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ABSTRACT

One of the most basic topics in many introductory statistical methods texts is inference

for a population mean, µ. The primary tool for confidence intervals and tests is the Student t

sampling distribution. Although the derivation requires independent identically distributed

normal random variables with constant variance, σ2, most authors reassure the readers about

some robustness to the normality and constant variance assumptions. Some point out that

if one is concerned about assumptions, one may statistically test these prior to reliance

on the Student t. Most software packages provide optional test results for both (a) the

Gaussian assumption and (b) homogeneity of variance. Many textbooks advise only informal

graphical assessments, such as certain scatterplots for independence, others for constant

variance, and normal quantile-quantile plots for the adequacy of the Gaussian model. We

concur with this recommendation. As convincing evidence against formal tests of (a), such

as the Shapiro-Wilk, we offer a simulation study of the tails of the resulting conditional

sampling distributions of the Studentized mean. We analyze the results of systematically

screening all samples from normal, uniform, exponential, and Cauchy populations. This
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pretest does not correct the erroneous significance levels and makes matters worse for the

exponential. In practice we conclude that graphical diagnostics are better than a formal

pretest. Furthermore, rank or permutation methods are recommended for exact validity in

the symmetric case.

1. INTRODUCTION

Is it ever a good idea to test for normality before using a sample X1,X2, . . . ,Xn to

make inferences about a mean, µ, relying upon the Student t sampling distribution? Most

software packages provide optional test results for (a) the Gaussian assumption (e.g. SAS,

PROC UNIVARIATE) and (b) homogeneity of variance (e.g. SAS, PROC TTEST; SPSS,

The Independent-Samples t Test procedure). Good textbooks on statistical methodology,

e.g. Ramsey and Shafer (2002), argue against formal preliminary tests and favor informal

graphical diagnostics. These applied statistics texts advise only graphical assessments, such

as certain scatterplots for independence, others for constant variance, and normal quantile-

quantile plots for the adequacy of the Gaussian model. We support this recommendation

with concrete evidence for the case that formal tests of (a), as recommended by Romeu

(2003), are actually flawed. In teaching beginning courses we find it useful to address this

basic point directly. For paired data and multiple samples the issues are different.

Suppose this random sample of size n is from a distribution F with population mean,

µ. A statistical practice that is possible in many packages is to first use a goodness-of-fit

(GOF) test for normality, i.e.

H∗
0 : The true F is normal

against H∗
1 : F is not normal (1)

at the level of significance αg before making inference based on the t-statistic. If one does not

reject H∗
0 , one treats the sample as coming from a normal distribution and uses the Student

t-statistic

T =
X̄ − µ0

s/
√

n
, where X̄ =

1

n

n∑

i=1

Xi and s2 =
1

n − 1

n∑

i=1

(Xi − X̄)2,
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to test the hypothesis

H0 : µ = µ0

against H1 : µ 6= µ0 (2)

at the level of significance αt. In order to assess the adequacy of the preliminary GOF

tests for normality, we compare the true Type-I error rate given that the sample passed this

pretest, i.e.

α = Pr(Reject H0|do not reject H∗
0 and H0 is true), (3)

to the pre-specified nominal Type-I error rate, αt.

Thoughtful readers recognize a logical problem here. The nominal level, αt, requires that

H∗
0 be true but in (3) one is only given that H∗

0 was not rejected. Consequently, hoping for

this two-stage procedure to work puts one in the ill-advised position of accepting a narrow

null hypothesis. Strictly speaking, this null of normality is not simple, but it is one quite

special family in the space of all continuous distributions.

On the parallel issue (b) of common variance, preliminary testing of σ2
1 = σ2

2 has a more

extensive literature. The Behrens-Fisher problem has been troublesome for decades. A fresh

approach that does not pretest (b) is given by Sprott and Farewell (1993). Their position

agrees well with ours that “a procedure, based on accepting the null hypothesis, seems

logically flawed.” They give a collection of confidence intervals for a difference between two

means that adapt to the statistical evidence on the ratio σ2
2/σ

2
1.

