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Abstract

We propose a new parameter, the group dominance probability, to measure the relative

importance of random effects in one-way random effects models. This parameter is the

probability the group random effect is larger in absolute size than the individual (or error)

random effect. The new parameter compares the middle-part of the distributions of the

two sources of variation, and pays little attention to the tails of the distributions. This is

in contrast to the traditional approach of comparing the variances of the random effects,

which can be heavily influenced by the tails of the distributions. We suggest parametric

and nonparametric estimators of the group dominance probability, and demonstrate the

applicability of the ideas using data on blood pressure measurements.

key words: Bootstrap confidence interval; One-way random effects model; Group domi-

nance probability; U -statistic; Variance component
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1. INTRODUCTION

Using variance to measure variation is a long-standing tradition in statistics, particularly

in the random and mixed effects model literature. According to Scheffé (1956) and Searle,

Casella, and McCulloch (1992, page 23), the first explicit use of a one-way random effects

model was made by Airy (1861, part IV). Fisher (1918) used a two variance component

model in quantitative genetics by considering additive genetic effects as one random effect

and lumping together non-additive genetic effects with environmental effects to form a

second random effect. In addition, Fisher (1918) defined variance as the square of the

standard deviation, and used

ρ =
σ2

1

σ2
1 + σ2

2

(1)

to describe the proportion of total variance due to the first effect, where σ2
1 and σ2

2 are the

variances of two independent sources of variation. Fisher (1918) specifically stated his belief

that use of standard deviation (and hence variance) to measure variation followed from the

assumption that the data are normally distributed.

This point is a primary motivation for the present paper. If the random effects are

normally distributed, then variance is clearly the correct measure of variation. However,

if the distributions are not normal or are unknown, one might consider measuring the

relative contribution of a source of variation without using variance. One can show that the

parameter ρ is very sensitive to the behavior of the tails of the distributions. We introduce

a parameter which compares the bulk or middle-part of the random effects’ distributions.

This new parameter, which we term the group dominance probability and denote by θ, is a

useful alternative and complement to ρ in judging relative sizes of random effects.

Note that ρ is also the intraclass correlation coefficient, and was first described in this
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fashion by Fisher in 1925 (see Fisher (1973)). For a thorough overview of the intraclass

correlation coefficient in the one-way random effects model, see Donner (1986). More re-

cently, Bansal and Bhandary (1994), Commenges and Jacqmin (1994), Müller and Büttner

(1994), Vogler et. al. (1995), Giraudeau et. al. (1996), Gervini and Yohai (1998), and

Lohr (1999) provide additional results about the intraclass correlation coefficient. We do

not propose that θ be used as an alternative to ρ if the intent is to look at the correlation

between members of the same group.

The group dominance probability is the probability that the random effect under study

is larger in absolute size than the other random effects in the model. Consider a one-way

random effects model, where the jth observation from group i is given by

Yij = µ + Ai + εij, (2)

i = 1, ..., a and j = 1, ..., bi. µ is the overall population mean, Ai the group random effect,

and εij is the individual (or error) random effect. We assume that the observations are

measured on a ratio scale. Furthermore, the Ai’s are a random sample from a distribution

with mean 0 and variance σ2
1, εij’s are a random sample from a distribution with mean 0

and variance σ2
2, and Ai and εij are mutually independent, with σ2

1 ≥ 0 and σ2
2 > 0. The

group dominance probability is

θ = P (|Ai| > |εij|). (3)

The remainder of the paper is organized as follows. An application involving blood

pressure measurements is given in Section 2 which illustrates potential problems in using

variance to compare the random effects. Section 3 explores the basic properties of θ and con-

siders its relationship to ρ. The example presented in this section shows that θ is not overly

influenced by the tail behavior of the distributions being compared. Section 4 discusses
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inference about θ under normality assumptions. In Section 5 we introduce nonparametric

estimators of θ based on U -statistics. We recommend using bootstrap methods to con-

struct confidence intervals based on nonparametric estimators, and briefly discuss this in

the section. There are some concluding comments in Section 6.

