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Abstract: For the problem of variable selection in generalized linear models, we

develop various adaptive Bayesian criteria. Using a hierarchical mixture setup for

model uncertainty, combined with an integrated Laplace approximation, we derive

Empirical Bayes and Fully Bayes criteria that can be computed easily and quickly.

The performance of these criteria is assessed via simulation and compared to other

criteria such as AIC and BIC on normal, logistic and Poisson regression model

classes. A Fully Bayes criterion based on a restricted region hyperprior seems to

be the most promising. Finally, our criteria are illustrated and compared with

competitors on a data example.

Key words and phrases: AIC, BIC, empirical Bayes, fully Bayes, hierarchical Bayes,

Laplace approximation.

1. Introduction

The variable selection problem for a Generalized Linear Model (GLM) setup

may be stated as follows. Suppose we observe Y = (y1, . . . , yn)T which follows

an exponential family distribution

p(Y|θ, φ) =
n∏

i=1

exp
{

yiθi − b(θi)
φ

+ c(yi, φ)
}

, (1.1)

where θ = (θ1, . . . , θn)T and φ are unknown parameters that may depend on p

observed variables X1 . . . ,Xp. Let γ index all 2p subsets of {X1 . . . ,Xp}, and

let qγ denote the size of the γth subset. Then the vaguely stated problem we

consider is that of selecting the “best” model of the form

g(E(Y)) = Xγβγ , (1.2)

where g is a known link function, Xγ is a n× (qγ + 1) design matrix with 1’s in

the first column and the γth subset of Xj ’s in the remaining columns, and βγ is

a (qγ + 1)× 1 vector of regression coefficients.
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There has been substantial recent interest in Bayesian variable selection for

GLMs, for example Raftery and Richardson (1993); George, McCulloch and Tsay

(1994); Raftery (1996); Kuo and Mallick (1998); Chen, Ibrahim and Yiannoustsos

(1999); Dellaportas and Forster (1999); Clyde (1999); Ibrahim, Chen and Ryan

(2000); Dellaportas, Forster and Ntzoufras (2000) and (2002); Meyer and Laud

(2002) and Ntzoufras, Dellaportas and Forster (2003). In this paper, we propose

new selection criteria for GLMs based on extensions of the hierarchical Bayes

formulations of George and Foster (2000) and Cui (2002). These extensions

are obtained using an integrated Laplace approximation that yields analytical

tractability. By choosing particular hyperparameter values, we obtain model

posteriors with modes corresponding to models selected by the commonly used

AIC and BIC criteria for GLMs. We then proceed to develop and evaluate

new selection criteria based on both Empirical Bayes (EB) and Fully Bayes (FB)

approaches. Simulation evaluations are used to compare the performance of the

various criteria for normal, logistic and Poisson linear models. An example, based

on a large data set arising from the 1977-1978 Australian Health Survey, is given

to demonstrate the applicability of the methods with the use of negative binomial

regression models.

The article is organized as follows. Section 2 introduces a general hierar-

chical mixture Bayesian setup for the variable selection problem, and Section 3

describes a particular implementation for GLMs. Section 4 develops an analyt-

ically tractable integrated Laplace approximation for GLMs. Sections 5 and 6

propose particular EB and FB selection criteria based on this approximation.

Section 7 provides a simulation evaluation and comparison of various selection

criteria, including ours. Section 8 further illustrates and compares the criteria

on data. Section 9 concludes with a discussion.

2. A Hierarchical Bayes Setup for Variable Selection

To model variable selection uncertainty for the general GLM setup in (1.1)

and (1.2), we assume the dispersion parameter φ is known and consider prior

formulations of the form

π(βγ , γ|ψ1, ψ2) = π(βγ |γ, ψ2)π(γ|ψ1),

where ψ1 and ψ2 are unknown hyperparameters indexing the priors on γ and

βγ , respectively. Such prior distributions lead to posterior distributions over γ
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of the form:

π(γ|Y, ψ1, ψ2) =
p(Y|γ, ψ2)π(γ|ψ1)∑
γ p(Y|γ,ψ2)π(γ|ψ1)

(2.1)

where

p(Y|γ, ψ2) =
∫

p(Y|βγ , γ)π(βγ |γ, ψ2) dβγ (2.2)

is the marginal distribution of the data Y given γ and ψ2.