There is a sizable literature on GOF and much of it pertains to tests for normality or a

few other specific families. There is a growing consensus that neither the chi-square (Moore,

1986, p.91) nor the Kolmogorov-Smirnov can be recommended due to the superiority of many

others based on moments, probability plots, or other empirical distribution function (EDF)

tests. Tukey (1993, p.31) stated that “The Kolmogoroff-Smirnov construction . . . is logically

correct, but practically almost useless.” He cited Michael (1983) for a transformation better

suited to the sup norm. For this reason we concentrate only on the Shapiro-Wilk statistic,

W (Shapiro and Wilk, 1965) and the EDF Anderson-Darling statistic, A2 (Stephens, 1974)
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for normality. See D’Agostino and Stephens (1986) for definitions, theory, and efficiency

comparisons in finite samples. Because we find the results using these two pretests to be

very similar, we only report those for W , which essentially tests for linearity in normal

quantile-quantile plots.

2. A SIMULATION OF THE EFFECTS OF A PRELIMINARY TEST

The algorithm for our Monte Carlo study follows.

Step 1. Simulate a random sample of size n from a distribution F .

Step 2. Use the Shapiro-Wilk statistic, W , to test for normality (1), at the level of signifi-

cance αg with the International Mathematical and Statistical Libraries (IMSL) function

DSPWLK (Visual Numerics, Inc., 1994).

Step 3. If H∗
0 is not rejected in Step 2, treat the sample as coming from a normal distribution

and use the t-test of the hypothesis (2) at the level of significance αt. If H∗
0 is rejected

in Step 2, then return to Step 1.

In this simulation experiment we consider sample sizes n = 10, 20, 30, and 50; and the

following underlying distributions F , (i) uniform (0, 1), µ0 = 0.5, (ii) standard exponential,

µ0 = 1.0, (iii) Cauchy, median = 0.0, (iv) standard normal, µ0 = 0.0. There are four

fixed levels of significance for the preliminary GOF test αg = 10%, 5%, 1%, and 0.5% and

crossed with four levels of significance for the t-test αt = 10%, 5%, 1%, and 0.5%. For each

combination of n, αg, αt and F , we independently repeat Steps 1 through 3 until H∗
0 is not

rejected M = 100, 000 times. Hence this inverse sampling yields 100,000 samples that have

passed our normality screening. Then the Type-I error rate in (3) for the t-test is estimated

by

α̂ =
number of times H0 (2) is rejected

M
. (4)

Easterling and Anderson (1978) report a similar Monte Carlo study of n = 10, 20,

αg = 10%, and M = 1000. They employ the chi-square (12 bins for deciles and 5th and
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95th percentiles) to assess the resulting agreement with the entire Student t sampling distri-

butions. We focus on the relevant feature of the quantiles for inference at four conventional

levels, e.g. 90% confidence. Our greater precision allows us to reach stronger conclusions.

We also gain some valuable insight on the sensitivity to pretest levels down to αg = 0.5%.

Even though the t-test is not justifiable for the Cauchy, it is useful to assess its performance.

3. RESULTS OF SCREENING OUT NONNORMAL SAMPLES

Tables 1 - 5 in the Appendix summarize the Type-I error rates for four pretest levels

αg and without any pretest, four conventional levels of significance, αt, and four different

underlying distributions in our experiment. These Type-I error rates are estimated from

100,000 replications of the Student t-statistic. The standard errors (SE) at each of the

nominal levels are at the head of each respective column. This final power column has a

maximum SE = 0.12% because of the negative binomial stopping rule to produce 100,000

acceptable samples. The number of simulated samples to produce 100,000 samples passing

Shapiro-Wilk pretest can be obtained from this final power column. For example in Table 3

(αg = 1%), when F is the exponential and n = 10, the simulated power of Shapiro-Wilk test

is 23.4%, implying implies 100000/(1 - 0.234) = 130,548 samples to produce 100,000 passing

the GOF pretest.

When F is Gaussian, as one might hope, the preliminary GOF test does no harm when-

ever the data are truly normally distributed. When the underlying distributions are non-

normal, one might hope that the preliminary goodness-of-fit tests screen out the blatantly

non-normal samples and correct the Type-I error rates for the t-test. However, our results

show this not to be the case in general. To demonstrate the effect of the pretest on the

Type-I error rate for the t-test, Figure 1 plot the independent estimates (4) for the t-test at

αt = 5% after passing Shapiro-Wilk tests at αg = 10%, 5%, 1%, 0.5%, and also with no GOF

test. Some interesting interactions are apparent.

