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Abstract

When estimating the power of genetic association studies, the allele and genotype frequencies are

often assumed to be known, and the numbers of individuals with each genotype are set equal to

their expectations under Hardy-Weinberg equilibrium. In fact, both allele and genotype frequen-

cies are unknown and random. Ambrosius et al. (2004) have demonstrated that treating these

parameters as fixed can lead to inflated power expectations. To overcome the problem, they pro-

posed averaging power estimates over the distribution of unknown parameters. We investigate their

method and find that, despite theoretical appeal, it may not always improve accuracy, while sig-

nificantly increasing computational time. For a given allele frequency, we show that the approach

of fixing genotype counts does produce an upward bias in estimated power, but the magnitude of

the bias diminishes rapidly with sample size and is completely negligible for N > 200. For an

unknown frequency, the method of power averaging requires further assumptions about the prior

distribution for the parameter, and can either overestimate or underestimate true power when the

prior is misspecified. We explore the relationships between these and other assumptions of the

power calculation, and propose a more economical approach to power analysis.
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INTRODUCTION

Estimating statistical power is a critical issue in the planning of genetic association studies. For a

given study design, a power calculation generally relies on a number of assumed parameters. In

particular, the allele frequencies of investigated markers are assumed to be known, and the num-

bers of individuals with each genotype are set equal to their expectations under Hardy-Weinberg

equilibrium (HWE). In reality, the allele frequencies are rarely known prior to collecting the data,

and in fact can vary considerably across different populations (e.g., The International HapMap

Consortium 2005). Further, even for a fixed population allele frequency with genotypes in Hardy-

Weinberg proportions, sample genotype counts are still subject to random variation. Ambrosius et

al. (2004) previously showed that ignoring uncertainty in these parameters tends to produce overly

optimistic power estimates, thus understating sample-size requirements for a study. To obtain more

realistic estimates, they proposed averaging power over the distribution of sample genotype counts

when the allele frequency is known, and placing a prior distribution on the allele frequency when

the latter is unknown. The authors examined a number of examples from different study designs

and found that the effect of treating unknown frequencies as fixed can range from small to sub-

stantial. Zheng et al. (2005) extended the method of power averaging to linkage studies and came

to qualitatively similar conclusions.

Although Ambrosius et al. (2004) rightly point out that the uncertainty in assumed parameters

can lead to incorrect power estimates, their examples cover only a limited number of parameter

settings (e.g., p = 0.5 and N = 20, 40 in the case of association studies with quantitative traits). It

is therefore not clear from their analysis whether the relationship holds mathematically and whether

a similar overestimation would occur under different parameter combinations. For example, both

Ambrosius et al. (2004) and Zheng et al. (2005) report much smaller errors in estimated power

when the examples involve larger samples sizes (N = 100, 500), but they do not make an explicit

connection between accuracy and sample size. Finally, the authors fail to consider the effect of

other factors, such as the assumptions about the genetic model, on the quality of power estimates.

We examine the relationship between the factors affecting power more systematically, in order
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to quantify the effect of ignoring variation in the unknown parameter values. Focusing on asso-

ciation studies with quantitative traits, we show that for a given allele frequency, the approach of

fixing sample genotype counts at their expected values does lead to an upward bias in estimated

power. However, the magnitude of the bias decreases dramatically with sample size and is usually

negligible for N > 200, unless the alleles in question are extremely rare. Thus, the method of

power averaging, although technically correct, may in practice achieve little in terms of accuracy

while significantly increasing computational time.

When the allele frequency is unknown, Ambrosius et al. (2004) suggest using a beta prior for

the unknown parameter and averaging power over the prior. To demonstrate their method, however,

they choose a beta distribution that is centered at the true population frequency or estimates thereof

obtained from previous studies. We note that the first approach is unachievable in practice, and

the second can itself produce upward- or downward-biased results if the available estimates of

the allele frequency happen by chance to be far from the population value. Zheng et al. (2005)

recognize the problem and recommend performing a sensitivity analysis of averaged power with

respect to the true allele frequency. We agree with Zheng et al. (2005) but observe that their

procedure adds further complexity to the computation. In line with the previously stated finding,

we argue that a simple power calculation over a range of allele frequencies can provide adequate

information about the expected power of the study, while saving computational time and avoiding

the ambiguity imposed by the subjective choice of a prior.

