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Abstract

According to the recent Nation’s Report Card, 12th-graders failed to produce gains

on the 2005 National Assessment of Educational Progress (NAEP), while they are

earning better grades on average. One possible explanation is 12th-graders were not

motivated taking the NAEP which is a low-stakes test. We develop three Bayesian

IRT mixture models to describe the results from a group of examinees including both

non-guessers and partial guessers. The first assumes that the guesser answers questions

based on his knowledge up to a certain test item, and guesses thereafter. The second

model assumes that the guesser answers relatively easy questions based on his knowledge

and guesses randomly on the remaining items. The third is constructed to describe more

general low motivation behavior. It assumes that the guesser gives less and less effort

as he proceeds through the test. The models can provide not only consistent estimates

of IRT parameters but also estimates of each examinee’s nonguesser/guesser status and

degree of guessing behavior. Results of a simulation study comparing the performance

of the three guessing models to the 2PL-IRT model are shown. Finally, an analysis of

real data from a low-stakes test administered to university students is presented.

Key words: Bayesian mixture model, IRT model; guessing behavior; low motivation; item loca-

tion; low-stakes test.
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1 Introduction

Sometimes examinees taking a test may guess at the answers. This kind of test-taking

behavior is especially prevalent in a low-stakes test, where students are asked to take a test

for which they receive neither grades nor academic credit and thus may be unmotivated to

do well. If guessing is not accounted for in estimation, standard IRT (item response theory)

models will underestimate the true levels of the examinees’ ability. In fact, according to the

recent Nation’s Report Card (Grigg et al., 2007), 12th-graders failed to produce gains on

the 2005 National Assessment of Educational Progress (NAEP), while they are taking more

advanced courses and earning better grades on average. One possible explanation is 12th-

graders were not motivated taking the NAEP which is a low-stakes test. Wise and DeMars

(2005) found that motivated examinees tend to outscore their unmotivated counterparts by

over a half standard deviation on average. Guessing also occurs in high-stakes tests with time

constraints. In that case, examinees may switch to random guessing when time is running

out in an attempt to increase their scores.

It would be desirable to have a model to accommodate guessing behavior so that esti-

mation of item parameters and examinee abilities would not be compromised. One common

approach is to include a guessing component for all test items, as in the 3-parameter logis-

tic (3PL) IRT model. The 3PL model assumes that the examinee has a chance to answer

each item correctly either from his own knowledge or, if he doesn’t have the knowledge, by

guessing. The model thus describes guessing behavior as an item property that applies to all

the examinees. A more realistic model would allow individual differences among examinees’

guessing strategies. Martin, del Pino, and De Boeck (2006) do this by extending the 3PL

model to let the guessing parameter depend on the ability of the examinee. But both models

assume that all the examinees have the same ’knowledge-plus-guessing’ strategy on all the

test items. A consequence is that the presence of such guessing behavior increases each

examinee’s probability of answering each item correctly, so the 3PL-IRT curve (the correct-

response rate) could be higher than the nonguessing 2PL-IRT model. In reality, especially

in a low-stakes test, unmotivated examinees may randomly guess the answers without trying

to think it over. In this case, the guessing IRT curve is a horizontal line mostly below the
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nonguessing IRT curve.

Wise and Kong (2005) propose to use response time to distinguish solution behavior and

rapid-guessing behavior. They suggest that for each item, there is a threshold which is the

response time boundary between solution behavior and rapid-guessing behavior. Based on

this hypothesis, Wise and DeMars (2006) developed the effort-moderated model. If an exam-

inee’s response time is longer than the threshold, the model reduces to the 3PL IRT model

describing solution behavior. Otherwise, the model reduces to a constant probability model

with the guessing probability being the reciprocal of the number of response options. This

model has a more realistic assumption that examinees include both guessers and nonguessers.

The authors plot the response time distribution, and if there are two modes, they visually

choose the threshold between the two modes. However, if the distribution is unimodal, the

strategy is hard to apply. Another concern is that the randomness of the visual determina-

tion is not accommodated by the model. The effort-moderated model requires the response

time on each item. It is tailored for computer-based exams. It won’t apply to paper-based

exams where response time is not available.

The effect of random guessing can be accommodated in the framework of the mixture lin-

ear logistic test model (Mislevy and Verhelst, 1990), which is a special case of the IRT model

with a parameter-driven process for change (Rijmen et al., 2005). Those two approaches

model the different solution strategies employed in a test. They use the marginal maximum

likelihood estimates based on the EM algorithm. In this paper, we will make more specific

assumptions about guessing behaviors and propose a full Bayesian estimation procedure.

The above models need only binary data (correct or incorrect) for estimation. Another

guessing model for multiple choice data is the Nedelsky model (Bechger et al., 2003), which

requires the additional information of which option is selected for each item by each examinee.

It is based upon the idea that a person responds to a multiple choice question by first

eliminating the incorrect answers (distractors) he recognizes as wrong and then guessing at

random from the remaining answers. The model is hierarchical with the first level being

a Bernoulli trial describing the random guess. At the second level, the probability that

a wrong answer is recognized as wrong is modeled by the 2PL-IRT model. Because of the

nested logistic structure, the model requires a very large sample size to get reliable estimates.
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The IRT guessing models proposed in this paper were motivated by the response pattern

we observed in a test administered to our classes when the students participated in a national

statistics literacy assessment study. The multiple choice test was administered to 265 stu-

dents and consisted of 40 items, which took 30 to 45 minutes to complete. Because the test

did not affect the course grade, it was a low-stakes test. The students could choose to leave

the items blank, so there were nonresponses. Figure 1 shows the number of nonresponses as

a function of item location. The distinctive feature of the data is that the nearer the item

was located to the end of the test, the greater the nonresponse rate. In most cases, once

there was a nonresponse, none of the subsequent items were answered neither. This type of

behavior seems reasonable for students who may be curious or motivated by the test at first.

Gradually, they lose interest and begin guessing because their performance will not have any

consequence.

