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ABSTRACT. Testing linear combinations of normal group means with unequal variances
and possibly unequal samples sizes using a t-statistic is a well known problem for which
the effective degrees of freedom are unknown. Satterthwaite (1946) and Welch (1947)
set forth their approximations based on the ratio of combinations of fourth moments,
and their methodology remains the de facto standard. We propose a new approach that
extends their results by defining what we call Measure of Equivalent Exchange (MEE),
which is a function of a tuning parameter, 7, and the eigenvalues of a positive semidef-
inite matrix. We establish a number of important properties that MEE possesses and
demonstrate its efficacy with simulations involving two and three group contrasts. We
conclude with some commentary about the potential applications of MEE in other areas
such as spatially correlated data and general covariance cross-validation.
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1. INTRODUCTION

Comparing two or more group means of Gaussian distributions with different variances
and potentially different sample sizes is one of the longest standing problems in statistics.
Given a sample of k groups, consider the statistic given by

YT
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e
=1 n;

where n; is the sample size, T; is the sample mean, and s; is the sample standard deviation
of the i*" group, i = 1,..., k. The vector ¢’ = (cy, ..., ;) is commonly known as a contrast
which is subject to the restriction Zle ¢; = 0 for estimability reasons. The difficulty is
that the distribution of ¢ under the null hypothesis that all the group means are equal is,
in general, analytically intractable. This is more commonly known as the Behrens-Fisher
problem, which formally has its roots in Fisher (1935) who cited earlier work by Behrens
(1929).

A little over a decade later, Satterthwaite (1946) and Welch (1947) addressed it by
approximating the distribution of ¢ with student’s t-distribution whose degrees of freedom,
v, are approximated by the well known expression

Although there have certainly been other approaches proposed over the years (Kim &
Cohen, 1998), the Welch-Satterthwaite (WS) equation has stood the test of time where it
is included in introductory statistics texts and is the default method in many statistical
analysis packages such as R (R Core Team, 2012) for comparing two sample means. The
reason for this is quite simple. The WS approximation works well for a wide variety of
combinations of different variances and sample sizes.

In this article, we introduce a function that we call the Measure of Equivalent Ex-
change (MEE) whose arguments are linear in the eigenvalues of a positive semidefinite
matrix in combination with a nonlinear tuning parameter, 7. We demonstrate some in-
teresting properties that MEE possess including a one-to-one correspondence between the
tuning parameter 7 and the cumulants of the x? distribution in the k-sample case assuming
that the data are independently and normally distributed. This reveals that MEE can be
viewed as the logical continuation of the pioneering work of Satterthwaite and Welch. We
then demonstrate MEFE’s efficacy via simulation of contrasts of two and three group samples
comparing the new approach against the WS method. We conclude with potential appli-
cations for MEE in spatially correlated data and generalized covariance cross-validation.
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2. MEASURE OF EQUIVALENT EXCHANGE (MEE)

Initially, the Measure of Equivalent Exchange (MEE) function can be motivated geo-
metrically. Covariance matrices are commonly described geometrically as ellipsoids. Even
though an ellipsoid may be of a given dimension, it may not occupy that space as fully
as a sphere of the same dimension and similar scale. For example, the ellipsoid associated
with a 3 x 3 covariance matrix, in which two of the variables are highly collinear, will
have one dimension that is close to vanishing, even though the matrix is technically three
dimensional. As the two variables become linear combinations of one another, the ellipsoid
becomes two dimensional.