2. EXAMPLE

Cox and Solomon (2003, pages 24-27) describe the analysis of blood pressure measure-

ments taken from a large scale study of patients with hypertension. In the particular data

they use, the focus is on 25 men whose systolic and diastolic blood pressures are measured

twice at each of 16 occasions. For simplicity, we average the two measurements taken at each

occasion to result in 16 measurements of systolic and 16 measurements of diastolic blood

pressure for each of the 25 men. In this example, we consider the systolic and diastolic blood

pressure measurements separately and ignore possible serial correlation or trends. A simple

model for one set of blood pressure values, say the systolic values Yij , is the one-way random

effects model (2) where Ai is the random effect associated with man i (the subject effect)

having variance σ2
1, and εij is the random effect associated with man i’s visit on the jth

occasion (the occasion effect) having variance σ2
2. A similar equation holds for the diastolic

values. Thus each set of data (systolic and diastolic) are examples of the balanced one-way

random effects model with a = 25 and b = 16. The original data values are available at the

web site http://www.maths.adelaide.edu.au/people/psolomon.

Taking the analysis of systolic values first, we find that the ANOVA estimator of ρ is

ρ̂ = 0.52. The estimate ρ̂ = 0.52 should be interpreted as “52% of the variance in systolic

blood pressure measurements is due to variance in subject effect”. Note the use of variance

in this interpretation, instead of the phrase variation. For the diastolic measurements,
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ρ̂ = 0.34. The lower value of ρ̂ for the diastolic measurements would suggest that the

subject effect is relatively less important for diastolic than systolic measurements.

One can compare the subject (Ai) and the day-to-day (εij) effects directly by looking at

simple estimators,

Âi = Y i. − Y .. (4)

ε̂ij = Yij − Y i. (5)

where Y i. is the ith subject sample mean and Y .. the overall sample mean. Using the

ANOVA estimate of ρ is equivalent to comparing the variances of Âi and ε̂ij, as the sample

variance of the former is an unbiased estimator of (σ2
1 +σ2

2/b), and the sample variance of the

latter is an unbiased estimator of a(b−1)/(ab−1)σ2
2. If σ2

1 = σ2
2, then one would expect the

sample variances of the estimated effects to be very close, indeed for this design their ratio

would be about 1.13. For the diastolic measurements the actual ratio is 0.61, and for the

systolic measurements it is 1.21, reflecting the conclusion based on ρ that the subject effect

is relatively less important for diastolic than systolic measurements. An alternative analysis

shown below indicates that for most observations, the subject effect is of equal importance

in diastolic and systolic measurements, and that it is only for relatively few observations

that the previous conclusion holds.

Histograms of the Âi and the ε̂ij are shown in figure 1, for both systolic and diastolic

measurements. The plots suggest that there may be some differences in tail behaviors

of the effects, both between subject and day-to-day effects, and diastolic versus systolic

measurements. Examination of interquartile ranges (IQR) of the effect estimates sheds some

light. For the diastolic measurements, the subject IQR is 9.85, the day-to-day IQR is 8.26,

for a ratio of 1.19. This suggests that for the middle 50% of observations, the variability in
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subject effect is similar to the variability of day-to-day effect. This is a somewhat different

message from the comparison of variance performed by ρ, in which the variance of the

subject effect is noticeably less than the variance of the day-to-day effect. For the systolic

measurements the IQR’s are 15.58 for subject effect, and 15.26 for day-to-day effect, for a

ratio of 1.02, again suggesting that for the middle 50% of observations, the variability of

subject effect is comparable to the variability of day-to-day effect. Together the IQR values

suggest that for “typical” observations, subject effect is equally important for diastolic and

systolic measurements. The different conclusion reached by comparing sample variances, or

looking at ρ, seems to be a result of differences in the tails of the subject and day-to-day

distributions.

Focusing on only the middle 50% of data is restrictive so one might look at say, the 15th

to 85th percentiles. Any such choice is however ad-hoc, and it would be preferable to use

some procedure which incorporates all the data. One approach is to use robust estimators of

ρ. Our paper deals with a completely different approach, altering the fundamental scale of

comparison of the random effects by comparing them directly through the group dominance

probability θ, rather than through variance. For the systolic values, the nonparametric

jackknife estimator (section 5) of θ is θ̂jackknife = 0.52. This value should be interpreted as

“in 52% of systolic blood pressure measurements, the subject effect is of greater magnitude

than the day-to-day effect.” For the diastolic measurements, θ̂jackknife = 0.49. The dias-

tolic value is very consistent with the value for the systolic measurements, with essentially

the same conclusion as obtained by looking at interquartile range. Ninety percent boot-

strap confidence intervals (section 5)for θ using the systolic and diastolic blood pressure
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measurements are (0.38, 0.66) and (0.39, 0.60), respectively.