We propose three IRT models to accommodate different guessing behavior. One model

assumes that some examinees answer questions based on their knowledge up to a certain test

item, and guess randomly thereafter. For this model, there is an item location threshold for

each examinee, specifying the item number at which guessing commences. The second model

assumes that some examinees answer relatively easy questions based on their knowledge and

guess randomly on the rest, regardless of their location within the test. This model was

motivated by our attempts to describe the behavior of our students who skipped difficult

problems and attempted easier ones later in the statistical literacy assessment. The third

model is constructed to accommodate behavior indicative of low motivation, which we con-

sider to be a generalization of guessing behavior. It assumes that the unmotivated examinees

(guessers) give less effort to answer the problems as the exam progresses. For convenience,

we refer to this model as a guessing model also. All three can be thought of as mixture

models, where one component of the mixture model is non-guessers and the remainder de-

scribe various degrees of guessing. Thus our models do not require all examinees to behave

the same with respect to their guessing behavior. The three models can be estimated using

binary (correct/incorrect) data only.

We use Bayesian methods for estimating our models. In Section 2, we present the three

guessing models, discuss the choice of priors and hyperparameters, and describe how the
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models can be fit via Gibbs sampling. In Section 3, we present results from a simulation

study designed to compare the three guessing models with the non-guessing 2PL-IRT model.

A method for model selection is proposed. In Section 4, our method is applied to the statistics

literacy assessment test data. Some discussion follows in Section 5.

2 Three Bayesian IRT guessing models

In this section, we propose three Bayesian IRT guessing models. All of them can be con-

sidered as mixture models extended from the 2PL-IRT model. Define the binary response

data, xij, with index i = 1, · · · , n for persons, and index j = 1, · · · , J for items, and

xij =





1, if the response from person i to item j is correct,

0, otherwise.

In the 2PL-IRT model, the probability of a correct response from examinee i to item j is

P (xij = 1| θi, δj, γj) =
exp(γj(θi − δj))

1 + exp(γj(θi − δj))
,

where θi is examinee i’s ability parameter, δj is item j’s difficulty parameter and γj is item

j’s discrimination parameter.

2.1 The IRT threshold guessing model

The IRT threshold guessing model (IRT-TG) is constructed under the assumption that both

guessers and nonguessers take the test, where the guessers answer questions based on their

knowledge up to a certain test item, and guess randomly thereafter. Our model includes an

item location parameter that specifies the threshold individually for each examinee. Then

the probability of a correct response from examinee i to item j is given by

P (xij = 1| θi, δj, γj, cj, αi) =
exp[γj(θi − δj)− I(j > αi)(γj(θi − δj)− cj)]

1 + exp[γj(θi − δj)− I(j > αi)(γj(θi − δj)− cj)]
, (1)

where αi is the ith examinee’s item location threshold parameter, and cj is the jth item’s

guessing parameter. Parameter αi can be any integer from 1 to J . Indicator function
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I(j > αi) is defined as

I(j > αi) =





1, j > αi

0, j ≤ αi.

The IRT-TG model can be partitioned into two parts. It is assumed that examinee i is

motivated and actively seeks the answers based on his ability for the first αi items. So the

model reduces to the 2PL IRT model when j ≤ αi,

P (xij = 1 | θi, δj, γj, cj, j ≤ αi) =
exp(γj(θi − δj))

1 + exp(γj(θi − δj))
.

Note that if αi = J , then examinee i has answered all the items actively and is not a guesser.

After item αi, examinee i responds to the subsequent items by random guessing, and the

model has the form

P (xij = 1 | θi, δj, γj, cj, j > αi) =
exp(cj)

1 + exp(cj)
,

for j > αi. Thus the parameter cj determines the probability of a correct response when

an examinee guesses at the item. Define the guessing probability as gj =
exp(cj)

1+exp(cj)
. If it is

completely random guessing, then gj = 1
Nj

, where Nj is the number of options for item j. In

this paper, we assume that gj is an unknown parameter so that the model is more flexible.

The IRT-TG model is the same as the HYBRID model proposed by Yamamoto (1995),

which was motivated by the behavior of examinees on speeded tests, such as TOEFL or

GRE. He noted that they would “switch from a strategy of thoughtful response to a strategy

of patterned or random response” (Yamamoto, 1995). Yamamoto implemented the marginal

maximum likelihood method to estimate the parameters of this model, while our estimation

method is Bayesian. The advantage of our method is that it provides estimates of some

additional parameters, such as the probability that each examinee is a guesser. It is also

easy to implement using WinBUGS, a free Bayesian estimation software.

Next, we specify priors for the parameters of our model. We assume that the J item

difficulty parameters are independent, as are the n examinee ability parameters. We assign

each a two-stage normal prior,

θi ∼ N(0, τθ), i = 1, · · · , n,

δj ∼ N(0, τδ), j = 1, · · · , J.
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where τθ and τδ both follow the conjugate inverse gamma prior,

τθ ∼ IG(aθ, bθ),

τδ ∼ IG(aδ, bδ),

where aθ and bθ, aδ and bδ are fixed values. For the computations in this paper, the hyperpa-

rameters are assigned to produce vague priors. From Berger (1985), Bayesian estimators are

often robust to changes of hyperparameters when noninformative or vague priors are used.

We let aθ = aδ = 2 and bθ = bδ = 1, which means the priors for τθ and τδ each have an

infinite variance.

Discrimination parameter γj is positive, we assume a gamma prior G(aγ, bγ), where we

choose aγ = bγ = 1. Parameter gj is a one-to-one transformation of parameter cj. It is more

convenient to update gj in the MCMC. We assume that gj has a uniform prior U(0, 0.5).

We use this prior to include “distracted guessing”, where the distractors are more likely to

be chosen and gj is relatively low, and “informed guessing”, where examinees still make some

effort trying to select the right choice and gj is relatively high.

The item location parameter αi can take any integer from 1 to J , and it follows a discrete

distribution with probability (p1, p2, · · · , pJ) where pj = P (αi = j). A natural choice of prior

for (p1, p2, · · · , pJ−1, pJ) is a Dirichlet distribution with J hyperparameters. In a typical

IRT data analysis, the parameter-to-data ratio is usually large. To reduce the number of

parameters, we propose a different prior. Recall that examinee i is identified as a nonguesser

when αi = J , so pJ is the probability that an examinee is a nonguesser. Probability pj

(j < J) is the probability that a guesser switches to random guessing after item j. We

specify the priors for these two parts of the vector separately. We first specify a beta prior

for pJ ,

pJ ∼ Beta(b1, b2),

where b1 and b2 are constants. We set b1 = b2 = 1, so that it is a uniform prior.