2.1. Definition. Let A be a positive semidefinite n X n matrix, A # &, with unique

nonzero eigenvalues \;,¢ = 1,...,k, each with multiplicity m; and possibly with zero

eigenvalues, A\g = 0, with multiplicity mg. Then, MEE is defined as

| (tr[A])"
tr [A7]

. (Zle mi/\z’>T

MEE;, [A] = T>0

We seek to capture this geometric phenomenon analytically where the loss of a dimension
due to scale discrepancies and/or collinearities is modeled in a continuous fashion. Exam-
ining the definition, when 7 is an integer, the numerator is proportional to the sum of all
the possible 7-dimensional ellipsoid cross-sectional volumes of A, while the denominator is
proportional to the sum of the purely spherical volumes of dimension 7. In essence, the
spheres provide both scale and dimensional baselines to judge the ellipsoids against. The
7 — 1 root simply keeps the end result on the same scale independent of 7 — much the same
way that one might take the square root of the area of a square or the cube root of the
volume of a cube to arrive at the length of a side.

When 7 is even and the data are Gaussian with covariance A, MEE can be viewed as the
ratio of traces of higher order moments of the multivariate normal, which are Kronecker
products, relative to powers of the trace of the distribution’s second moment. As the
heteroscedasticity and/or collinearities grow, the trace of the Kronecker products shrink
relative to the corresponding powers of the trace of A.

From an analytical perspective, we can abandon the strictly geometrical interpretation
of MEE and allow 7 to take on any positive real value. In the context of k£ independent
samples, we see in the properties section that 7 has an intimate relationship with the cu-
mulants of the xy2 on MEE, [A] degrees of freedom. This connection also shows that MEE
subsumes the WS approximation and is arguably the logical continuation of their work.
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The cumulants also demonstrate why the 7 — 1 root provides the natural scale for MEE.

2.2. Properties. While the geometric interpretation provides an intuitive sense of how
MEE behaves, its analytic properties concretely establish why it is a valid measure of
dimensionality and degrees of freedom (Reviewers: Proofs of the following properties, when
necessary, are in the appendix). When possible, Mathematica (Wolfram Research, Inc.,
2010) is used to verify results, and Bernstein (2009) is used for matrix related statements
throughout the article. One such property is the nonpositive partial derivative with respect
to 7, namely

OMEE; [A]
or

Since MEE is a decreasing function in 7, the maximum and minimum values occur at 7 = 0
and as 7 — 00, respectively. The function can be directly evaluated at 7 = 0 giving

<0

k
MEE, [A] = Zm = n —mo.
=1

The asymptotic minimum value as 7 — oo is given by

. tr [A] Zlil mMiN;
lim MEE, [A] = = &= ,
Jim MEE, [A] = = N

which means that the minimum degrees of freedom as defined by MEE are dictated by
the largest eigenvalue or variance component. Taken together, the range of the function is
then bounded by

k
: s
my < Z;m = MEEq, [A] < MEE; [A] < MEEq [A] = n — mq.
1

It is also important to note that when there is only one unique nonzero eigenvalue,
MEE; [A] = m1 = n—myg, V7 > 0, which is easily verified by direct evaluation. This means
that the degrees of freedom as defined by MEE are unique and independent of 7 in this
special case.

For residuals, A commonly takes the form of R = (I — H)' 3 (I — H), where H is the
so-called hat or smoother matrix. If H is idempotent (i.e., H> = H, which implies that
the eigenvalues of H must be 0’s and 1’s) and ¥ = oI, as is the case for many linear
models, then MEE, [R] = tr[I - H|] = m; = n — mo,V7 > 0. This is due to the fact
that the eigenvalues of R are 0 with multiplicity mo = tr [H] and o2 with multiplicity
m1 = n — mg. Hence, MEE is in agreement with the traditional definition of degrees of
freedom for conventional linear models.
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If 1 < dimension r» < 7 and the data are normally distributed with covariance X as used
in Eq. (5), then

E 2
Ky [QTZ;S;] SK/'I‘[X]ﬂ

i=1

where &, [] denotes the r*® cumulant of its argument, Q, = " Zle miN;/ Zle miAT,
and X ~ x? on MEE, [V] degrees of freedom with equality holding if and only if r = 1,
r = 7, or there is only one unique nonzero eigenvalue. Hence, in the k-sample case assuming
normality, there is a one-to-one correspondence between 7 and selecting which cumulant
of the x? in addition to 7 = 1 is matched, which is accomplished by factoring Zle miA; =
Zle o2 /n; into scale, 1/Q,, and degrees of freedom, @, Zle miN; = Q- Zle o?/n;. In

(2 (2
the simplest case when there is only one non-zero eigenvalue, 1/Q,; = A\; and Q,m1A\; = my,
V7 > 0, which means that the partition between scale and degrees of freedom is unique in

this case.