Lastly, we show that the assumptions about the genetic model can lead to larger differences in

estimated power than varying allele or genotype frequencies. Thus, when the mode of inheritance

is unknown (as is often the case), one has to examine the range of estimates obtained under different

genetic models, in order to provide a realistic and accurate assessment of power for a given study

design and sample size.
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METHODS

In this section, we briefly review the methodology for calculating power in population-based asso-

ciation studies for fixed and random genotype frequencies.

Notation

Consider a diallelic marker with alleles A and B that have population frequencies p and q =

1 − p, respectively. Suppose that A is the minor, or less common, allele. There are three possible

genotypes at this locus: BB, BA, AA (having 0, 1, and 2 copies of the minor allele, respectively),

which, under the condition of HWE, have frequencies p0 = (1− p)2, p1 = 2p(1− p), and p2 = p2.

Let n = (n0, n1, n2) = (nBB, nBA, nAA) be the number of individuals with each genotype in a

random sample of size N , such that n0 + n1 + n2 = N . For a fixed N , the observed genotype

counts follow a trinomial distribution, n ∼ Mult(N ; (1 − p)2, 2p(1 − p), p2). In most power and

sample size calculations, one typically specifies the total sample size, N , assuming some or all

components of the vector n are known. Specifically, when planning a genetic association study,

the sample counts are often set equal to their expected values,

E[n] = (N(1− p)2, 2Np(1− p), Np2).

For a given n, the power of a statistical test T depends on the chosen significance level (α), the

alternative hypothesis (HA) (i.e., effect size), and the assumed genetic model (M ). Adopting the

notation given in Ambrosius et al. (2004), we will write this as π(n|α, T,HA,M). When the main

interest is in the effect of random variation in n (while holding α, T,HA, and M constant), we will

denote it by π(n) for short. Under the assumptions of HWE, the distribution of n depends on a

single parameter, p. Hence power is often viewed as a function of the minor allele frequency, p,

and calculated by setting n ≡ E[n], i.e.,

π(p|N) = π(E[n]). (1)

However, this is clearly wrong because n is a random function of p. The correct approach would

be to estimate En[π(n)|p], since in general En[π(n)|p] 6= π(E[n]) unless the power function is
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linear. In particular, for the case of genetic studies with quantitative traits it will be shown that

π(E[n]) ≥ En[π(n)|p].

Further, the population allele frequency, p, itself is rarely known in advance and can be viewed

as a random variable from some probability distribution. Ambrosius et al. (2004) introduce a beta

prior for p and calculate π(N) = Ep{En[π(n)|p]}. Their numerical examples show that π(E[n]) is

generally greater than En[π(n)|p], the difference ranging from small (< 1%) to substantial (4%),

and En[π(n)|p] is in turn greater than Ep{En[π(n)|p]}. They conclude, therefore, that ignoring

random variation in n and p can lead to a considerable overestimation of power for a given study

design and sample size (N ). In the following sections we examine their claim and explore the

dependence of π(n) on the various parameters of the analysis.

Power of Association Studies with Quantitative Traits

In studies of quantitative traits, the association between genotype and phenotype is commonly

tested using the general linear model. Let µi, i = 0, 1, 2, denote the mean trait value of individuals

with i copies of the A allele. If the mode of inheritance for the trait is known, then the problem is

one of linear regression,

µi = µ0 + βxi, (2)

where (x0, x1, x2) = (0, d, 1), and d = 1, 1/2, 0 under the dominant (µ1 = µ2), additive (µ1 =

(µ0 + µ2)/2), and recessive (µ0 = µ1) models, respectively. The corresponding F -ratio for testing

the equality of means (H0 : β = 0 versus HA : β 6= 0) in this case follows a non-central F

distribution with 1 and N − 2 degrees of freedom and a non-centrality parameter,

λ =

(∑
i ni(xi − x̄)(µi − µ)

)2∑
i ni(xi − x̄)2σ2

, (3)

where x̄ =
∑

i nixi

/∑
i ni, µ =

∑
i niµi

/∑
i ni and σ is the within-group standard deviation.