The nonresponse pattern in Figure 1 shows the shape of the cumulative probability

function (cpf) of αi for our data. It is reasonable to assume that the cpf curve of αi is a

smooth increasing curve. This is because though examinees switch to random guessing at
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different item locations, it occurs gradually. Thus we assume that

P (αi ≤ j | j < J) =
jω

(J − 1)ω
, j = 1, · · · , J − 1, (2)

where the hyperparameter ω is positive but unknown. This curve is flexible in the sense that

when ω is less than one, the cpf is a concave increasing curve; when ω equals one, the cpf

is a linear increasing curve; and when ω is greater than one, the cpf is a convex increasing

curve. Based on the cpf,

pj =
jω − (j − 1)ω

(J − 1)ω
(1− pJ), j = 1, · · · , J − 1. (3)

To complete our model, we assume

ω ∼ Gamma(aω, bω),

where aω and bω are fixed values. In our implementation, we set aω = bω = 1.0.

In Bayesian computation, an unknown parameter is often estimated by its posterior

mean. We use the Gibbs sampler to get samples for an individual parameter from its full

conditional distribution. The average of these samples yields the posterior mean. Because

the item location parameter αi can only take integer values, and more importantly, the

posterior distribution is skewed to the left for the nonguessers, we use the posterior median

instead of the posterior mean for αi. The full conditional distributions in the model, listed in

the Appendix, either have closed forms which can be sampled from standard distributions, or

are log-concave which can be efficiently updated by the adaptive rejection sampling method

(Gilks and Wild, 1992).

The full conditional distributions for examinee ability parameters θi and item parameters

δj and γj depend only on the responses up to the item threshold location αi. That is, it is the

responses based on solution behavior that contribute to the estimation of those parameters.

If we fit the 2PL-IRT model with the guessing data, the low probability of correct response

resulting from random guessing usually will underestimate guesser’s ability and overestimate

item’s difficulty. On the other hand, if the guesser’s ability is extremely low or the item is

extremely difficult, the probability of correct response based on the solution behavior is even

lower than that of guessing behavior. In this case, the guesser’s ability could be overestimated

and the item’s difficulty could be underestimated.

8



2.2 The IRT difficulty-based guessing model

The IRT difficulty-based guessing model (IRT-DG) is constructed under the assumption that

both guessers and nonguessers take the test, where guessers answer only the relatively easy

test items and guess on the remainder. This model is based on the theory of test-taking

motivation described by Wise and DeMars (2005). They suggest that the amount of effort

an examinee will expend to answer an item in a low-stakes test decreases as the task becomes

more difficult. Our model assumes that a guesser resorts to guessing behavior for items that

are difficult for them, where that difficulty threshold is related to the examinee’s own ability

parameter. Thus we assume that the probability of a correct response from examinee i to

item j is given by

P (xij = 1| θi, δj, γj, η, cj) =
exp[γj(θi − δj)− βiI(δj − θi − η)(γj(θi − δj)− cj)]

1 + exp[γj(θi − δj)− βiI(δj − θi − η)(γj(θi − δj)− cj)]
, (4)

where βi = 1 if person i is a guesser and 0 otherwise, and η is a parameter that measures

the difficulty differential threshold that would entice a guesser to guess. If the relative

difficulty of item j (δj − θi) is higher than η, the guesser will take a random guess on the

item. Otherwise, the answer to the item reflects the student’s true ability. The remaining

parameters are defined as in (1).

Unlike the “switch-only-once” strategy in the IRT-TG model, the IRT-DG model allows

that the guessers can switch multiple times between solution behavior and guessing behavior

in the test. Thus, the IRT-DG guessing pattern is more difficult to detect. To reduce the

burden of estimation, we assume that gj =
exp(cj)

1+exp(cj)
is known and set it to be 1/Nj, where

Nj is the number of item choices. However, if the test is relatively long and sample size is

large, we can use the same prior specification on gj as that in the IRT-TG model.

The priors for parameters θi’s, δj’s, γj’s, τθ, and τδ are the same as those specified in the

IRT-TG model. As for the indicator βi, we assign a Bernoulli prior with hyperparameter pβ.

The probability pβ is assumed to have the conjugate beta distribution,

pβ ∼ Beta(ap, bp).

In our implementation, we set ap = bp = 1. As for the parameter η, we assume a noninfor-
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mative normal prior,

η ∼ N(0, τη),

τη ∼ IG(aη, bη),

where aη and bη are fixed values. We set aη = 2 and bη = 1 to have an inverse gamma prior

with an infinite variance.

This prior specification is simple. However, because of the indicator function I(δj−θi−η),

the log-concavity of the full conditionals on δj, θi, and η does not hold. Note that their full

conditional expressions (see the Appendix) consist of two functions, one is a standard density

easy to sample and the other is a complex function difficult to sample. We use the slice

sampling (Neal, 2003) to update these parameters. Slice sampling has an advantage over

the Metropolis-Hastings algorithm in that it always samples from the exact full conditional

distribution. The other full conditional distributions have closed forms which can be sampled

from standard distributions.

2.3 The IRT continuous guessing model

Random guessing is a special case of low motivation. Some examinees with low motivation

may try to answer the test items, but use less effort than their motivated counterparts

and are thus less likely to answer items correctly. Failure to accommodate low motivation

can result in biased estimates of ability and item parameters. Wise and DeMars (2005)

suggest a variety of methods to mitigate this problem. They suggest several methods that

statistically adjust scores by using a measure of motivation obtained from each examinee

via a questionnaire. One approach suggested is that this motivation measure be used as an

independent variable within an IRT model. Another approach, dubbed motivation filtering,

is to use data in estimation from only those examinees whose motivation score is sufficiently

high.

Our third model is meant to provide an alternative method that does not require the

motivation measure to statistically adjust estimates of ability and item parameters. We

refer to our model as the IRT continuous guessing model (IRT-CG). It assumes that there

10



are motivated examinees and unmotivated examinees taking the test, where the motivated

examinees answer all items using their knowledge and the unmotivated examinees expend less

effort as the test progresses so that their probability of answering items correctly decreases

gradually over the course of the test. If the model fits well, the estimates of ability and item

parameters it provides will have smaller bias than those estimated from the 2PL-IRT model.