3. THE GROUP DOMINANCE PROBABILITY

An example is used to illustrate the comparative behavior of ρ and θ in relation to the

tail behavior of the distributions of the two random effects in model (2). Suppose that ε

has the probability density function

fε(t) = 1/10(k − 1), −k < t < −1 (6)

= 4/10, −1 < t < 1

= 1/10(k − 1), 1 < t < k

and that A has the probability density function

fA(t) = 1/10(c − 1), −c < t < −1 (7)

= 4/10, −1 < t < 1

= 1/10(c − 1), 1 < t < c.

Note that these distributions both have 80% of the probability uniformly distributed between

-1 and 1, with uniform tails whose lengths are controlled by the sizes of k and c. In this

example k, c > 1. These distributions for ε and A have been chosen for mathematical

simplicity, and to illustrate the effect of tail behavior on ρ and θ, with no intent to say that

in an actual application the distributions of ε and A would follow these forms. The relative

contributions of the tails can vary dramatically, and can be summarized by looking at the

kurtosis compared to the normal distribution. If k (or c) is 1.25, then the distribution in

question is uniform, with kurtosis −1.2, indicating very short tails. In general, the kurtosis
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is

0.9(0.4 + k5−1
10(k−1)

)

(0.4 + k3−1
10(k−1)

)2
− 3, (8)

for the distribution of ε, with the same expression for the distribution of A with c replacing

k. As k (or c) goes to infinity, the kurtosis increases monotonically to 6, indicating a heavier

and heavier tail effect.

One can show that the proportion of total variance due to the random effect A is

ρ =
5 + c(c + 1)

10 + c(c + 1) + k(k + 1)
. (9)

Thus for k ≈ c, ρ is close to 1/2, but by varying the relative sizes of c and k, and hence

the tails, ρ may take any value in (0, 1). Clearly ρ is very influenced by tail behavior. In

contrast, the group dominance probability is

θ = 0.5 + 0.02
c − k

max(c, k) − 1
. (10)

One can see that θ lies in the interval (0.48, 0.52), regardless of the lengths of the tails. The

group dominance probability reflects the fact that most of the time, both the random effects

are uniformly distributed between (−1, 1), and so are equally likely to be larger than each

other.

It is possible to illustrate the same behavior of the two parameters in other situations

using, say, tails of only 5% or 1% each. Any percentage in the tails, no matter how small,

can have the same effect on ρ, if the tail is stretched sufficiently. In the robustness literature,

this concept is essentially the breakdown point of the estimator, see Huber (1981). More

specifically, ρ has a breakdown of zero, in that no percentage of the distribution can be

arbitrarily large without affecting ρ dramatically, and causing ρ to become “arbitrarily

bad”. In robustness studies breakdown is typically applied to estimators, not parameters,
8



but the essence of the idea is the same. For θ the breakdown point is in fact 1, or 100%.

Although large breakdowns (above 50%) are relatively meaningless, the high value shows

that in real life problems, where contamination of 1% to 10% of the data is fairly common

(Hampel et. al, page 28), θ will be very resistant to this contamination. Contamination

here means addition of a few outliers or large values to the data.

Note that ρ and θ measure different things, and so in general one should not say one is

better than another, but that which one to use will depend on the question of interest. The

group dominance probability θ relates to individual observations, telling us for what propor-

tion of the observations is the group random effect “more important” than the individual

random effect. The proportion of variance ρ tells us what proportion of the variance of a

response is due to the group effect. The previous discussion might also suggest that using

θ is related to robustness and outliers. The real issue is one of tail behavior, although that

is usually where outliers are found. If the intent is to compare the bulk of the distributions

of the random effects, θ will be useful regardless of tail behavior. If one uses ρ, there is an

understanding that the tails of the distributions are very influential.