Note that λ = 0, when all means are equal, and is strictly greater than zero, when at least one mean

is different. Let Fcrit = F1−α,1,N−2 be the (1 − α)100 percentile of the central F distribution (for
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which λ = 0) with 1 and N − 2 degrees of freedom. Then the power is given by

π = Pr(F1,N−2,λ > Fcrit), (4)

which is a monotonically increasing function of λ. For details on testing the general linear hypoth-

esis and the non-central F -distribution see, for example, Searle (1971), or Graybill (1976).

From the form of the non-centrality parameter it becomes clear that the power of an association

test depends on the means {µi} (i.e., genetic model and effect size), the assigned scores {xi}, and

the underlying allele frequency, p, through the observed vector n = {ni}. In particular, when the

scores xi are chosen correctly (i.e., the assumed model is true), the expression (3) is maximized

and reduces to

λ =

∑
i ni(µi − µ)2

σ2
. (5)

If the scores are misspecified, on the other hand (i.e., the true model is different from the one

assumed), the actual power may fall below the optimal value. Thus, when the mode of inheritance

is unknown, the test for association is often performed using the one-way analysis of variance. The

ANOVA statistic has 2 and N − 3 degrees of freedom and a non-centrality parameter (5). For the

same value of λ, the 1-df test is more powerful than the 2-df test, but may be less powerful than the

ANOVA whenever a wrong set of scores is used. For both tests, however, the power depends on the

layout of the means under the true model. We illustrate the relationship between these parameters

with an example (see Results).

Averaging Power

Here we briefly review the formulae for computing the average power, as described in Ambrosius

et al. (2004). For a given p the expected power is the proper weighting of the estimates π(n) by

the probabilities of multinomial counts, n,

En[π(n)|p] =
∑

P
ni=N ; ni≥0 ∀i

π(n)
N !

n0!n1!n2!
2n1p2n0+n1(1− p)n1+2n2 . (6)
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When the allele frequency is unknown, one may use a beta prior to describe the uncertainty in p.

For a beta prior with parameters γ and δ (γ, δ > 0), the expected power is then given by

Ep{En[π(n)|p]} =
Γ(γ + δ)

Γ(γ)Γ(δ)

∑
P
ni=N ; ni≥0 ∀i

π(n)
N !

n0!n1!n2!
2n1×

Γ(2n0 + n1 + γ)Γ(n1 + 2n2 + δ)

Γ(2N + γ + δ)
. (7)

A beta prior constitutes a natural choice for modeling a frequency (i.e., a quantity varying between

0 and 1), and leads to a tractable solution for the expected power in (7). The mean of a beta(γ, δ)

distribution is γ/(γ + δ), which can be chosen to take any value between 0 and 1 by varying γ and

δ. For each specified mean, one can modify the variance by multiplying the two parameters by any

positive constant, provided that the resulting γ, δ ≥ 1. The density gets more concentrated about

the mean for larger γ and δ.

A reasonable question is which values of γ and δ to choose in order to get a good estimate

of power. Ambrosius et al. (2004) discussed two methods for specifying the prior. The first is

to perform a search of the literature or public databases (e.g., the HapMap), and take the allele

frequency estimates reported in previous studies as the mean of the prior. The second approach

is to make use of any available genotyping information obtained, for example, from a pilot study.