For convenience, we do not distinguish the IRT-CG model as a nonguessing model and

we call the unmotivated examinees guessers. Actually, the three models can be described as

partial guessing models. The term partial guessing has three meanings. One is that only

some examinees exhibit guessing behavior. The second is that the guessers may actively

answer some test items with their knowledge and guess on the rest. The third is that the

unmotivated examinees may still try a bit with some effort, but not as much as they would

if it were a test for a course grade.

We assume that the probability of a correct response from examinee i to item j in the

IRT-CG model is given by

P (xij = 1 | θi, δj, γj, βi, φj) =
exp(γj(θi − δj − βiφj))

1 + exp(γj(θi − δj − βiφj))
, (5)

where βi equals 1 if person i is a guesser and 0 otherwise, φj is the motivation (guessing) factor

associated with item j, which describes the extent of effort held back on item j. Because

we assume a gradual change in the motivation factor, parameter φj can be considered as a

smooth function of item location j. Note that if βi = 0 (the ith examinee is a nonguesser),

the model reduces to the 2PL-IRT model.

The priors for parameters θi’s, δj’s, γj’s, τθ, τδ, and indicator βi’s are the same as those

specified in the IRT-DG model. Denote the guessing vector as φ = (φ1, φ2, · · · , φJ)
′ . A

simple prior would be an iid normal prior on each φj. Such a prior is flexible enough

to accommodate any guessing pattern, but the estimates are not smooth. Thus for our

computation, we use the second-order difference intrinsic auto-regressive (IAR(2)) prior

(Speckman and Sun, 2003). The IAR(2) prior assumes there is an unknown smooth func-

tion describing the guessing curve. It is the second order random walk smoothness prior,

φj = 2φj−1 − φj−2 + εj, j = 3, · · · , J , with iid Gaussian errors εj and diffuse prior φ1 ∝ 1

and φ2 ∝ 1. Note that φj depends on its two immediate neighbors and thus the estimation
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of the φi’s can borrow strength from each other. It is easy to show that the IAR(2) prior is

a discrete version of the cubic smoothing spline.

Because of the two diffuse priors φ1 ∝ 1 and φ2 ∝ 1, the IAR(2) prior is improper where

the J × J precision matrix of φ is singular with rank J − 2. In this case, we should check

whether the posterior distribution is proper. It is reasonable to assume that there is little

guessing behavior at the beginning of the test. Based on the assumption, we can set φ1 = 0

and φ2 = 0, making the IAR(2) prior proper and the Bayesian computation more efficient.

Written in vector format, the adjusted IAR(2) prior has density,

[ φ3 | τφ] ∝ 1

(τ
(J−2)/2
φ )

exp

(
− 1

2τφ

φ
′
3Vφφ3

)
, (6)

where φ3 = (φ3,φ4, · · · , φJ)
′
and Vφ/τφ is the precision matrix. The full rank (J−2)×(J−2)

matrix Vφ has the form

Vφ =




6 −4 1 0 0 · · · 0 0 0 0 0

−4 6 −4 1 0 · · · 0 0 0 0 0

1 −4 6 −4 1 · · · 0 0 0 0 0

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 0 · · · 1 −4 6 −4 1

0 0 0 0 0 · · · 0 1 −4 5 2

0 0 0 0 0 · · · 0 0 1 −2 1




.

The variance parameter τφ is assumed to follow a conjugate inverse gamma prior,

τφ ∼ IG(aφ, bφ),

where the hyperparameters are fixed at aφ = 2 and bφ = 1. The full conditional distributions

of the IRT-CG model, listed in the Appendix, either have closed forms or are log-concave,

so that they can be efficiently updated.

3 Simulation Study

We conducted a simulation study in order to examine the performance of our models and

estimation procedures. Ten replications of a sample of 2000 examinees for a test of 40 items
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were generated under each of four models: the three guessing models (IRT-TG, IRT-DG,

IRT-CG), and the 2PL-IRT model. Then each of the forty datasets was analyzed by the four

models. Because of the relatively large sample size and the number of candidate models,

only ten replications were generated under each model to save computing time. Nonetheless,

the conclusion is the same based on the estimates from individual samples and the pooled

estimates.

The true values of the θi’s and δj’s were drawn from the standard Normal distribution.

The true γ’s were drawn from the uniform distribution U(0.5, 2). Under the IRT-TG model,

we assumed that 60% of the examinees are guessers, the item location threshold parameter

αj’s are simulated with probability pj from formula (3) where parameter ω is set to be

3.0. Under the IRT-DG model, we assumed 60% of the examinees are guessers, and the

relative-difference threshold parameter η is set to be -1.0. For these two models, the guessing

probability gj is set to be 0.25, assuming each multiple choice question has 4 options. Under

the IRT-CG model, we assumed that 60% of the examinees are unmotivated examinees

(guessers), and the motivation vector φ3 = (φ3,φ4, · · · , φJ)
′
comes from an exponential curve.

With the data generated from the 2PL-IRT model, we can investigate whether the esti-

mates from the guessing models are undermined by fitting the guessing models when there

is no guessing behavior. With the data generated from the guessing models, we can examine

how much improvement each guessing model can provide compared to the other models.

Table 1 presents the Pearson correlation coefficients between the true values of the pa-

rameters and their estimates. With the data generated by the 2PL-IRT model (first column

of Table 1), all three guessing models are successful in identifying all the examinees as

nonguessers for each of the ten datasets. More specifically, all of the item location thresh-

old parameter αi’s from the IRT-TG model take 40 as their estimate, indicating all the

examinees are nonguesssers. Figure 2 shows the posterior probabilities of examinees being

guessers (βi = 1) from the IRT-CG model (top panel) and from the IRT-DG model (bottom

panel). The probabilities are all below 0.10, which indicates that the examinees are unlikely

to be guessers. The correct estimation of examinees’ nonguesser/guesser status reduces the

guessing models to the true 2PL-IRT model, and this explains why all the four models yield

the same correlations.
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Table 1: Simulation Results (r)