Since MEE; [aA] = MEE; [A],a > 0, degrees of freedom as defined by MEE are scale
invariant, which is a property shared with classical of degrees of freedom.

Given the lower bound of 1 on r and 7 stated in the relationship between the cumulants
above and the fact that MEE cannot be directly evaluated at 7 = 1, the limit is given by

k . .
lim MEET [A] — tr [A] _ Zi:l mz)\z’

ol PV  HEP Y

where
miA;

—
D=1

Hence, the denominator, Hle At is a weighted geometric mean of the eigenvalues.

w; =

2.3. Selecting 7. While MEE appears to be a legitimate measure of degrees of freedom
particularly in light of the one-to-one cumulant correspondence in the k-sample case, there
is still the problem of selecting 7 to arrive at a unique definition for degrees of freedom.
Examining MEE on the log-scale provides some insight. Taking the natural log of MEE
and multiplying through by 7 — 1 yields

k k
(t—1)In(MEE; [V]) =71In (Z mi)\i> —1In (Z mMZ) .
i=1 i=1
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Dividing the arguments of the natural log terms on the right hand side by A1 and (25:1 )T
respectively, and introducing a third term to maintain equality gives

(r —1)In (MEE, [V]) = 7In zk:mA R
' i=1 Z)\l Zk )‘z

i=1

k A T

Next, we change the sign of the first two terms and invert the arguments of the correspond-
ing natural logs, which results in

k A T
—In m; | ——— .
(Z; (Z% Aa’> >

A [y — ~m1 | =% < | >
i=1 Z?:l Aj Z?:l Aj

(1 —1)In (MEE, [V]) ~ —7In (M) —1In(my). (1)

i=1 i

Finally, provided that

then

Fig. 1 displays four MEE curves with the configurations indicated in the caption and
their native scale approximations based on Eq. (1), which shows that the approximation
is asymptotically equivalent to MEE as 7 — oo.

Statisticians are generally familiar with the expression —p In(p), which is known as Shan-
non’s entropy. It was originally introduced as a measure of information content in com-
munications theory with a wide variety of applications including thermodynamics where
statistical mechanics are used to model the probabilities of physical phenomena (Stowe,
2007; Volkenshtein, 2009). The —7 In(A;/ 2?21 m;A;) portion of Eq. (1) echoes Shannon’s

entropy with 7 and \;/ Zle m;A\; playing the role of p. This motivates us to define 7 as

rolnzBlh (2

i1 i
where n — k is similar to Boltzmann’s constant in Gibbs entropy (Shannon’s entropy scaled
by Boltzmann’s constant), which places the final calculation on the proper scale. It is in-
teresting to note that 7 increases as A1 grows or its multiplicity declines, which means that
the MEE defined degrees of freedom of highly imbalanced systems approach the minimum
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Forming a right triangle with legs of length Ay and );, the tangent of the angle formed
by the leg of length \; and the hypothenuse is A /A;. If m; such triangles are formed in this
manner for each eigenvalue, 7 can be interpreted geometrically as the harmonic mean of the
tangent values. The ratio of A; and A; can also be viewed as an information exchange rate
between the two variances. The harmonic mean is commonly and more appropriately used
instead of the arithmetic or geometric mean in problems dealing with rates. As the k = 2
and k = 3 group simulations demonstrate, Definition (2) works well for a wide variety of
different configurations of sample size and variance.