Specifically, assuming a flat prior for p (where no information on the frequency is available before

the initial data collection), the posterior distribution of p, conditional on observing x copies of the

A allele in n individuals (2n chromosomes), is p|x, n ∼ beta(1 + x, 1 + 2n − x). This updated

distribution could be used as a prior for p in the power calculation. Ambrosius et al. (2004) found

that the average power Ep{En[π(n)|p]} was generally lower than En[π(n)|p], although somewhat

close to it for more concentrated priors. Their examples, however, involved a prior distribution

that was centered at the true population frequency. It is not clear, therefore, that such a method of

averaging would produce a more conservative and realistic estimate of power if the mean of the

prior were chosen incorrectly (that is if the power were averaged around the wrong value).
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Computational Details

All computations were performed in the R statistical language and environment (see Web Re-

sources), using built-in routines for the gamma function and the non-central F -distribution. Note

that for a given N , there are (N + 1)(N + 2)/2 distinct outcomes for n to consider, so the com-

putational complexity is O(N2). We calculate exact expectations for N ≤ 100. For N = 1000 the

expectation is approximated by a Monte Carlo method, drawing 10,000 random samples from the

corresponding trinomial distribution for each p and averaging power over the observed samples.

Programs in R are available from the authors upon request.

RESULTS

Power as a Function of Genetic Model and Allele Frequency

Our study examines the effects of various factors on the power function. We define the allelic

effect (θ) as the standardized difference between the means (measured in standard deviations) of

the two homozygous samples (θ = (µ0 − µ2)/σ), assuming common variance (σ2) within each

genotype. For a fixed effect size, the means follow one of the three genetic models: additive

(µADD = (0, θ/2, θ)), dominant (µDOM = (0, θ, θ)), and recessive (µREC = (0, 0, θ)). The effect

size is controlled so that the power is not identically 1 over the entire allele frequency range. We

shall assume for the moment that the sample sizes are fixed, i.e., n ≡ E[n|p], and calculate power

at α = 0.05, using Equations (1) and (4), for p in the interval (0, 0.5]. As we see later, the estimates

are essentially the same when the power is averaged over n, as in Equation (6).

Figure 1(a) summarizes the relationship between power and minor allele frequency (p) when

no a priori assumption about the genetic model is made and the 2-df test is used. The results

illustrate that the power function varies substantially over the range of minor allele frequencies. In

our specific example, the power estimates range from 11% up to 81% under the dominant model

as the allele frequency changes. Secondly, the power varies widely among the three models. For

instance, when p = 0.25, the power is 80.8% under the dominant, 39.1% under the additive, and

25.8% under the recessive model. Thus, if one had assumed the dominant model when estimating
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Figure 1: Power as a function of allele frequency under the three genetic models: domi-

nant (DOM), additive (ADD), recessive (REC). µDOM = (0, 0.2, 0.2), µADD = (0, 0.1, 0.2),

µREC = (0, 0, 0.2), σ = 1, N = 1000. True model is (a) unknown and 2-df test is used, (b)

additive, (c) dominant, (d) recessive. Tests for association: - - - 2-df, model unknown; —– 1df

assuming additive model; – · – 1-df assuming dominant model; · · · 1-df assuming recessive

model.
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power, while the means followed the additive pattern, the true power would be overestimated by

about 41.6% (55% for the recessive model). Further, we observe that the power curves have a

different shape and peak, depending on the true configuration of the means. Specifically, in the

case of the additive model, the power is maximized when p = 0.5. For the dominant model the

maximum is at p = 0.29, when the expected number of carriers is equal to the number of non-

carriers (nAA + nAB = nBB). Finally, the power is always higher under the dominant model, and

is lowest under the recessive, unless the allele in question is very common (p > 0.35).

Figures 1(b)-(d) illustrate the result of performing the 1-df test assuming a particular model and

set of scores. Whenever the scores do not agree with the true pattern of the means, there is a loss

in power, which can be small or large depending on the model (true and supposed) and the allele

frequency. Thus, if one had assumed a wrong model when testing the association, there would

be a further difference between the estimated and true power due to misspecification of the model

scores.