From Figure 1a, when F is Cauchy, we see that for sample sizes from 10 to 50 the GOF

screens yield somewhat better results (simulated Type-I error rates closer to the nominal

level) than applying the t-test without any pretest. For example, at n = 30 and αt = 5%,
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the true Type-I error rate improved from 2.0% to 3.7% (SE =0.07%). However, the simulated

Type-I error rates are still significantly less than the nominal αt for every n is our study. The

absence of any effect of n is consistent with the theory for the Cauchy. Multiple comparisons

are protected at each n. The vertical bars at each plotting symbol are 95% family-wise

Tukey-corrected intervals for the 10 pairwise differences among the five rates. For displays

of such intervals see Mason, Gunst and Hess (2003) Section 6.5.

[Figure 1 about here]

The genuinely noteworthy effect is that the pretest actually makes matters worse for

both the uniform and the exponential. That is, for these two populations the true Type-I

error rates are closer to the nominal αt when one uses the t-test on every sample, rather

than selectively using only those samples with acceptable preliminary GOF statistics. From

Figure 1b, when the underlying distribution is uniform, GOF tests at αg = 1% and 0.5%

corrected the problem for small sample sizes (n = 10 and 20). However, for large sample

sizes, the true Type-I error rates for the t-test without the GOF pretest are closer to the

nominal αt. For example at n = 50 and αt = 5% the estimated Type-I error rates with

preliminary GOF tests are around 4.2% to 4.4%, while the rate without any pretest is 5.0%

(from Table 5, SE =0.07%). This can be explained by the rapid convergence to normality of

the mean of samples from the symmetric short-tailed uniform distribution. The degradation

of the conditional test is due to increasing power and corresponding greater selectivity for

samples with relatively long tails.

From Figure 1c when the underlying distribution is exponential, preliminary GOF tests

not only do not help bring the conditional Type-I error rates closer to the nominal level, they

actually makes matters worse than no pretest. This is especially so when the sample sizes are

large. This is our “smoking gun” evidence. For example at n = 50 and αt = 5% the estimated

Type-I error rate with preliminary goodness-of-fit tests at αg = 0.5% is 16.2% (from Table 4)

while the estimated rate without is 6.5% (from Table 5, SE =0.07%). Somewhat surprisingly,

when the sample size increases, the conditional Type-I error rates increase, getting further

away from the nominal rate, αt. It appears to be quite detrimental to use the GOF test of
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normality before applying the t-test, because they yield actual Type-I error rates that are

much greater than the nominal level. The reason is subtle. What is being detected is a

changing selection effect on the conditional mean value. Even though we are likely to detect

these skewed distributions in large samples, for small n = 10 the αg = 5% level tests let

about 56% of the samples be treated as normal.

Graphical evidence that even Anderson-Darling pretests do no harm to the normal may

be seen in Figure 2a. Using A2 at αg = 10% for n = 10 selects about 90% of normal samples

with relatively light tails. Consequently, one might suspect a distortion of some features of

the subsequent t(9) sampling distribution. There is no evidence of any such selection bias in

Q-Q plots of 10,000 Student t with 9 degrees of freedom. On the other hand in Figure 2b,

the disparity is quite obvious, when we subject the exponential to the same process.

[Figure 2 about here]

4. OTHER VALID INFERENCE PROCEDURES

In practice, reliable inference on means, when there is convincing evidence of nonnormal-

ity, takes two or more non-Student paths. The issues are different for skewed and symmetric

alternatives. Our symmetric nonnormals, the Cauchy and the uniform, represent relatively

heavier- and lighter-tailed symmetric alternatives, respectively. For both of these, one might

consider using the Wilcoxon signed-rank or a permutation distribution (Ernst, 2004) either

(i) on the rejected samples or (ii) on all samples from the outset. We offer a portion of a

larger simulation study that strongly suggests that (ii) is the recommended strategy.

Table 6 summarizes two analyses of M = 100, 000 samples of size n = 10 for only one

nominal level αt = 5%. The empirical levels in the table for both distributions are subject

to a simulation SE = .07%. In contrast to the approach in Section 3, we assess the Type-I

error rates incurred by the adaptive procedure with the t-test on “accepted” samples and

distribution-free procedures on the “rejected” ones. The two-sided Wilcoxon-signed rank is

exact of size 4.88% (see Lehmann, 1998). The exact conditional permutation distribution

has 210 = 1, 024 points. Thus, its true level can be closer to 5%.