To deal with the unknown hyperparameters ψ1 and ψ2, we consider two

basic approaches: (1) an Empirical Bayes (EB) approach that estimates ψ1 and

ψ2, based on the data, and then uses π(γ|Y, ψ̂1, ψ̂2) as the basis for selection,

and (2) a Fully Bayes (FB) approach that puts priors on ψ1 and ψ2, integrates

them out, and then uses π(γ|Y) as as the basis for selection. Note that

π(γ|Y) =
∫∫

D
π(γ|Y, ψ1, ψ2)π(ψ1, ψ2|Y) dψ1 dψ2

=
∫∫

D

p(Y|γ, ψ2)π(γ|ψ1)
p(Y|ψ1, ψ2)

p(Y|ψ1,ψ2)π(ψ1, ψ2)
p(Y)

dψ1 dψ2

=
∫∫

D

p(Y|γ, ψ2)π(γ|ψ1)
p(Y)

π(ψ1,ψ2) dψ1 dψ2, (2.3)

where p(Y|γ, ψ2) is given by (2.2), and D is the region of all possible (ψ1, ψ2)

values under π(ψ1,ψ2). It is often reasonable to assume ψ1 and ψ2 are apriori

independent, in which case π(ψ1, ψ2) = π(ψ1)π(ψ2).

Implementation of the EB and FB approaches requires prior forms for both

π(βγ |γ,ψ2) and π(γ|ψ1) and, for the FB approach, π(ψ1,ψ2) is also needed.

Such choices must confront the difficulty that the integration to obtain p(Y|γ, ψ2)

in (2.2) is analytically intractable for most GLMs. This computational difficulty

has previously been addressed using Laplace approximations and Monte Carlo

methods (Kass and Raftery(1995); Raftery(1996)), and by transformations to

the more tractable normal case (Clyde (1999)). In the next section, we propose

general priors for γ and βγ which, when combined with an integrated Laplace

approximation to p(Y|γ, ψ2), yield tractable and accurate large sample approx-

imations for (2.1) and (2.3).

3. GLM Implementations

Consider a GLM with a link function g(·) that is monotonic and differen-

tiable. Generally, the relationship between the canonical parameters θ in (1.1)
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and the regression coefficients β in (1.2) can be described as

θ = b′−1 ◦ g−1(Xβ),

where ◦ denotes function composition. For clarity, we use θ(Xβ) instead of

simply θ throughout this paper. Then, the γth model for Y in (1.1) may be

expressed as

p (Y|βγ , γ) = exp

{
YT θ(Xγβγ)− bT (θ(Xγβγ))1

φ
+ cT (Y, φ)1

}
, (3.1)

where b(θ) = (b(θ1), b(θ2), · · · , b(θn))T , c(Y, φ) = (c(y1, φ, ), c(y2, φ), · · · , c(yn, φ))T ,

and 1 is the n×1 vector of all 1’s. Note that for canonical links (e.g., log for Pois-

son, logit for Binomial, identity for Normal, reciprocal for Gamma), g(·) = b′−1(·)
so that θ(Xγβγ) ≡ Xγβγ .

For the prior on γ, we follow George and Foster (2000) and use the simple

independence prior

π(γ|ω) = ωqγ (1− ω)p−qγ , (3.2)

where ω ∈ (0, 1) is the prior probability that any Xi is included. Under this prior,

the X ′
is enter the model independently, and ω is the expected proportion of X ′

is

that enter. Thus, when ω is small, π(γ|ω) assigns larger weight to parsimonious

models with smaller qγ , and when ω is large, π(γ|ω) assigns larger weight to more

saturated models with larger qγ . When ω = 1/2, π(γ|ω) assigns equal weight 1/2p

to every model, and in this sense is sometimes interpreted as a noninformative

prior.