Example 1

To assess the effect of averaging power over random genotype frequencies, we re-examine an ex-

ample given in Ambrosius et al. (2004) and extend the result to p ∈ (0, 1). Assume the dominant

mode of inheritance, in which genotypes AA and AB predispose individuals to one (e.g., disease)

phenotype and genotype BB to another (e.g., normal) phenotype. Suppose that we have a total

of eight subjects, µAA = µAB = 1, µBB = 3, and the within-group variance (σ2) is 1. The asso-

ciation is tested using the 1-df regression model, which is equivalent to comparing the combined

sample of AA and AB individuals to BB individuals. For a total sample size N = 8, there can be

anywhere from zero to eight carriers of the A allele. For each outcome, we first calculate power

using the standard method (listed in Table 1 in the column headed π(n)). Next, rather than as-

suming a single allele frequency, as was done in the original example, we determine the maximum

likelihood estimate of the allele frequency for each outcome, by p̂ = 1 −
√
nBB/N , and evaluate

the expected power, En[π(n)|p̂]. The last column in the table shows the difference between the

two sets of estimates. For each p̂, the average power over the distribution of multinomial counts
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Table 1: Power for a Dominant Model, N = 8.

nAA + nAB nBB p̂ π(n) En[π(n)|p̂] π(n)− En[π(n)|p̂]

0 8 0 0.00 0.00 0.00

1 7 0.06 0.3507 0.2859 0.0648

2 6 0.13 0.5373 0.4653 0.0721

3 5 0.21 0.6295 0.5633 0.0662

4 4 0.29 0.6569 0.5945 0.0624

5 3 0.39 0.6295 0.5633 0.0662

6 2 0.50 0.5373 0.4653 0.0721

7 1 0.65 0.3507 0.2859 0.0648

8 0 1 0.00 0.00 0.00

is indeed several percentage points lower than that calculated for fixed n. Figure 2(a) presents

this relationship graphically. We note that for p̂ > 0.5, the model should technically be termed

‘recessive’, however we demonstrate the relationship over the entire range of allele frequencies for

completeness. It is clear from the graph that the power function, π(n), is concave in the sample

counts. Hence, for any p, π(E[n]) ≥ En[π(n)|p], by Jensen’s inequality (see for example Casella

& Berger 2001). That is, evaluating the power at the expected sample counts will systematically

overestimate the expected power for each given allele frequency.

However, as we repeat the analysis for N = 20, 100, and 1000, we see that as N increases, the

size of the bias decreases dramatically (Figure 2(b)-(d)). For each N the effect size, θ, is scaled

appropriately so that the power is bound away from 100%. In the examples shown, the bias in

estimated power is close to 7% for N = 8; it ranges between 2− 3% for N = 20, generally stays

between 0.2 − 1% when N = 100, and does not exceed 0.2%, except at the very boundaries, for

N = 1000 (Supplementary Tables 1-3). The reason for larger bias at the boundaries is, perhaps,

that for rare alleles the expected number of carriers remains very small, even with large sample
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Figure 2: Estimated power under a dominant model with fixed and random genotype counts. (a)

N = 8, (b) N = 20, (c) N = 100, (d) N = 1000.
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sizes. As long as there are at least 3 people in the smaller group, however, the bias approaches zero

for large N .

To demonstrate the effect of uncertainty in the allele frequencies, Ambrosius et al. (2004)

assume a beta(5, 5
√

2 + 5) prior for p, which implies E[p] = .29. The expected power using this

prior is Ep{En[π(n)|p]} = .5494. This is several percentage points lower than both En[π(n)|p] =

.5945 and π(E[n]) = .6569 for p = .29. A plot of the beta(5, 5
√

2 + 5) density reveals that the

central 95% probability interval for the distribution extends from about .1 to .52 (Figure 3). Given

the potential range of variation in the power function, as exemplified in Figures 1 and 2, averaging

power over such a wide interval will clearly result in a much lower estimate of power. If more

information about the allele frequency can be assumed, and the variance of the prior reduced so

that the 95% probability interval lies between .2 and .4, as with a beta(25, 25
√