Closed-form expressions relating θ to ρ can be obtained for specific distributions. Sup-

pose that Ai has a normal distribution with mean 0 and variance σ2
1, εij is normal with

mean 0 and variance σ2
2, and Ai and εij are mutually independent. It follows that

θ = P (A2
i > ε2

ij)

= P

(
ε2
ij/σ

2
2

A2
i /σ

2
1

< σ2
1/σ

2
2

)

= F1,1(σ
2
1/σ

2
2) (11)

where F1,1(.) is the cumulative distribution function of an F -distributed variate having

numerator and denominator degrees of freedom equal to one. In this case the parameter
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can be written as

θ = F1,1(ρ/(1 − ρ))

=
2

π
sin−1√ρ (12)

and thus

ρ = sin2(
π

2
θ). (13)

Note that 0 ≤ ρ < 1, 0 ≤ θ < 1 and when ρ = 0, θ = 0, when ρ = 1/2, θ = 1/2, and as ρ

approaches one, θ approaches one.

Figure 2 displays the values of θ as a function of ρ for normally distributed random effects.

Also displayed are the relationships between ρ and θ using Laplace (double-exponential) and

uniform distributional assumptions. The kurtosis corresponding to each of these distribu-

tions is 0, 3, and -1.2, respectively. These three cases are representative of distributions

having normal, long, and short tails.

Because ρ has a long history and is widely used, conventions have been developed to

define the meaning of small, medium, and large effects. For example, Zyzanski et. al. (2004)

state that in medicine, ρ = 0.05 is small, ρ = 0.10 medium and ρ = 0.15 is large. Using (12)

applied to these values, with a little rounding we can similarly define θ = 0.15, 0.20, 0.25

as reasonable cutoffs for small, medium and large effects, respectively. It is important to

note that these suggestions are very much context and area specific, and we recommend in

general using (12) to convert standard conventions for ρ into similar conventions for θ.

In the next two sections we take up the problem of inference from data, first under
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parametric, and then under nonparametric assumptions.

4. INFERENCE UNDER NORMAL DISTRIBUTION ASSUMPTIONS

Assume that Ai is N(0, σ2
1) and εij is N(0, σ2

2), with the usual independence assumptions.

A commonly chosen estimator of ρ is the restricted maximum likelihood estimator, which

we denote by ρ̂. See Searle et. al. (1992, pages 90ff, 159ff, 249ff) for a general description

of restricted maximum likelihood estimators of variance components. For alternatives to

restricted maximum likelihood for estimating ρ, see Vogler et al. (1995). Due to the

invariance of maximum likelihood estimators, the restricted maximum likelihood estimator

of θ is

θ̂ =
2

π
sin−1√ρ̂. (14)

Since θ̂ and ρ̂ are related by the simple one-to-one relationship (14), inferences for ρ in

model (2) based on normality assumptions can easily be carried over to θ. For example,

confidence intervals and hypothesis tests for θ are readily available. We illustrate this by

forming a confidence interval for θ in a balanced one-way random effects model. Let Q1

be the between group sum of squares and Q2 be the within group or error sum of squares

associated with model (2) having bi = b for all i. Then Q1 and Q2 are independently

distributed and

(
1 + btan2(

π

2
θ)
)

(a− 1)Q1

a(b − 1)Q2

∼F (a(b− 1), a − 1), (15)

where b is the common group size. Let Fα/2 and F1−α/2 be the α/2 and 1 − α/2 percentiles

of the F distribution having numerator and denominator degrees of freedom equal to a(b−1)

and a − 1, respectively. A 100(1-α)% equal-tailed confidence interval for θ is given by

(
2

π
tan−1√

(
1

b

(
Fα/2

a(b− 1)Q2

(a − 1)Q1
− 1

))
,
2

π
tan−1√

(
1

b

(
F1−α/2

a(b− 1)Q2

(a − 1)Q1
− 1

)))
. (16)
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Note that this is an exact interval under normality assumptions.

5. NONPARAMETRIC INFERENCE

We have seen that θ is insensitive to tail behavior, hence it is desirable to estimate θ

in a way that is also insensitive to tail behavior as well as normality assumptions. This

suggests the use of nonparametric estimators. Along with a nonparametric point estimator,

we construct a nonparametric confidence interval for θ using a bootstrap sampling procedure

for hierarchical data.