For the prior on the model-specific parameters βγ , we first suppose φ is

known, and consider the generalization of the conjugate prior for the normal

linear model,

βγ |γ, τ ∼ Nqγ+1(mγ , τ W (β̂γ)), (3.3)

where τ > 0, β̂γ is the maximum likelihood estimator of βγ conditional on γ,

and

W (βγ) = −
(

∂2 log p (Y|βγ , γ)

∂βγ∂βT
γ

)−1

is a (qγ + 1) × (qγ + 1) matrix. A special case is that for a canonical link

W (βγ) = φ (XT
γ VγXγ)−1, where Vγ is a n × n diagonal matrix with the ith
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diagonal element b′′(θγi). This prior takes into account the multivariate corre-

lation structure of βγ through the specified covariance matrix in (3.3), whose

inverse is proportional to the observed Fisher information matrix (Kass and

Wasserman (1995) and Ntzoufras, Dellaportas and Forster (2003)). This may

be more reasonable than ignoring the correlation by assuming βγ apriori inde-

pendent, especially when multicollinearity among covariates exists. While this

correlation structure is generally unknown and hard to specify in practice, we

use the information from the data to estimate it. This empirical Bayes approach

is indeed better than an arbitrary specification and yields criteria having excel-

lent performance in selection, as will be confirmed in our simulation. Another

advantage of the form (3.3), as will be seen later, is its analytical tractability

under an integrated Laplace approximation. Here, we should also point out the

prior covariance matrix in (3.3) is not solely dependent on the data, due to the

hyperparameter τ . In this paper, great care is taken to deal with τ .

A natural default choice for the hyperparameter mean of βγ is mγ = (0, . . . , 0),

which centers all coefficients at the neutral value 0, indicating indifference be-

tween positive and negative values. However, in our formulation of the problem,

the first component of βγ , the intercept β0, is always to be included in the model.

To minimize the effect of prior influence on this component, we instead prefer

the choice mγ = (β̄0, 0, . . . , 0), where β̄0 is the MLE of β0 under the null model,

namely g(Ȳ ) for any link function g, or specifically b
′−1(Ȳ ) for a canonical link.

Of course, any available prior information may also be incorporated into the

choice of mγ . This may be conveniently done using prior predictions for the

observable response Y, see Meyer and Laud (2002).

Lastly, we consider specification for unknown φ, which occurs in the Normal,

Gamma and Inverse Gaussian GLMs, as well as in the binomial and Poisson

GLMs with overdispersion. In such cases one may proceed as before, but with

φ replaced by one of the estimates recommended by Jorgensen (1987) under the

full model γ, as follows.

1. φ̂1 = D(Y, µ̂γ)/(n − qγ − 1), an asymptotic unbiased estimator of φ.

D(Y, µ̂γ) is the deviance for model γ, and µ̂γ is the estimated mean vector

of Y conditional on γ.

2. φ̂2 = P 2/(n− qγ − 1), where P is the generalized Pearson Statistic. This is
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actually a moment estimator.

3. φ̂3 maximizing the modified profile likelihood for parameter φ: L0(φ) =

φ
qγ+1

2 p(Y|θ̂γ , φ), where p(Y|θ, φ) is the density function of Y.

McCullagh and Nelder (1989), for example, use φ̂2 under the full model as an

estimate.

4. An Integrated Laplace Approximation

As mentioned earlier, a challenge for the development of Bayesian variable

methods for GLMs is the analytical intractability of the marginal distribution

p(Y|γ, τ). Indeed, for the GLM p (Y|βγ , γ) in (3.1) with the prior for βγ in

(3.3), the marginal

p (Y|γ, τ) =
∫

Rqγ+1
p (Y|βγ , γ)π (βγ |γ, τ) dβγ (4.1)

has no closed-form solution, except for the normal case for which (3.3) is conju-

gate. To mitigate this difficulty, we consider using a standard Laplace approxi-

mation (Bleistein and Handelsman (1975)).