Model\Data 2PL-IRT IRT-TG IRT-DG IRT-CG

rθ = 0.993 rθ = 0.939 rθ = 0.913 rθ = 0.917

2PL-IRT rδ = 1.000 rδ = 0.925 rδ = 0.973 rδ = 0.948

rγ = 0.999 rγ = 0.799 rγ = 0.632 rγ = 0.962

rθ = 0.993 rθ = 0.987 rθ = 0.903 rθ = 0.918

IRT-TG rδ = 1.000 rδ = 1.000 rδ = 0.977 rδ = 0.949

rγ = 0.999 rγ = 0.996 rγ = 0.681 rγ = 0.960

rθ = 0.993 rθ = 0.932 rθ = 0.953 rθ = 0.917

IRT-DG rδ = 1.000 rδ = 0.927 rδ = 0.999 rδ = 0.948

rγ = 0.999 rγ = 0.811 rγ = 0.952 rγ = 0.961

rθ = 0.993 rθ = 0.970 rθ = 0.851 rθ = 0.977

IRT-CG rδ = 1.000 rδ = 0.977 rδ = 0.990 rδ = 0.999

rγ = 0.999 rγ = 0.813 rγ = 0.758 rγ = 0.998

With the data generated by the three guessing models, the correlation coefficients are

higher based on the true model than those from the other models. By comparison, the IRT-

TG model provides the best alignment between the estimates and the true values. This is

because of its relatively stronger assumption and parsimonious specification of the parame-

ters. It assumes that after a certain item guessers switch from the solution behavior to the

random guessing behavior. It is a switch-only-once strategy, which is different from the IRT-

DG model where guessers can switch back and forth based the item relative-difference. Also

there is no transition between the solution behavior and the guessing behavior, in contrast

to the IRT-CG model which assumes a gradual guessing effect. From this perspective, the

assumption of the IRT-TG model provides more information about the guessing pattern.

Furthermore, though the item location threshold parameter αi for a guesser can take any

integer from 1 to J − 1, based on the prior specification, there is only one hyperparameter

ω determines the discrete distribution (2). The parsimonious prior specification brings more

power in the estimation.

Table 2 presents the mean of
√

mse over the estimates. These measurements evaluate the
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Table 2: Simulation Results (
√

mse)

Model\Data 2PL-IRT IRT-TG IRT-DG IRT-CG
√

mseθ = 0.303
√

mseθ = 0.405
√

mseθ = 0.467
√

mseθ = 0.464

2PL-IRT
√

mseδ = 0.74
√

mseδ = 0.338
√

mseδ = 0.612
√

mseδ = 0.424
√

mseγ = 0.073
√

mseγ = 0.245
√

mseγ = 0.424
√

mseγ = 0.167
√

mseθ = 0.305
√

mseθ = 0.357
√

mseθ = 0.488
√

mseθ = 0.495

IRT-TG
√

mseδ = 0.083
√

mseδ = 0.096
√

mseδ = 0.580
√

mseδ = 0.395
√

mseγ = 0.083
√

mseγ = 0.111
√

mseγ = 0.404
√

mseγ = 0.214
√

mseθ = 0.305
√

mseθ = 0.413
√

mseθ = 0.407
√

mseθ = 0.496

IRT-DG
√

mseδ = 0.081
√

mseδ = 0.312
√

mseδ = 0.248
√

mseδ = 0.396
√

mseγ = 0.084
√

mseγ = 0.218
√

mseγ = 0.333
√

mseγ = 0.214
√

mseθ = 0.306
√

mseθ = 0.376
√

mseθ = 0.571
√

mseθ = 0.399

IRT-CG
√

mseδ = 0.084
√

mseδ = 0.167
√

mseδ = 0.522
√

mseδ = 0.131
√

mseγ = 0.084
√

mseγ = 0.224
√

mseγ = 0.468
√

mseγ = 0.125

estimates from the magnitude perspective. The estimates from the true guessing model have

the smallest
√

mse than those from other three models. Meanwhile, the estimates have the

similar
√

mse from the four models for data generated from the 2PL IRT model because each

of the three guessing models can identify all the examinees as nonguessers correctly. The

conclusion is consistent with that based on the Pearson correlation coefficient from Table

1. So the estimates from the true model preserve not only the relative ranking but also the

absolute magnitude of the parameters.

To visualize the improvement, we also present the following figures. Figure 3 shows the

estimates of item difficulty parameters δj’s versus the true values based on the data generated

from the IRT-TG model. The estimates from the IRT-TG model (top panel) have a perfect

alignment with the true values, while those from the 2PL-IRT model (bottom panel) tend to

overestimate the item difficulty. The closer the item located near the end of test, the more

serious the overestimation (see the circles for the last ten items in Figure 3). Once examinees

switch to guessing, they randomly guess on the test items regardless of the item difficulty, so

easy items located near the end of test are most severely affected. The low correct-response
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rate of these items is interpreted as the items being difficult by the 2PL-IRT model. For

example, the circle farthest from the line in Figure 3 is the item with the true difficulty -0.52.

It is the 39th item in the test. The estimate from the 2PL-IRT model is 1.09.

Figure 4 plots the estimates of item discrimination parameters γj’s versus the true values

based on the data generated from the IRT-TG model. The estimates from the IRT-TG

model (top panel) are unbiased, while those from the 2PL-IRT model tend to underestimate

item discrimination parameters. This is because when examinees switch to guessing, the

probability of correct response is pulled towards the guessing probability gj, regardless of

the ability. The 2PL-IRT model would interpret this as the item being less discriminating.

The closer the item placed near the end of test, the more guessing behavior involved, and

the more obvious the underestimation is (see the circles for the last ten items in Figure 4).

Figure 5 shows the estimates of ability parameters θi’s versus the true values based on the

data generated from the IRT-TG model. There are 1200 guessers who start guessing from

different items. To have a clear comparison, we only show the estimates for guessers with

αi = 22, which means their responses after item 22 are randomly chosen. The estimates

from the IRT-TG model (top panel) are unbiased, while those from the 2PL-IRT model

(bottom panel) tend to underestimate ability. In the 2PL-IRT model, the number of correct

answers determines the ability estimate. Guessers with high ability would have fewer correct

responses due to guessing, and their abilities would be underestimated while those with low

ability would be less affected since their correct response rate would be lower even without

guessing. Also, the earlier the guessing behavior starts, the more serious the underestimation

with the 2PL-IRT model would be. As for the IRT-TG model, the estimates of parameters

δj’s, γj’s and θi’s are unbiased because only the responses based on the solution behaviors

are used.

Figure 6 (IRT-CG) and Figure 7 (IRT-DG) are the histograms showing the posterior

probability of examinee being a guesser (βi = 1). Using 0.5 as the threshold (the vertical

line in both figures), the two guessing models have classified the majority of examinees into

the right category. The simulation study indicates that, for the sample size considered, the

estimates will not suffer by fitting the guessing models when there is no guessing behavior.