3. CONVENTIONAL IID TwO-SAMPLE CASE

In the two-sample case, since MEE is scale invariant, the contrast vector, ¢/ = (1,—1) is
unique up to sign and thus has no further effect on our analysis. Without loss of generality,
we assume that o3/ny (ny — 1) > 03/n2 (n2 — 1), where o2 and n; are the variance and
sample size of the i*" group, respectively, i = 1,2. We seek to generalize degrees of freedom
using MEE by encoding A to be the matrix associated with the variance of the numerator
of the test statistic, in this case Var[Z; — Z3], where T; is the mean of the ith sample. That
is, rather than encoding A to be the residual matrix R = (I — H)’X(I — H) introduced in
section 2.2., we define a variance matrix by substituting T and S, given below, for I and
H, respectively. In this formulation,

21
> = 1-n1 ,
( U%In2

where I, denotes the identity matrix of dimension n. Next, we define

<1 o
_ ni(niy—
T= 1 I, | (3)
na(nz—1)
Then, the substitute for H is given by
1/m1 J
S — Vi —1)" " (4)
= 1/no Jn2 )

vna2(ne—1)

where J,, is the square matrix of ones of dimension n. Finally, this leads to the variance
matrix defined by

V=(T-S)XZ(T-S). (5)

We can now realize the benefit of defining the variance matrix in this manner. First, it

is straightforward to verify that tr[V] = Var[z; —T2]. Second, the eigenvalues of V, needed
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FIGURE 1. Plot of MEE, [V] as a function of 7 with V as defined in Eq. (5),
n1 =5, ny =8, and 03 = 1. The legend indicates the four different curves
that correspond with o7 = 1,2,3, and 4, while the solid curves are the
respective native scale approximations of MEE, [V] given by Eq. (1).

for use with MEE, are given by

)\0 :O, , m0:2

)\1 :L mi :n1—1
TL1(7“L1271)7

)\2 =—22 _ mgzng—l.
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Hence, MEE may take on the following values in the two-sample iid case.

;

CEl}
ni ny
Tl 2 ™ 2 =, 1720, ?é 1
o1 92 ’
(=D mrmm=n ) H2= D e
]
MEET [V] == n1 no _ 1 5
("1(”1—1)> .(”2("2_1))
2 2
5 s T — OO
71
ny(ny—1)
where
a;
= =12
wa ﬁ 0_7371 ) *
ni no

Evaluating MEE at 7 = 2 reveals that the WS approximation occurs as a special case.

MEE; [V] = p p
ni(n1—1) ' nj(na—1)

Casella & Berger (2002) on p. 314 motivate Satterthwaite’s approximation from a method
of moments perspective. Given the relationship between MEE, the WS approximation, and
the cumulants of the 2, perhaps it would be more accurately described as an application
of method of cumulants. Of course, the two methods are indistinguishable for the first
three moments/cumulants.

Fig. 1 shows a plot of MEE as a function of 7 for four variance configurations of
k = 2 groups of size 5 and 8. All the curves start at the common maximum value of
mi+mg =n1—14+ng—1=4+4+7 =11, but have different minimum asymptotes due to the
different variance configurations. It is also interesting to note that all the curves approach
their respective asymptotes quickly, and do so at an accelerated rate as the discrepancy
between the sample variances increases. Fig. 2 continues the example showing density es-
timates for Q. (s?/n1 + s3/n2) in the upper panel and t = (T — T2)/\/s3/n1 + s3/n2 in
the lower panel. The upper panel also shows x? density approximations, while the lower
panel shows ¢ density approximations where the degrees of freedom for both are calculated
using 7 in Eq. (2).