The classical application of the Laplace method begins with a second-order

Taylor series approximation of log p(Y|βγ , γ), expanding about the β̂γ which

maximizes log p (Y|βγ , γ). This yields the second order approximation

log p (Y|βγ , γ) ≈ YT θ(Xγβ̂γ)− bT (θ(Xγβ̂γ))1
φ

+ cT (Y, φ)1

−1
2
(βγ − β̂γ)T W−1(β̂γ)(βγ − β̂γ). (4.2)

Substituting this approximation along with π (βγ |γ, τ) ≈ π (β̂γ |γ, τ) into (4.1)

and integrating, yields the standard Laplace approximation

pL(Y|γ, τ) = L̂γτ−
qγ+1

2 exp
{
−Tγ

2τ

}
,

where

L̂γ = exp

{
YT θ(Xγβ̂γ)− bT (θ(Xγβ̂γ))1

φ
+ cT (Y, φ)1

}
(4.3)

is the likelihood from (3.1) evaluated at the MLE, and

Tγ = (β̂γ −mγ)T W−1(β̂γ)(β̂γ −mγ). (4.4)
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As is well-known, this Laplace approximation of p(Y|γ, τ) by pL(Y|γ, τ) is

of order O(n−1) provided the log-likelihood function satisfies certain regularity

conditions, (see Kass, Tierney and Kadane (1990) for details). However, pL is

not quite satisfactory. When Y is normally distributed so that the canonical

link GLM is the familiar normal linear model, pL (Y|γ, τ) does not reduce to

the correct marginal p (Y|γ, τ). Instead it reduces to a normal marginal with

variance proportional to τ rather than τ + 1. This occurs in spite of the fact

that in the normal case, the second-order approximation to the log-likelihood is

exact.

Fortunately, this difficulty can be overcome by using a slight variant of the

above; we refer to this variant as an integrated Laplace (iL) approximation. The

basic iL idea is to insert the approximation (4.2) of p (Y|βγ , γ) into (4.1), but to

leave p (βγ |γ, τ) as it is, so that less is being approximated. Now integrating out

βγ yields the iL approximation

piL (Y|γ, τ) = L̂γ(τ + 1)−
qγ+1

2 exp
{
− Tγ

2(τ + 1)

}

As a referee kindly pointed out, piL can also be obtained by replacing τ by τ + 1

in the prior (3.3) for βγ and using the standard Laplace approximation.

As we show in Appendix A, the approximation of p(Y|γ, τ) by piL(Y|γ, τ)

is of the same order as pL(Y|γ, τ), namely O(n−1), under the same conditions.

However, in contrast to pL(Y|γ, τ), when Y is normally distributed the iL ap-

proximation is exact, i.e., piL (Y|γ, τ) = p (Y|γ, τ). For large τ , piL (Y|γ, τ) ≈
pL (Y|γ, τ), but for small τ the two approximations may differ substantially.

When τ → 0, we have

lim
τ→0

piL (Y|γ, τ) = L̂γ exp
{
−Tγ

2

}
, (4.5)

whereas limτ→0 pL (Y|γ, τ) = 0 when mγ 6= β̂γ and limτ→0 pL (Y|γ, τ) = +∞
when mγ = β̂γ . Based on these limits, it appears that when τ is small, piL (Y|γ, τ)

is better than pL (Y|γ, τ) for approximating p (Y|γ, τ). For example, the value

of p (Y|γ, τ) when τ = 0 is

p (Y|γ, τ = 0) = exp
{

YT θ(Xγmγ)− bT (θ(Xγmγ))1
φ

+ cT (Y, φ)1
}
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since βγ is fixed at mγ in this case. Comparing this with (4.5), we see that

lim
n→+∞ lim

τ→0
piL (Y|γ, τ) = p (Y|γ, τ = 0)

whenever β̂γ → mγ as n → +∞, which occurs with probability 1 under mild

regularity conditions on the GLM. This limiting equality does not hold for

pL (Y|γ, τ).

If our goal was simply to estimate βγ for a given fixed γ, it would be rea-

sonable to use the prior (3.3) with τ large, and the difference between pL and

piL would be unimportant. However, in our setting of model comparison across

different values of γ, it is important to use an approximation such as piL which

behaves well for both large and small values of τ . As will be seen in the next

section, our Empirical Bayes criteria use the data to estimate τ , and small τ

values will be selected when the signal βγ is small or zero. This can be critical

for the correct selection of parsimonious models. A similar phenomenon occurs

with the Fully Bayes criteria which implicitly allow for small τ by marginalizing

over (0, +∞).