What is evident in Table 6 is that the validity of the t-test is not repaired for the Cauchy
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and the uniform by resorting to either of these distribution-free tests on the significantly

non-normal samples. As we know, it does control Type-I error rates exactly to use either

Wilcoxon or permutation tests on every sample with no pretesting. However, the net result

of the two stages in (i) can be significantly different than the nominal level. For instance the

Shapiro-Wilk at αg = 1% yields a combined level for the t/Wilcoxon of 4.52% (t/Permutation

of 4.58%) for the Cauchy, which is detected about 48% of the time. These are significantly

less than 5% with exact binomial two-sided p-values < 10−9. The corresponding results for

the uniform, t/Wilcoxon of 5.42%, (t/Permutation of 5.48%) are significantly greater with

p-values < 10−9.

The effect of αg is in the anticipated direction. That is, larger αg yield greater power,

which improves the approximation to αt. However, the important conclusion is that none of

these two-stage procedures have the desired validity, which is present in the appropriate rank

or permutation test with no pretest (option (ii)). On the other hand more refined adaptive

tests can produce satisfactory increases in power for paired samples, see Freidlin, Miao and

Gastwirth (2003).

We analyzed these same procedures at n = 20, 30 and 50 as well as for other levels

αt = .10, .01 and .005. The patterns were consistent with the ones for n = 10 and αt =

5%; although the effect of αg was less pronounced at n = 50 for the Cauchy, where the

corresponding powers were .996, .993, .987, and .984.

The proper handling of skewed alternatives is much more difficult. If conditions are

right for the lognormal, then the log transformation is ideal. However, other right-skewed

families, such as exponential, gamma, Weibull, Gumbel, inverse Gaussian, and Pareto, are

not perfectly symmetrized by the logs, reciprocals, or square roots, which tend to be used

in practice.

The fundamental problem comes from trying to make inference on the mean of any

skewed distribution. When these are paired differences, symmetry is a natural result. When

there are two independent samples, permutation tests permit inference on shift parameters

without requiring normality or even symmetry. Therefore, the one-sample location problem
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for skewed families is not as well posed as when µ is the center of symmetry. All of the

other inferences about comparisons are reasonably well handled by permutation tests. We

recommend that they be used in parallel with t-tools and not only whenever the sample

appears to be nonnormal.

5. CONCLUSIONS AND DISCUSSIONS

There are some apparently counterintuitive results in Section 3. If one does any prelimi-

nary test of H∗
0 , it appears best to use a very small level, e.g., αg = 0.5%. This may seem to

refute many analysts’ experience with GOF tests, which have notoriously low power in small

to moderate sample sizes. Hence, it may seem that one would argue for αg = 10% to have

any chance of screening out the Cauchy or the exponential. Even though our intuition may

be right about the power of these tests, it fails us whenever we imagine that the Student

t approximation is conditionally better, when one rejects more of the exponential samples.

This can be seen in Figure 1c that the exponential is best with no preliminary tests. The

pretest’s selection effect on the conditional mean depends on both αg and n.

Based on the results here, we recommend that one use formal GOF tests of normality

before applying the t-test with great caution, especially when the underlying population

distribution is suspected to be skewed. This precaution holds for any other tests like F -

tests, that are sensitive to nonnormality. When the sample size is reasonably large, say

n ≥ 50, the central limit theorem supports the Student t approximation and any pretest is

ill-advised. If one wishes to use the GOF test of normality, we suggest fixing the level of

significance at a very low level, say αg = 0.1%. Diagnostic plots and tests should guide us to

transform clearly nonnormal data. When nonnormality is blatant in such graphics, it may

be a surrogate for p < .001 in a test. Obviously, the same conclusion holds for confidence

intervals. The inaccuracies that we demonstrate in each tail of the conditional sampling

distributions have precisely the same effect on the coverage probabilities of one- or two-sided

intervals for µ. Easterling (1976) described a simultaneous inferential procedure for both the

distributional model and its parameters.