This is because all three guessing models classify the examinees as nonguessers correctly,
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which reduces the guessing models to the true 2PL-IRT model. On the other hand, if

guessing behavior is present, the true guessing model can adjust the bias from the 2PL-IRT

model. Furthermore, the true guessing model can produce reliable estimates on examinees’

nonguesser/guesser status and estimates on the degree of guessing.

We have proposed three guessing models under different assumptions. A natural question

to ask is which one to use? It is often impossible to know which kind of guessing behavior

is prevalent in a test. We resort to a Bayesian model selection criterion. The Deviance

Information Criterion (DIC) (Spiegelhalter et al. 2002), is an extension from the AIC that

can be calculated directly from the MCMC chain. It is a diagnostic that combines model

fit with model complexity. Here we introduce the outline of the DIC. For model Mi, let θi

denote the vector of parameters, fi(y|Mi, θi) the likelihood function, and θ̄i the posterior

mean of θi. The DIC for model Mi is given by

DICi = D̄i + pDi
, (7)

where

D̄i = Eθi|y[−2logfi(y|Mi,θi)]

pDi
= Eθi|y[−2logfi(y|Mi,θi)] + 2logfi(y|Mi, θ̄i).

The first term D̄i in (7) is the the posterior expectation of deviance. It can be treated as a

Bayesian measure of model adequacy. The second term pDi
is termed as “the effective number

of parameters” , which is the difference between the posterior mean deviance and the deviance

of the posterior mean. It serves as a penalty term that measures the complexity of the model.

The effective number of parameters pDi
is more appropriate in Bayesian hierarchical models

compared to the nominal number of parameters. It is because the parameters in Bayesian

hierarchical models are not independent, for example, some parameters may share the same

prior distribution. As with AIC, a small value of DIC is preferred.

Figure 8 is the DIC plot. In the top panel, DIC scores are shown for the three guessing

models under each of the ten datasets generated from the IRT-TG model. Ten out of the

ten, DIC selects the true model. In the next two plots, the data are generated from the

IRT-DG model and the IRT-CG model respectively. Again for each of the ten datasets, DIC
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selects the true model. Note that there is a clear distinction between the DIC score of the

true model and those from the other two models. So DIC can be used as a guidance to

decide which guessing model is better.

4 Application

The ARTIST project (https://app.gen.umn.edu/artist/index.html), funded by a grant from

the National Science Foundation, provides a variety of assessment tools for first courses in

Statistics. For two semesters, the undergraduate students from our classes who took Business

Statistics were asked to take the Comprehensive Assessment of Outcomes in a first Statistics

Course (CAOS) test. The multiple choice test consists of 40 items and usually takes 30 to

45 minutes to complete. Because the test result did not affect the course grade, it was a

low-stakes test. There were 265 students taking the test, among whom 111 had nonresponses

in their answers. However, the response rate was 100% for the first four questions of the

assessment, which supports our assumption that the guessing parameters on the first two

items (φ1 and φ2) are zero in the IRT-CG model.

The majority of the nonresponses follow the threshold guessing pattern; that is, once

there was a nonresponse, the subsequent items were not answered. There were a few tests

with nonresponses between responses. To have a fair comparison of the three guessing models

and the 2PL-IRT model, we impute the missing data, easily using MCMC, that is consistent

with the model being fitted. For example, when the model IRT-DG is fitted, the missing

data are imputed with the parameters from the IRT-DG model. So the models are not being

fitted based on the same set of data, but rather on a complete dataset with the missing

part imputed based on the model-specific assumption. Table 3 lists the DIC scores, which

are evaluated on the observed data under each of the four models. The IRT-TG model has

the smallest DIC score which indicates it is a better model compared to the other models.

Note that the majority of the students have finished all the items in the exam. The winning

IRT-TG model indicates that there is significant guessing behavior present in the test and

the dominant guessing pattern from the observed data is the threshold guessing behavior.

Because the test is low-stakes, the students were showing less and less motivation, which
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explains why the IRT-DG model is less favored.

Table 3: DIC for CAOS Test
Model 2PL-IRT IRT-TG IRT-CG IRT-DG

DIC 11734.029 11414.296 11619.222 11674.149

Next we use the Bayesian χ2 test to evaluate the fit of the IRT-TG model. The test

was proposed by Johnson (2004). The essential idea is to evaluate Pearson’s goodness-of-fit

statistic at parameter values drawn from the posterior distribution. Johnson shows that the

statistic asymptotically follows a χ2 distribution. Johnson also provides a rule of thumb to

choose the number of cells which is to take n0.4 equiprobable cells. In our case, with n = 265,

that is 10 cells. For the convenience, we group every four items into one cell. Specifically,

let ϑ be the parameter vector, ϑ̃ be a sampled value ϑ from the posterior. Then, define

RB(ϑ̃) =
10∑

k=1

(nk −mk(ϑ̃))2

mk(ϑ̃)
,

where nk =
∑n

i=1

∑(k−1)+4
j=(k−1)+1 xij which is the total number of correct responses for the

kth group of items, and mk(ϑ̃) =
∑n

i=1

∑(k−1)+4
j=(k−1)+1 P (xij = 1|ϑ̃) which is the sum of the

probabilities of giving correct answers for the kth group of items from all the students.

The statistic RB(ϑ̃) has an asymptotic χ2 distribution with 9 degrees of freedom. One

advantage of the test is that values of RB(ϑ̃) can be directly computed with the updates of

the parameters within the MCMC schemes. In our study, the proportion of RB(ϑ̃) values

exceeding the 95th percentile from the χ2
9 distribution is 0.0063. It shows that the IRT-TG

model provides an adequate fit of the data.

We might expect to find that the faster the test was completed, the larger the number of

items the examinee was guessing to answer. Since the ARTIST website provided the time

each student spent on the test, this hypothesis could be examined. The time spent varied

from about 4 to 30 minutes. If the hypothesis is true, we would expect a high correlation

between the two variables, the time spent on the test and the item location threshold. This

is because the less the time, the earlier the guessing begins, and the smaller the item location

parameter. Actually the correlation between the two variables is only 0.3, showing a rather

weak linear relationship. Our explanation is that there may be some motivated examinees

19



who are good at logic thinking and are capable of finishing the test in a short amount of

time. On the other hand, some guessers may take their time to solve the first couple of

problems where they have spent a considerable amount of time, and then they lost interest.