We begin by recognizing that if A and ε were directly observed, each of the a levels of

A could be compared with each of the ab values of ε to form a U -statistic. Specifically, one

could calculate θ̃,

θ̃ =
1

a2b

a∑

k=1

a∑

i=1

b∑

j=1

I(|Ak| > |εij|) (17)

where I(.) is an indicator function that takes the value one if the condition is true and zero

if not. Clearly, θ̃ can never be calculated as it depends on the actual values of the random

effects. Nevertheless, it is instructive to explore the properties of θ̃.

Theorem 1; The quantity θ̃ is consistent for θ and has an asymptotic normal distribu-

tion.

Proof:

See the Southern Methodist UniversityDepartment of Statistical Science technical report

SMU-TR-307, by the present authors, available at http://www.smu.edu/statistics/TechReports/tech-

rpts.htm, hereafter referred to as “the technical report”.

Of course, we cannot observe θ̃, and instead must work with estimated values of A and

ε. Using the simple estimators of A and ε given in (4) and (5), we can form

θ̂simple =
1

a2b

a∑

k=1

a∑

i=1

b∑

j=1

I(|Âk| > |ε̂ij|). (18)

12



The large-sample properties of θ̂simple are difficult to obtain, as there is dependence

among the Â’s, and the distribution of Â depends on the distribution of ε. These depen-

dences disappear when a, b → ∞, and under these conditions we expect the asymptotic

behavior of θ̂simple to be comparable to that of θ̃. Of course, the usefulness of an asymptotic

result depends on how “quickly” the result applies to finite sample sizes. Simulation results

outlined later are encouraging for a ≥ 10 and b ≥ 4 using a modified estimator of θ.

While it is true that E(Âi) = E(Ai) and E(ε̂ij) = E(εij), the variances of Âi and ε̂ij

do not equal the variances of Ai and εij, respectively. Thus comparing the magnitudes of

Âi and ε̂ij in θ̂simple may lead to erroneous results. To remedy this problem we consider an

estimator of A based on jackknife versions of Q1 and Q2. That is, determine Q1(−i) and

Q2(−i), where (−i) denotes that Q1 and Q2 are computed by excluding the observations in

the ith group. It follows that

var

(
√
(

a

a − 1

(
1 −

(a − 4)Q1(−i)

(a − 1)(b − 1)Q2(−i)

))
(Y i. − Y ..)

)
= σ2

1 (19)

so an alternative estimator of A is

Â∗
i =

√
(
max

{
0,

a

a − 1

(
1 − (a − 4)Q1(−i)

(a − 1)(b − 1)Q2(−i)

)})
(Y i. − Y ..). (20)

Since the argument of the square root and Y i. − Y .. are uncorrelated, E(Â∗
i ) = E(Ai) and

var(Â∗
i ) should be close to var(Ai). The jackknife estimator of θ is

θ̂jackknife =
1

a2b

a∑

k=1

a∑

i=1

b∑

j=1

I(|Â∗
k| > |ε̂∗ij|) (21)

where ε̂∗ij =
√

b/
√

(b − 1)(Yij − Y i.). Note that var(ε̂∗ij) = var(ε) = σ2
2. Of course one could

use other estimators of the random effects, such as empirical Bayes estimates, as outlined

in say Raudenbush and Bryk (2002). The properties of such estimators based on these

estimates are a potential subject of future research.
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We now evaluate the practical use of the estimators of θ. To accompany the point

estimators of θ, we consider bootstrap confidence intervals of θ based on θ̂simple and θ̂jackknife.

Davison and Hinkley (1997, p.100-102) provide an outline of the resampling procedure for

hierarchical data having two stages of sampling. As mentioned by Davison and Hinkley

(1997), the resampling procedure works well when a ≥ 10. The bootstrap confidence interval

procedures we use are bias-corrected but are not accelerated since in nonparametric problems

such as ours, an accurate estimator of the acceleration constant is not easily obtained and

the resulting intervals may perform poorly. See Shao and Tu (1995, p.168 and p.176) for

additional details on acceleration. See the technical report for more details on the bootstrap

procedure.