2+25), the expected

power becomes Ep{En[π(n)|p]} = .5850, which is only 1% less than the power calculated for a

fixed parameter value of p = .29. On the other hand, if the true allele frequency in the new study

population is p = .18 (which is well within the range of values allowed by the beta(5, 5
√

2 + 5)

prior), the expected power for this p is En[π(n)|p] = .5345. In this case, averaging power using

the above prior would actually result in an overestimate of power. Thus, the approach of averaging

power for an unknown allele frequency requires that the mean of such a prior be specified correctly

in order for it to produce an accurate and conservative estimate.

Example 2

In practice, when planning a genetic study, rather than estimating power for a list of possible

genotype counts (which becomes difficult when n is 3-dimensional, as it is under the additive

model), one could construct a power curve for a full range of allele frequencies. We compute

and compare such power curves for the dominant (recessive) and additive genetic models, with

fixed and random sample genotype counts. Letting p = 1%, . . . , 99%, we determine the expected

genotype counts, E[n], and evaluate π(E[n]) and En[π(n)|p] for each point in the range, for N =

20, 100, and 1000. We note that a dominant model for the A allele when p < 0.5, becomes a

recessive for the B allele when p ≥ 0.5. The alternative hypotheses are chosen so that the power

12



0.0 0.2 0.4 0.6 0.8 1.0

0

2

4

6

8

D
en

si
ty

beta(5,5 2 ++ 5)
beta(25,25 2 ++ 25)

Figure 3: Beta densities used in Example 1. Vertical segments mark the limits of a central 95%

probability interval.

function reaches approximately the same maximum value for each N . The results are presented in

Figure 4. Note that when the sample size is small (N = 20), several distinct allele frequencies lead

to the same expected sample counts due to rounding error, giving the graph a step-like appearance.

The rounding means that for small sample sizes, the power calculated for a fixed set of genotype

counts can be either lower or higher than the average power. Plotting the power surface as a

function of two of the three sample counts (e.g., n0 and n2), however, reveals that π remains

concave in the counts, so that theoretically π(E[n]) ≥ En[π(n)|p] for any p. As the sample size

increases, the steplike pattern disappears and the two curves become essentially identical. As

demonstrated in Figure 4(c)-(d), for N greater than 100 the difference between the two sets of

estimates is generally less than 1%.
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Figure 4: Power and expected power as a function of allele frequency for (a), (c), (e) - domi-

nant/recessive model, (b), (d), (f) - additive model.
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DISCUSSION

A power calculation for a genetic association study requires many assumptions, such as allele and

genotype frequencies, allelic effect size, and the mode-of-inheritance model for the trait of interest.

Since most of these parameters are unknown, one must properly account for the uncertainty in the

assumed values in order to obtain an accurate estimate of power for a given design and sample

size. In this work we have examined the effect of random variation in, and the relative importance

of, the specified factors in determining power.

Our results show that for any given allele frequency, the effect of ignoring sampling variation

in the genotype counts diminishes rapidly with sample size. Although the approach of fixing geno-

type frequencies at their expected values tends to overestimate power, the size of the estimation

bias becomes negligible as the sample size grows. Therefore, in most practical situations (for N

as small as 100, and most certainly for N > 200), using expected counts for calculating power

seems to be a reasonable approach. While for very low allele frequencies (p ≤ .01) the bias did

not approach zero equally fast (and remained close to 2% in our examples), we note that for rare

alleles the power to detect an association is generally low, regardless of the calculation method

used, and is unlikely to be ‘inflated’, even when the variation in the genotype counts is ignored.