At least based on this dataset, time spent on the test is not a very good indicator of guessing

behavior.

5 Discussion

In this paper, we propose three Bayesian IRT guessing models to accommodate different

kinds of guessing behavior for a multiple choice test. The 3PL-IRT model assumes all the

students behave exactly the same way on all the items. The Bayesian guessing models

are constructed under a more realistic assumption that examinees include both nonguessers

and guessers, and the guessers could show different degree of guessing behavior. Adjusted

estimates of the IRT parameters and the inference on the degree of guessing are achieved

by fitting the models. We also propose to use the DIC to determine which kind of guessing

behavior is dominant.

Our three models include two in which the likelihood of guessing or low effort is related

to the location of the item in the test. The first of these, the IRT threshold guessing model

(IRT-TG), may be appropriate for a low-stakes test in which the examinees are motivated

at first by curiosity or interest in the test, and then abruptly abandon effort and begin to

select responses at random after a certain point. This model may also be appropriate for

speeded tests. The second model, the IRT continuous guessing model (IRT-CG), assumes

a gradual change of examinee motivation that does not result (necessarily) in guessing, but

just low effort that results in a smaller probability of correct response. This can occur on

a low-stakes test under the same conditions as discussed above for the IRT-TG model, or

due to fatigue. Both of these patterns result in more distortion to items late in the test,

especially low-difficulty ones. This observation can be applied in the design of a test. If a

researcher wants to investigate the degree of this item-location-related guessing behavior in

the test, he should put more easy test items near the end. The discrepancy of the correct

response rates on these easy test items will help identify the presence and type of guessing
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or low motivation behavior.

The third model we consider is the IRT difficulty-based guessing model (IRT-DG). It

assumes the guessers only answer the relatively easy test items and guess on the remaining

items. It differs from the other two in that the chance of guessing on an item is not related

to its location. Unlike the “switch-only-once” strategy in the IRT-TG model, the guessers

can switch multiple times between solution behavior and guessing behavior in the test.

All the three guessing models assume that the guessers employ a certain homogeneous

guessing strategy. So they do not accommodate the possibility that different guessers exhibit

different strategies. Presumably that would be possible, but it would take a very long test,

which would be unlikely for a low-stakes test. Our goal is to apply these models to find the

most dominant guessing pattern, as shown in the real data analysis in the last section. We

also need to point out that these models won’t help us correct scores for people who start out

with low motivation or guessing, though the models are capable of identify them as guessers.

The estimates of those guessers’ ability will be around the mean of the group ability. This is

because we won’t have much information on which to estimate their true state. Our leverage

in these models comes from having some period of time when examinees exhibit their own

natural ability, and then change over the course of the test.

In low-stakes tests where different groups of examinees have participated, researchers

may be more interested in estimates of subgroup mean abilities rather than estimates of

individual abilities. Our guessing models can not only provide better estimates on group

mean ability, they can also help identify specific guessing patterns for each group. Thus they

may shed light on the evaluation of effectiveness of the test and provide useful information

on future test design.

According to Nation’s Report Card, 12th-graders’ performance on the NAEP reading

assessment has been declining over the last decade: the average scale scores are 290, 287, and

286 in year 1998, 2002, and 2005, respectively. By comparison, 4th-graders’ performance has

been improving, where their scores for the three years are 215, 219, and 219. However, 12th-

graders are taking more advanced courses and earning better grades on average in school.

Brophy and Ames (2005) in their report for the National Assessment Governing Board
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have suggested that “the NAEP assessment of twelfth graders faces daunting motivational

obstacles”. They have also discussed two alternatives to change the 12th-grade NAEP. One

is to abandon the 12th-grade NAEP testing, the other is to continue or expand the test

where strategies engaging motivation orientations are required. Both of the alternatives

have significant impact over the NAEP program. In order to make an informed decision, we

could use the guessing models to evaluate whether low motivation is serious in 12th-graders

NAEP and what is the dominating pattern of low motivation.

The code for fitting the models discussed in this paper was written in Fortran. We also

wrote WinBUGS programs that can be downloaded from the website at

http://www.smu.edu/statistics/TechReports/tech-rpts.asp. The estimates from the Win-

BUGS programs are very similar to those from our Fortran programs. WinBUGS is a free

software to run Bayesian data analysis. The biggest attraction of the software is that it

does not require the specification of the full conditional distributions or the computation

algorithm. All it needs is the model likelihood and the assignment of the priors. However

the WinBUGS program cannot provide the DIC score because of the mixture hierarchical

structure.
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Appendix

1. Full conditional distributions for the IRT-TG model.

a) Given the other parameters and data, the full conditional distribution of θi is

(θi | others; data) ∝ exp[θi

∑αi

j=1 xijγj]∏αi

j=1[1 + exp(γj(θi − δj))]
exp

(
− θ2

i

2τθ

)
,

b) Given the other parameters and data, the full conditional distribution of δj is

(δj | others; data) ∝ exp[−γjδj

∑
i: αi≥j xij]∏

i: αi≥j[1 + exp(γj(θi − δj))]
exp

(
− δ2

j

2τδ

)
.

c) Given the other parameters and data, the full conditional distribution of γj is

(γj | others; data) ∝ exp[γj

∑
i: αi≥j xij(θi − δj)]∏

i: αi≥j[1 + exp(γj(θi − δj))]
γ

aγ−1
j exp(−bγγj).

d) Given the other parameters and data, the full conditional distribution of τ ’s is an

inverse gamma distribution,

(τθ | others; data) ∼ IG
(n

2
+ a,

1

2

n∑
i=1

θ2
i + b

)
,

(τδ | others; data) ∼ IG
(J

2
+ a,

1

2

J∑
j=1

δ2
i + b

)
.

e) Given the other parameters and data, the full conditional distribution of αi is a discrete

distribution,

P (αi = l | others; data)

=

∏l
j=1

exp(xijγj(θi−δj))

1+exp(γj(θi−δj))

∏J
j=l+1(gj)

xij(1− gj)
(1−xij)pl

∑J
h=1

(∏h
j=1

exp(xijγj(θi−δj))

1+exp(γj(θi−δj))

∏J
j=h+1(gj)xij(1− gj)(1−xij)ph

) .

f) Given the other parameters and data, the full conditional distribution of pJ is

(pJ | others; data) ∼ beta(
∑n

i=1 I(αi = 40) + b1, n−∑n
i=1 I(αi = 40) + b2),
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where I(αi = 40) equals 1 if αi = 40 and 0 otherwise.

g) Given the other parameters and data, the full conditional distribution of ω is

(ω | others; data) ∝
∏

i: αi<J

αω
i − (αi − 1)ω

(J − 1)ω
ωaω−1 exp(−bωω).

h) Given the other parameters and data, the full conditional distribution of gj is a

truncated beta distribution

(gj | others; data) ∼ beta

( ∑
i: αi<j

xij + 1,
∑

i: αi<j

(1− xij) + 1

)
, gj ∈ (0, 0.5).