3.1. k-Sample Case. Unlike the two-sample case, the contrast vector, ¢, for three or
more groups has a role to play, though vectors such as (1,1,-2) and (1/2,1/2,—1) are
still equivalent due to MEE’s scale invariance. However, ¢ is readily incorporated into
the patterns established for the matrices T and S in Eqgs. (3) and (4) to construct their
k-sample analogues by multiplying the i*® block matrices in T and S by ¢;. Without loss
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FIGURE 2. The upper panel shows the empirical density estimates for
Q-(s?/n1+ s3/n2) as various dashed outlines where n; = 5, ny = 8, 03 = 1,
and a% = 1,2,3, or 4 as indicated in the legend. The solid lines indicate
the respective x? density approximations. The lower panel shows empirical
density estimates for ¢t = (T1 — T2)/\/s3/n1 + s5/n2 using the same con-
figurations as the upper panel with approximating t-distribution densities
overlaid as solid lines artificially recentered at 1,2,3, and 4, respectively.
The tuning parameter 7 in each case was determined by Eq. (2) result-
ing in the degrees of freedom being calculated as 8.91,6.45,5.55, and 5.12,

respectively. Each density estimate is based on b = 107 replications.

10
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of generality, we assume that c?o?/n;(n; — 1) > c?a?/nj(nj —1),1 <i<j<k. Then, the
eigenvalues of V as defined in Eq. (5) incorporating c into T and S are given by

020.2 .
)\i :nl(;lzz_l)7 mi:ni—l, 1,:17.,,7k.

Substituting these eigenvalues into MEE yields

( N

(zh, =)
T 2,2 T 7-2077&1
(=)

MEE; [V] = i;12 TR =1 )
k Ci UZ
i:l(ni("rl)>

279

2 2 9 7—_>OO

where

— g ;o
wz‘—w,l—l,...,k.

k
S, o
As with k = 2, the variance of Zle ¢iT; is encoded in the trace of V, that is, tr [V] =

Var [Zle ci@} . The WS approximation still occurs as a special case when 7 = 2, namely

k c?af 2
4 .4

MEE, [V] =~
D=1 w2 (1)

4. SIMULATION EXPERIMENTS

The simulation experiments consist of two or three samples to compare the efficacy of
MEE using our definition of 7 versus the WS approximation in R (R Core Team, 2012).
For k = 2, we test the following statistic against the t-distribution, namely

T — X2
t=
514 5
n1+n2

The two normally distributed and independent samples are generated under the null hy-
pothesis that the population means of the two groups are equal and tested against a
two-tailed alternative. Four configurations of variances are considered with a% =1,2,3, or
4 and 03 = 1. The sample size of each sample is varied from 2 to 30 with each combination
of n1, na, 02, and o2 repeated b = 108 times.
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Like the WS approximation, we use the sample variance in place of the population
variance to estimate degrees of freedom using MEE. This is accomplished by estimating
the eigenvalues by

. 52
/\< = L 5 ) = 17 2,
! n; (nz — 1) ‘
which leads to an estimate of our definition of 7 being
—2)A
P . L
Dim1 M

For the sake of simplicity, it is understood that the estimated eigenvalues are ordered from
largest to smallest on a sample-by-sample basis, which is not necessarily in the same order
as the groups. The same convention holds in the k = 3 simulations.

For each of the b = 10® repetitions, the two-sided p-value is calculated using a t-
distribution with degrees of freedom estimated by the MEE and WS methods with test
level estimates recorded for the commonly used o = .05 level of significance. Even if we
apply a conservative Bonferroni correction testing the difference between the test level esti-
mates for MEE and WS, nearly all of them are statistically significantly different due to the
large number of repetitions. Hence, we do not graphically indicate statistically significant
differences in the simulation result figures. Fig. 3 shows filled contour plots of the empirical
test level estimates for £k = 2. The most striking feature when comparing WS in the left
column to MEE on the right is that MEE either holds or comes close to holding test level
for a greater portion of the included combinations. Most of the improvement comes when
one sample is small coupled with a larger one. However, MEE still exhibits some difficulty,
albeit to a lesser degree than WS, when the smaller sample size is associated with the larger
variance as the incursions on the left side of its filled contours for o? > 2 show. There is
also the blue strip that becomes more pronounced at the bottom of MEFE’s filled contours
as a% increases. As the k = 3 cases also demonstrate, when MEE fails to hold level, it has
a tendency to be too conservative.