A simulation study was conducted to evaluate the performance of the nonparametric

bias-corrected (BC) bootstrap confidence intervals using the simple and jackknife forms

of the estimators. Performance was judged by the simulated coverage probability of 90%

confidence intervals. For various combinations of a and b using B = 2000 bootstrap repli-

cations, 10000 nonparametric BC bootstrap intervals were built from normal, Laplace, and

uniform distributed data for θ = 0.1, 0.5, and 0.9. For brevity we present only the results

for a = 10, the minimum number of groups suggested by Davison and Hinkley (1997), using

b = 4 and 10. See the technical report for additional combinations of a and b. Simulation

coverage probabilities (CP) and expected lengths (EL) of the intervals are displayed in Table

1. To investigate how the normal-based estimator performs when the random effects are

not normally distributed, we also include results for the confidence interval given by (16).

Table 1 about here

When θ = 0.1, the simulated coverage probabilities using the simple version of the es-
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timator fall far short of the nominal 0.90 level. When θ = 0.5 or 0.9, the normal-based

approach produces intervals that are too short and thus have inadequate coverage prob-

abilities assuming Laplace distributed random effects. Overall, the coverage probabilities

associated with the jackknife estimator are more apt to be close to the nominal level. If the

distributions of the random effects are unknown, we recommend using θ̂jackknife to estimate

θ for studies where a ≥ 10, b ≥ 4.

6. DISCUSSION

We have presented a new parameter, which we call the group dominance probability,

that measures the relative importance of sources of variation without using variance. In

the one-way random effects model, this probability is the proportion of individual observa-

tions for which the group random effect is larger than the observation random effect. The

group dominance probability is relatively insensitive to tail behavior of the random effects’

distributions. Essentially, the group dominance probability compares the bulk of the two

distributions.

We have discussed both parametric and nonparametric estimators of the new parameter.

Bias-corrected bootstrap confidence intervals associated with the nonparametric estimators

may be employed when the number of groups is at least ten, and the number of individuals

per group is at least four. The estimator incorporating a jackknife approximation to a scalar

exhibits the most consistent coverage probabilities. Actual confidence levels depend on the

underlying distributions.

The main results presented in this paper assume a one-way random effects models. It is

possible, however, to extend the concepts to mixed effects models with multiple random ef-

fects. It is also possible to consider models with multiple fixed effects. Parametric estimators
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under normality theory can easily be obtained by transformation of maximum likelihood es-

timators, but nonparametric estimators may be harder to find, as one needs good estimates

of the random effects. The properties of such parameters and their estimators is beyond the

scope of this paper, and is a subject of future research.
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Figure 1: Estimates of Subject and Day-to-Day Effects for Systolic and Diastolic Blood

Pressures. For systolic blood pressures, the IQR’s as well as the sample variances are about

the same for the estimated subject and day-to-day effects. For diastolic blood pressures, the

IQR’s are about the same but the sample variances for the estimated subject and day-to-day

effects are quite different.
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Figure 2: Relationship between ρ and θ. The parameters ρ and θ have approximately a

linear relationship for the short-tailed uniform distribution. As the length of the tails of the

distributions increase, the relationship between ρ and θ is increasingly nonlinear.
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Table 1: a = 10. Comparison of the nonparametric estimation methods. Nominal coverage

value is 90%. Tabulated value of CP is a %, EL is expected length.

Distribution

Normal Laplace Uniform

b θ Estimator CP EL CP EL CP EL

4 0.1 Simple 49 0.36 22 0.38 76 0.34

Jackknife 81 0.34 82 0.38 80 0.31

Normal 90 0.36 91 0.35 90 0.37

0.5 Simple 94 0.44 95 0.45 93 0.45

Jackknife 92 0.56 93 0.59 89 0.55

Normal 90 0.37 81 0.37 95 0.37

0.9 Simple 88 0.24 85 0.33 89 0.35

Jackknife 87 0.35 83 0.34 88 0.36

Normal 90 0.10 59 0.07 91 0.11

10 0.1 Simple 43 0.23 06 0.26 83 0.21

Jackknife 82 0.25 76 0.28 86 0.23

Normal 90 0.26 90 0.25 89 0.28

0.5 Simple 92 0.37 93 0.39 92 0.38

Jackknife 92 0.41 93 0.44 91 0.41

Normal 90 0.29 78 0.28 97 0.29

0.9 Simple 88 0.32 87 0.31 89 0.33

Jackknife 88 0.32 87 0.31 89 0.34

Normal 90 0.09 56 0.07 90 0.10

21


