



17

30

13

14

15
18

16

31

11

12
10

32
33

SUBROUTINE PD(X,A,FXA,P)
BIVARTIATE BURR R PARTIALS

Al=R,A2=Bl,A3=B2,A4=P ,A5=ALPHAl,A6=BETAl,A7=ALPHA2 ,AB=BETA2

DIMENSION X(1),A(1),P(1)

DOUBLE PRECISION X,A,FXA,P,WATE,B,BB,C,CC,D,DD,E,EE,G,GG,H,HH,I

IF(A(1l) .GT.A(4)+1.0D+00) A(1l)=A(4)+1.0D+00
IF(A(1).LE.0.0OD+00) A(1)=0.0
B=A(6)* (X(1)+A(5))
IF (B.GT.0.0D+00) GO TO 17
BB=0
GO TO 18

IF (A(2)*DLOG(B).LT.150.0) GO TO 30
BB=DEXP (150.0D+00)
GO TO 18

IF (A(2))13,14,15
BB=1./(B**DABS (A (2)))
GO TO 18
BB=1.0
GO TO 18

BB=B**A (2)

C=A(8)* (X(2)+A (7))

IF (C.GT.0.0D+00) GO TO 16
CcCc=0
GO TO 10

IF(A(3)*DLOG(C).LT.150.0) GO TO 31
CC=DEXP (150.0D+00)
GO TO 10

IF (A(3))9,11,12
CC=1./(C**DABS (A (3)))
GO TO 10
CcC=1.0
GO TO 10
CC=C**A (3)
D= (1.0+BB+CC+Aa (1) *BB*CC)
IF((A(4)+1.0)*DLOG (D) .LT.150.0) GO TO 32
DD=A (4) *DEXP (-150.0D+00)
GO TO 33
DD=A(4)* ((1.0/D)** (A (4)+1.0))
E=DD*BB
G=1.0+A(1) *BB
GG=1.0+A (1) *CC

=DD*A (2) *GG
HH=DD*A (3) *G
P (1)=E*CC

IF (B.GT.0.0D+00) GO TO 1
P(2)=0
GO TO 2
P (2)=E*DLOG (B) *GG

IF (C.GT.0.0D+00) GO TO 3
P{3)=0
GO TO 4
P (3)=DD*CC*DLOG (C) *G
IF (A (4)*DLOG(D).LT.150.0) GO TO 34
P (4)=(DLOG (D) ) * (DEXP (-150.0D+00) )
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24
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37

19
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GO TO 35

P (4)=DLOG (D) / (D**A (4) )

IF (B.GT.0.0D+00) GO TO 23
P(5)=0.0

P(6)=0.0

GO TO 24

IF ((A(2)-1.0)*DLOG(B).LT.150.0) GO TO 36
EE=H*DEXP (150.0D+00)

GO TO 8

IF (A(2)-1.0)5,6,7

EE=H/ (B**DABS (A (2)~1.0))
GO TO 8

EE=H

EE=H* (B** (A (2)-1.0))
P(5)=EE*A(6)

P(6)=EE*X (1)

IF (C.GT.0.0D+00) GO TO 25

P(7)=0.0

P(8)=0.0

GO TO 26

IF ((A(3)-1.0)*DLOG(C).LT.150.0) GO TO 37

I=HH*DEXP (150.0D+00)
GO TO 22

IF (A(3)-1.0)19,20,21
I=HH/ (C**DABS (A (3)-1.0))
GO TO 22

I=HH

GO TO 22

I=HH* (C** (A(3)-1.0))
P(7)=I*A(8)
P(8)=I*X(2)

CONTINUE

RETURN

END
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4. Weight Subroutine

DOUBLEPRECISIONFUNCTIONWATE (X,FXA)
DOUBLEPRECISIONX,FXA

DIMENSIONX (1)

WATE=DABS (X (3) /( (1.0D+00~-FXA) *FXA) )
RETURN

END
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