2. Full conditional distributions for the IRT-DG model.

a) Given the other parameters and data, the full conditional distribution of θi is

(θi | others; data)

∝
J∏

j=1

exp {xij [γj(θi − δj)− βiI(δj − θi − η)(γj(θi − δj)− cj)]}
1 + exp [γj(θi − δj)− βiI(δj − θi − η)(γj(θi − δj)− cj)]

exp
(
− θ2

i

2τθ

)
.

b) Given the other parameters and data, the full conditional distribution of δj is

(δj | others; data)

∝
n∏

i=1

exp {xij [γj(θi − δj)− βiI(δj − θi − η)(γj(θi − δj)− cj)]}
1 + exp [γj(θi − δj)− βiI(δj − θi − η)(γj(θi − δj)− cj)]

exp
(
− δ2

j

2τδ

)
.

c) Given the other parameters and data, the full conditional distribution of γj is

(γj | others; data) ∝
exp[γj

∑
i: βi=0 or δj−θi≤η xij(θi − δj)]∏

i: βi=0or δj−θi≤η[1 + exp(γj(θi − δj))]
γ

aγ−1
j exp(−bγγj).

d) Given the other parameters and data, the full conditional distribution of τ ’s is an

inverse gamma distribution,

(τθ | others; data) ∼ IG
(n

2
+ aθ,

1

2

n∑
i=1

θ2
i + bθ

)
,

(τδ | others; data) ∼ IG
(J

2
+ aδ,

1

2

J∑
j=1

δ2
i + bδ

)
,

(τη | others; data) ∼ IG
(1

2
+ aη,

1

2
η2 + bη

)
.
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e) Given the other parameters and data, the full conditional distribution of βi is a discrete

distribution,

P (βi = 1 | others; data)

=

∏J
j=1

exp{xij [γj(θi−δj)−I(δj−θi−η)(γj(θi−δj)−cj)]}
1+exp[γj(θi−δj)−I(δj−θi−η)(γj(θi−δj)−cj)]

pβ

∏J
j=1

exp{xij [γj(θi−δj)−I(δj−θi−η)(γj(θi−δj)−cj)]}
1+exp[γj(θi−δj)−I(δj−θi−η)(γj(θi−δj)−cj)]

pβ +
∏J

j=1
exp[xij(γj(θi−δj))]

1+exp(γj(θi−δj))
(1− pβ)

.

f) Given the other parameters and data, the full conditional distribution of pβ is

(pβ | others; data) ∼ beta(
∑n

i=1 βi + ap, n−∑n
i=1 βi + bp).

g) Given the other parameters and data, the full conditional distribution of η is

(η | others; data)

∝
∏

i: βi=1

J∏
j=1

exp {xij [γj(θi − δj)− I(δj − θi − η)(γj(θi − δj)− cj)]}
1 + exp [γj(θi − δj)− I(δj − θi − η)(γj(θi − δj)− cj)]

exp
(
− η2

2τη

)
.

3. Full conditional distributions for the IRT-CG model.

a) Given the other parameters and data, the full conditional distribution of θi is

(θi | others; data) ∝ exp[θi

∑J
j=1 γjxij]∏J

j=1[1 + exp(γj(θi − δj − βiφj))]
exp

(
− θ2

i

2τθ

)
.

b) Given the other parameters and data, the full conditional distribution of δj is

(δj | others; data) ∝ exp[−δjγj

∑n
i=1 xij]∏n

i=1[1 + exp(γj(θi − δj − βiφj))]
exp

(
− δ2

j

2τδ

)
.

c) Given the other parameters and data, the full conditional distribution of γj is

(γj | others; data) ∝ exp[γj

∑n
i=1 xij(θi − δj − βiφj)]∏n

i=1[1 + exp(γj(θi − δj − βiφj))]
γ

aγ−1
j exp(−bγγj).

d) Given the other parameters and data, the full conditional distribution of τ ’s is an

inverse gamma distribution,

(τθ | others; data) ∼ IG
(n

2
+ aθ,

1

2

n∑
i=1

θ2
i + bθ

)
,

(τδ | others; data) ∼ IG
(J

2
+ aδ,

1

2

J∑
j=1

δ2
i + bδ

)
,

(τφ | others; data) ∼ IG
(J − 2

2
+ aφ,

1

2
(φj − 2φj−1 + φj−2)

2 + bφ

)
.
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e) Given the other parameters and data, the full conditional distribution of βi is a discrete

distribution,

P (βi = 1 | others; data)

=

∏J
j=1

exp(xijγj(θi−δj−φj))

1+exp(γj(θi−δj−φj))
pβ

∏J
j=1

exp(xijγj(θi−δj−φj))

1+exp(γj(θi−δj−φj))
pβ +

∏J
j=1

exp(xijγj(θi−δj))

1+exp(γj(θi−δj))
(1− pβ)

.

f) Given the other parameters and data, the full conditional distribution of pβ is

(pβ | others; data) ∼ beta(
∑n

i=1 βi + ap, n−∑n
i=1 βi + bp).

g) Given the other parameters and data, the full conditional distribution of φj is

(φj | others; data) ∝ exp[−φjγj

∑n
i=1 βixij]∏n

i=1[1 + exp(γj(θi − δj − βiφj))]
exp

(
− (φj − µφj

)2

2σ2
φj

)
,

where µφj
=

P
j 6=k vjkφj

vjj
and σ2

φj
= 1

vjj
(j, k = 3, 4, · · · , J), and vjk is the element in the

(j − 2)th row and (k − 2)th column of the matrix Vφ/τφ.
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