For k = 3, we test the following statistic,
‘o 1+ Ty — 273

2 2 2
51 52 53
e + s + 4n3

against the t-distribution using degrees of freedom estimated by MEE and the WS approx-
imation. The three samples are independently and normally distributed under the null
hypothesis that all three group means are equal. Every combination of a% € {1,2,3,4},
o2 € {1,2,3,4}, and 0% = 1 is included with the sample sizes allowed to vary between 2
and 16. Due to symmetry, o7 < 02, and each configuration is repeated b = 10% times.
As with the two-sample simulations, the p-value of the two-sided test calculated using

the ¢-distibution on MEE and WS estimated degrees of freedom and test level estimates
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FicUre 3. Filled contour plots of the k = 2 test level estimates for Welch-
Satterthwaite (left column) and MEE (right column) as a function of n;
and ng at the a = .05 level of significance. o2 = 1 for all the plots, while
the rows correspond to o? = 1,2, 3, and 4, respectively. Each combination
of ni, na, a%, and ag is replicated b = 108 times.

13



k-SAMPLE ¢-TEST REDUX 14

are recorded at several different levels of significance with the oo = .05 results discussed here.

Since we are dealing with a three group contrast, that must be taken into consideration
for both MEE and WS. The eigenvalue estimates are given by \; = c2s?/ni(n; — 1),i =
1,2,3, and 7 = (n — 3)A\1/ Y22, mi);, where ¢ = (1,1, —2). This has the effect that even
though O'% = 1, the variance contribution of the third group to the numerator of the test
statistic is cg = 4 times larger. Hence, the configurations where 07 = 03 = 4, in a sense,

act as the equal variance cases.

Fig. 4 shows the filled contour plots of the empirical test level estimates at o = .05 with
WS in the left column and MEE in the right for the selected values of ng € {4,8,12,16} and
variances 07 = 1, 05 = 4, and 0% = 1 (Reviewers: Please see the additional figures in the
appendix.). This particular figure is included due to its combination of equal and unequal
variances. As in the k& = 2 simulations, a perusal of the plots generally shows that MEE
holds level for a larger portion of the plots than WS. Many of the gains occur when two of
the sample sizes are small while the remaining one is not. The notable exception occurs in
the n3 = 4 row where MEE performs much better than WS in the upper right portion of
the plot, but becomes too conservative otherwise. The other three rows demonstrate that
when MEE fails to hold level, it tends to be too conservative as in the k = 2 simulations.

The blue vertical streak on the left side of the MEE plots is associated with smaller
values of ni. Recall that a% = 1 is effectively the smallest of the three sample variances,
but that small n; makes the eigenvalue associated with this group large. The simulations
also capture the estimated values of 7 and empirically estimated degrees of freedom that
are obtained by maximum likelihood applied to the simulated t-values. A comparison of
the two suggests that the estimated values of T are too large in these cases, which leads
MEE to underestimate degrees of freedom in these cases. The same phenomenon occurs
in general for all the factor combinations when MEE is too conservative.

The nine other variance configurations for £ = 3 exhibit similar patterns as the cases
discussed above where MEE generally expands the number of cases that approximately
hold test level when compared with WS. They also show that when MEE fails to hold test
level it is generally too conservative. Overall, extremely small sample sizes of 2, 3, and 4
generally result in extremely liberal test level estimates for both MEE and WS suggesting
that they should be avoided when possible in practice.

5. DISCUSSION

As the simulations demonstrate, MEE, in combination with the entropy motivated def-
inition for 7, appears to generally improve upon and continue the work of Satterthwaite
and Welch, at least for the cases considered here. The relationship between MEE and the
cumulants of the x? in the k-sample case serves to confirm its validity as a measure of
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Welch-Satterthwaite MEE
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FicURE 4. Filled contour plots of test level estimates for Welch-
Satterthwaite (left column) and MEE (right column) as a function of nq, ng,
and n3 at the a = .05 level of significance. 0 = 1, 03 = 4, and 03 = 1 for all
the plots, while the rows correspond to n3 = 4, 8,12, and 16, respectively.
Each combination is replicated b = 10® times.