In practice for the one-sample problem our recommendation is to use t-tests and intervals
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along with permutation methods. As a standard part of the diagnostics, the next stage

should include normal quantile-quantile or log density (Hazelton, 2003) plots. Whenever

these (or GOF tests) have strong evidence of obvious nonnormality, one should rely on the

tests and intervals from rank-based and permutation distributions or look for satisfactory

transformations for improved inference on µ. This seems to be a better strategy over many

data analyses, than one of screening all samples with a pretest for normality. We find this

point to be helpful for beginning students.
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APPENDIX

Table 1. Simulated Type-I error rates (in %) of the t-test after acceptable Shapiro-Wilk tests of normality with αg = 10%

Underlying αt = 10 αt = 5 αt = 1 αt = 0.5 Power of

distribution n SE=0.10 SE=0.07 SE=0.03 SE=0.02 Shapiro-Wilk test

Uniform 10 8.8 4.7 1.3 0.8 16.2

20 8.5 4.2 0.9 0.5 36.0

30 8.2 4.0 0.8 0.4 61.8

50 8.8 4.3 0.9 0.5 95.1

Exponential 10 19.6 13.4 6.5 5.0 56.5

20 22.9 15.4 7.2 5.6 90.3

30 25.7 17.7 8.2 6.2 98.6

50 29.8 21.4 10.3 7.5 99.9

Cauchy 10 8.8 3.8 0.5 0.2 66.3

20 8.5 3.9 0.6 0.2 89.4

30 8.3 3.8 0.6 0.3 96.6

50 8.0 3.8 0.6 0.3 99.6

Normal 10 10.1 5.1 1.0 0.5 9.9

20 10.0 5.0 1.0 0.5 9.8

30 10.1 5.1 1.1 0.5 9.7

50 10.1 5.0 1.0 0.5 10.0

Table 2. Simulated Type-I error rates (in %) of the t-test after acceptable Shapiro-Wilk tests of normality with αg = 5%

Underlying αt = 10 αt = 5 αt = 1 αt = 0.5 Power of

distribution n SE=0.10 SE=0.07 SE=0.03 SE=0.02 Shapiro-Wilk test

Uniform 10 9.2 4.9 1.4 0.8 7.5

20 8.8 4.4 0.9 0.5 20.4

30 8.5 4.2 0.9 0.4 42.8

50 8.8 4.2 0.8 0.4 88.1

Exponential 10 18.5 12.7 6.1 4.6 44.3

20 21.2 14.0 6.5 4.9 83.5

30 23.9 16.2 7.3 5.5 96.8

50 27.2 19.3 8.9 6.2 99.9

Cauchy 10 8.8 3.8 0.4 0.2 60.1

20 8.5 3.9 0.5 0.2 86.4

30 8.3 3.7 0.5 0.3 95.3

50 8.3 3.8 0.7 0.3 99.4

Normal 10 10.1 5.1 1.0 0.5 5.0

20 10.0 5.0 1.0 0.5 5.0

30 10.0 5.1 1.1 0.5 4.9

50 10.1 5.0 1.0 0.5 5.1
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Table 3. Simulated Type-I error rates (in %) of the t-test after acceptable Shapiro-Wilk tests of normality with αg = 1%

Underlying αt = 10 αt = 5 αt = 1 αt = 0.5 Power of

distribution n SE=0.10 SE=0.07 SE=0.03 SE=0.02 Shapiro-Wilk test

Uniform 10 10.0 5.3 1.4 0.8 1.0

20 9.6 4.9 1.1 0.6 3.5

30 9.3 4.7 1.0 0.5 12.2

50 8.8 4.2 0.8 0.5 59.6

Exponential 10 16.7 11.5 5.4 4.0 23.4

20 18.2 11.7 5.2 3.9 64.0

30 20.6 13.4 5.7 4.2 88.5

50 24.7 17.0 7.7 5.4 99.7

Cauchy 10 8.7 3.5 0.3 0.1 48.1

20 8.5 3.8 0.5 0.2 79.5

30 8.4 3.8 0.6 0.3 92.0

50 8.0 3.6 0.5 0.2 98.8

Normal 10 10.2 5.1 1.1 0.5 1.0

20 10.0 5.0 1.0 0.5 1.1

30 10.0 5.1 1.0 0.5 0.9

50 10.1 5.0 1.0 0.5 1.1

Table 4. Simulated Type-I error rates (in %) of the t-test after acceptable Shapiro-Wilk tests of normality with αg = 0.5%