The uncertainty in the allele frequency, on the other hand, can result in considerable errors in

estimated power. To overcome this problem, one possible solution is to place a prior distribution on

the unknown frequency and average these power estimates over the prior. Ambrosius et al. (2004)

modeled allele frequencies with a beta distribution, using the estimates obtained from previous

studies to specify the parameters of the prior. However, they always compared their average power

to that calculated for the mean of the prior, implicitly assuming that the mean was identical to the

true population allele frequency in the new study. We note that in practice the mean is likely to

differ from the true allele frequency, since the estimates obtained from previous studies are only

estimates themselves of an unknown population quantity. In the extreme situation, when the sample

estimates happen to be sufficiently far from the true population value (i.e., the prior is misspecified),

we have shown in Example 1 that it is possible to overestimate power even after integrating over a
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fairly diffuse prior, albeit to a smaller degree than by using a single frequency estimate. Thus, even

though the method of averaging can mitigate the consequences of misspecifying an unknown allele

frequency, it still relies on assumptions about the prior distribution and gives only an estimate of

the expected power.

Other authors considered the idea of integrating over the unknown parameter values when es-

timating the power of association studies. Schork (2002) proposed using empirically estimated

distributions of allele frequencies as a prior in the power calculation. Although his approach ap-

pears similar in principle to that discussed in Ambrosius et al. (2004), we note that the two articles

are targeting quite different sources of randomness. Schork (2002) was concerned with assessing

the average power for a study with multiple markers, while Ambrosius et al. (2004) focused on es-

timating the expected power for a particular candidate polymorphism. Clearly, very different prior

distributions would be required in these two situations to obtain a reasonable estimate of power.

In the first case, the expectation should be taken over all parameter values that would be observed

in, say, a genome-wide association study (GWAS), so a very diffuse prior would have to be speci-

fied. In the second, the goal of averaging is to account for sampling variability in allele frequency

estimates, obtained from previous studies, and a much more concentrated prior may be warranted.

Regardless of the purpose of the power calculation, we argue that it is more instructive to

perform a power analysis over a range of parameter settings, rather than present a single average

number (see Gordon and Finch 2005 for a similar discussion). For example, when planning a

whole-genome investigation one can expect to observe a wide range of allele frequencies. Since

one does not know in advance the properties of the causative allele, a more conservative approach

might be to select a sample size that would ensure an adequate level of power for all tested mark-

ers, including those with some minimum allele frequency (e.g., 5%). Averages can certainly be

useful, but they can also conceal the range of variation in the quantity of interest. We believe that

presenting an entire power curve for a given effect size is computationally simpler and actually

provides the researcher with more information about the expected power of a study.

Finally, the averaging methods discussed in this article fail to address another important source

of uncertainty in estimating the power of association studies - the mode of inheritance for the
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trait in question. We have shown that the power estimates vary vastly between the different genetic

models, especially for moderately common alleles. In particular, by assuming a dominant model at

the design stage, the power will almost always be overestimated unless the true effect is dominant.

To overcome the problem, we recommend plotting power curves for each of the three genetic

models and a fixed effect size, similar to the way presented in Figure 1.

While we have focused on association studies of quantitative traits, we believe that similar con-

clusions would apply in the case of other study designs. Both Ambrosius et al. (2004) and Zheng

et al. (2005) observed the convergence of power estimates for fixed and random genotype counts

whenever the sample sizes were large enough (see examples with binary traits and case-control

studies in Ambrosius et al. 2004), although they did not study the relationship systematically. It

would be valuable, however, to explore the dependence of power on variation in unknown param-

eters under different study designs in more detail.

One issue that has not been addressed in the current work is the sensitivity of power to devia-

tions of genotype frequencies from Hardy-Weinberg proportions. While the assumption of HWE

is reasonable in cohort studies, it may be seriously suspect in most case-control comparisons (see,

for example, Wittke-Thompson et al. 2005). We note in conclusion that the assumption of HWE

does not necessarily overestimate power. In fact, one can show that certain deviations (e.g., ab-

sence of heterozygotes under the additive model) can lead to higher power to detect an association.

However, a different set of genotype frequencies would then be required for estimating the power

for a given allele.
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