15
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degrees of freedom and establishes the WS approximation as a special case when 7 = 2.
At the same time, MEE agrees with traditional degrees of freedom for linear models with
idempotent linear smoothers. The definition of 7 also connects MEE to the well established
bodies of entropy and information theory.

Even though we did not discuss the pooled variance method in the simulation section,
we did collect test level estimates for it. We omitted pooled variance due to its abysmal
performance in the unequal variance cases. Despite some historical understanding the dan-
gers of preliminary conditional testing to decide between pooled variance and WS (Moser
& Stevens, 1992), one occasionally still encounters new textbooks recommending this an-
tiquated approach, particularly in statistics texts written for other disciplines. It is our
sincere hope that the improvements that MEE brings over WS will hasten the end of this
questionable preliminary testing procedure.

While the present definition of 7 works well for a wide variety of variance and sample
size combinations, we will continue to conduct research into improving it. Specifically, we
want to discover why the present definition tends to produce estimates that are too large in
the cases where the test level is too conservative. The improvement will likely come from a
deeper understanding of the two terms, Tln(z,lle Ai/A1) and lm(Zf:1 mi(N;/ Z§:1 A7),
which largely cancel one another out.

When conducting the basic research for MEE, a seemingly mundane detail turned out
to be crucial in the k-sample t-test case. We learned that the variance of the contrast must
be encoded directly into the structure of V instead of using the more traditional residual
variance matrix representation. More specifically, the trace of V is the variance of the
contrast. As we apply MEE in a other settings, properly encoding V will likely continue
to play a pivotal role.

Our experience with V has also made us aware that the traditional meaning of bal-
ance needs to be addressed in a more holistic manner using the eigenvalues, which involve
the variances and sizes of the samples as well as the contrast. For example, in a design
setting with pilot data available, sample sizes can be selected so that the eigenvalues are
approximately equal, which makes the task of estimating degrees of freedom far simpler.
Of course, this does not address designs with multiple contrasts, which will require further
research.

We were careful to define MEE as a general framework separate from the specific context
of the k-sample t-test to emphasize that, while it plays a central role in the present context
estimating the effective degrees of freedom, MEE can be used in a variety of situations.
We are currently conducting research where MEE is applied in the context of spatially
correlated data to arrive at an effective sample size. We are simultaneously exploring its
use in the context of correlated cross-validation where we hope to derive a criterion that
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works for general covariance structures.
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APPENDIX
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Proof.
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And now for the denominator of the last expression.
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Combining the two yields the desired result. O
Lemma 2. lim, o, MEE, [A] = Zi:)l\lml)” = ti\[?]
Proof. We deal with the numerator first.
k Tln (Z’Ll mi)\i)
lim ", Zmi)\i = lim exp !
T—00 im1 T—00 T—1
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=exp | lim 1
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k
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Now for the denominator.
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k T
1 i1 Wii)‘i
. In (m1/\71—) n ( m1A]
=exp | lim +
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Lemma 3. If1 < r < 7 and the data are normally distributed with covariance V as defined
in Eq. (5), then

Ry [QT Z nZA

i=1 "

< kr [X],

where k, [] denotes the ™ cumulant of its argument, Q, = Tﬁ\l/Zle mi\i/ Zle miAT,

and X ~ x? on MEE, [V] degrees of freedom with equality holding if and only if r = 1,
r =T, or there is only one unique nonzero eigenvalue.