Underlying αt = 10 αt = 5 αt = 1 αt = 0.5 Power of

distribution n SE=0.10 SE=0.07 SE=0.03 SE=0.02 Shapiro-Wilk test

Uniform 10 10.1 5.4 1.5 0.8 0.4

20 9.8 5.0 1.1 0.6 1.4

30 9.6 4.9 1.0 0.5 6.0

50 9.0 4.4 0.8 0.5 45.4

Exponential 10 16.2 11.1 5.1 3.8 17.4

20 17.3 11.1 4.9 3.7 55.1

30 19.5 12.5 5.3 3.9 83.1

50 23.9 16.2 7.1 5.2 99.3

Cauchy 10 8.6 3.3 0.3 0.1 43.6

20 8.6 3.8 0.5 0.2 76.5

30 8.4 3.7 0.6 0.2 90.4

50 8.0 3.6 0.6 0.3 98.5

Normal 10 10.2 5.1 1.1 0.5 0.5

20 10.0 5.0 1.0 0.5 0.6

30 10.0 5.1 1.0 0.5 0.5

50 10.1 5.0 1.0 0.5 0.6
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Table 5. Simulated Type-I error rates (in %) of the t-test without pretest

Underlying αt = 10 αt = 5 αt = 1 αt = 0.5

distribution n SE=0.10 SE=0.07 SE=0.03 SE=0.02

Uniform 10 10.3 5.5 1.5 0.9

20 10.0 5.2 1.2 0.7

30 10.0 5.2 1.1 0.6

50 10.1 5.0 1.0 0.5

Exponential 10 14.8 10.0 4.6 3.4

20 13.0 8.2 3.5 2.5

30 12.2 7.5 2.9 2.1

50 11.6 6.5 2.3 1.5

Cauchy 10 5.8 2.0 0.2 0.1

20 6.1 2.0 0.2 0.0

30 6.1 2.0 0.2 0.1

50 6.2 2.1 0.2 0.1

Normal 10 10.1 5.1 1.0 0.5

20 10.0 5.0 1.0 0.5

30 10.0 5.1 1.0 0.5

50 10.0 5.0 1.0 0.5
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Table 6. Simulated Type-I error rates (in %) for several inference procedures with 5% nominal levels at

n = 10
Without preliminary test

Procedure Cauchy Uniform

Student t 1.99 5.50

Wilcoxon∗∗ 4.96 4.96

Permutation 5.01 5.07

With preliminary test

αg = 10% Power = 66.4% Power = 16.1%

t/Wilcoxon t/Permutation t/Wilcoxon t/Permutation

H∗
0 is not rejected 1.30 1.30 3.94 3.94

H∗
0 is rejected 3.56 3.62 1.29 1.39

Combined 4.86 4.92 5.23 5.33

αg = 5% Power = 60.1% Power = 7.5%

t/Wilcoxon t/Permutation t/Wilcoxon t/Permutation

H∗
0 is not rejected 1.54 1.54 4.53 4.53

H∗
0 is rejected 3.26 3.32 0.78 0.86

Combined 4.80 4.86 5.31 5.39

αg = 1% Power = 48.1% Power = 1.0%

t/Wilcoxon t/Permutation t/Wilcoxon t/Permutation

H∗
0 is not rejected 1.82 1.82 5.21 5.21

H∗
0 is rejected 2.70 2.76 0.21 0.26

Combined 4.52 4.58 5.42 5.47

αg = .5% Power = 43.6% Power = .39%

t/Wilcoxon t/Permutation t/Wilcoxon t/Permutation

H∗
0 is not rejected 1.90 1.90 5.34 5.34

H∗
0 is rejected 2.45 2.51 0.10 0.14

Combined 4.35 4.42 5.44 5.48
∗∗ - exact type-I error rate = 4.88%
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(a) Cauchy distribution 
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(b) Uniform distribution 
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(c) Exponential distribution 
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Figure 1. Conditional Type-I error rates (in %) of t-test for αt = 5% at different αg (―♦― αg = 10%, 
―■― αg = 5%,  ―▲― αg = 1%, ―×― αg = 0.5%,―○― without GOF test), the underlying distribution 
is (a) Cauchy, (b) uniform and (c) exponential. 
 
 

(a) Normal distribution 
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(b) Exponential distribution 
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Figure 2. Student t(9) Q-Q plot of 10,000 simulated samples of size n = 10 passing the Anderson-Darling 
GOF pretest at αg=10% when the underlying distribution is (a) normal and (b) exponential. 