Proof. By Holder’s inequality,

k r—r  T(r=1) k rr\ = = 1)\ =1 =
S (o () (7))
i=1 i=1 i=1

k k = / k =
i=1 i=1 i=1

ZI-“_ oy 1k Z]-“_ mi\; Tk

( ]i_l 7 z) Zmz)\fé ( ;_1 1 z) Zmz)\z

D1 MGAT i=1 Dozt MGAT i=1

k
27T (r) Q7Y miA] <27 'T (r) MEE, [V]
i=1
L
Rp [Q‘r Z Z] < Ky [X} X~ Xi/[EET[V} U

i=1""

Similarly, if » > 7, then k,[Q- Zle Z—%] > ky[X], with equality holding if and only if

there is only one unique nonzero eigenvalue.
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Welch-Satterthwaite MEE
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FicUrRe 5. Filled contour plots of test level estimates for Welch-
Satterthwaite (left column) and MEE (right column) as a function of nq, ng,
and n3 at the a = .05 level of significance. 0 = 1,03 = 1, and 03 = 1 for all
the plots, while the rows correspond to n3 = 4, 8,12, and 16, respectively.
Each combination is replicated b = 107 times.
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FicURE 6. Filled contour plots of test level estimates for Welch-
Satterthwaite (left column) and MEE (right column) as a function of nq, ng,
and n3 at the a = .05 level of significance. 0 =1, 03 = 2, and 03 = 1 for all
the plots, while the rows correspond to n3 = 4, 8,12, and 16, respectively.
Each combination is replicated b = 107 times.
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FicUure 7. Filled contour plots of test level estimates for Welch-
Satterthwaite (left column) and MEE (right column) as a function of nq, ng,
and n3 at the a = .05 level of significance. 0 = 1, 03 = 3, and 03 = 1 for all
the plots, while the rows correspond to n3 = 4, 8,12, and 16, respectively.
Each combination is replicated b = 107 times.
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FicUure 8. Filled contour plots of test level estimates for Welch-
Satterthwaite (left column) and MEE (right column) as a function of nq, ng,
and n3 at the a = .05 level of significance. 0} =2, 03 = 2, and 03 = 1 for all
the plots, while the rows correspond to n3 = 4, 8,12, and 16, respectively.
Each combination is replicated b = 107 times.
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FicUure 9. Filled contour plots of test level estimates for Welch-
Satterthwaite (left column) and MEE (right column) as a function of nq, ng,
and n3 at the a = .05 level of significance. 0} = 2, 03 = 3, and 03 = 1 for all
the plots, while the rows correspond to n3 = 4, 8,12, and 16, respectively.
Each combination is replicated b = 107 times.
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Welch-Satterthwaite MEE
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Ficure 10. Filled contour plots of test level estimates for Welch-
Satterthwaite (left column) and MEE (right column) as a function of nq, ng,
and n3 at the a = .05 level of significance. 0} = 2, 03 = 4, and 03 = 1 for all
the plots, while the rows correspond to n3 = 4, 8,12, and 16, respectively.
Each combination is replicated b = 107 times.
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Ficure 11. Filled contour plots of test level estimates for Welch-
Satterthwaite (left column) and MEE (right column) as a function of nq, ng,
and n3 at the a = .05 level of significance. 0} = 3, 03 = 3, and 03 = 1 for all
the plots, while the rows correspond to n3 = 4, 8,12, and 16, respectively.
Each combination is replicated b = 107 times.
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Ficure 12. Filled contour plots of test level estimates for Welch-
Satterthwaite (left column) and MEE (right column) as a function of nq, ng,
and n3 at the a = .05 level of significance. 0} = 3, 03 = 4, and 03 = 1 for all
the plots, while the rows correspond to n3 = 4, 8,12, and 16, respectively.
Each combination is replicated b = 107 times.

28



k-SAMPLE t-TEST REDUX

Welch-Satterthwaite MEE

0.056+

0.054

0.052

0.050

0.048

0.046

0.044-

Ficure 13. Filled contour plots of test level estimates for Welch-
Satterthwaite (left column) and MEE (right column) as a function of nq, ng,
and n3 at the a = .05 level of significance. 0} =4, 03 = 4, and 03 = 1 for all
the plots, while the rows correspond to n3 = 4, 8,12, and 16, respectively.
Each combination is replicated b = 107 times.
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