George and Foster (2000) showed that under our hierarchical Bayes setup

for the normal linear model, selection criteria such as AIC and BIC can be

calibrated to selection of the maximum posterior model for particular hyperpa-

rameter values. The approximation piL(Y|γ, τ) can similarly be used to obtain

an asymptotic calibration to GLM deviance criteria of the form

−2 log L̂γ + qγ h, (4.6)

where L̂γ is the maximized likelihood in (4.3). In this context, criteria such

as AIC and BIC correspond to minimizing (4.6) with h = 2 and h = log n,

respectively.

Under the priors (3.2) and (3.3), asymptotic calibrations of the posterior

mode to (4.6) become evident from the posterior representation

π (γ|Y, τ, ω) ∝ π (γ|ω)p (Y|γ, τ) = π (γ|ω)piL (Y|γ, τ)(1 + O(n−1))

= L̂γωqγ (1− ω)p−qγ (τ + 1)−
qγ+1

2 exp
{
− Tγ

2(τ+1)

}
(1 + O(n−1)) (4.7)

= L̂γ exp
{
− qγ

2

[
2 log 1−ω

ω + log(τ + 1)
]− Tγ

2(τ+1)

}
(1 + O(n−1)). (4.8)
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If the prior mean mγ is set equal to β̂γ and n →∞, maximizing π (γ|Y, τ, ω) is

equivalent to minimizing

−2 log L̂γ + qγ

(
2 log

1− w

w
+ log(τ + 1)

)
. (4.9)

Note that by setting mγ equal to β̂γ , both the mean and the variance of the

prior (3.3) on βγ will then depend on the data.

Comparing (4.9) with (4.6) reveals that they will be identical when h =

2 log[(1 − w)/w] + log(τ + 1). For example, (τ, ω) = (e2 − 1, 1/2) yields h = 2

when (4.6) is AIC, and (τ, ω) = (n− 1, 1/2) yields h = log n when (4.6) is BIC.

Thus, these choices of (τ, ω) yield a posterior whose modal model corresponds to

the best AIC and BIC model, respectively, as n →∞.

5. Empirical Bayes Selection Criteria

When τ and ω are unknown, as will typically be the case in practice, setting

them equal to arbitrary values may tend to give misleading results by concen-

trating the prior away from the true underlying model. A natural alternative

that avoids such difficulties is obtained via Empirical Bayes (EB), which entails

replacing τ and ω by estimates.

For variable selection under the normal linear model, George and Foster

(2000) proposed two EB criteria, MML (Maximum Marginal Likelihood) and

CML (Conditional Marginal Likelihood), that corresponded to selection of the

modal posterior model under estimators of τ and ω. The MML estimates are ob-

tained via maximization of the marginal likelihood L(τ, ω|Y) ∝ ∑
γ π(γ|ω) p(Y|γ, τ).

However, due to the difficulty of summing over all 2p models, computation of the

MML estimates is not feasible when p is large, unless X1, . . . Xp are orthogonal.

In contrast, the CML estimates are obtained via maximization of the conditional

likelihood L∗(τ, ω, γ|Y) ∝ π(γ|ω) p(Y|γ, τ), which is equivalent to maximizing

the largest component of L(τ, ω|Y). Although CML did not perform quite as

well as MML in the simulation evaluations of George and Foster (2000), it can

be computed much more rapidly. For this reason, we narrow our focus to the

extension of CML for GLMs.

Using the iL approximation piL, we set L∗(τ, ω, γ|Y) ∝ π(γ|Y, τ, ω) in (4.8).

Conditionally on γ, the estimators of τ and ω that maximize this L∗ when n →∞
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are

τ̂γ =
[

Tγ

qγ + 1
− 1

]

+

, ω̂γ =
qγ

p
,

where Tγ is defined in (4.4) and (·)+ is the positive-part function. Inserting these

into the posterior (4.7) and taking the logarithm shows that when n → ∞, the

posterior π (γ|Y, τ̂γ , ω̂γ) is maximized by the γ that minimizes

CCML =





−2 log L̂γ + (qγ + 1)(log Tγ

qγ+1 + 1)− 2 {qγ log qγ + (p− qγ) log(p− qγ)}
if Tγ

qγ+1 > 1

−2 log L̂γ + Tγ − 2 {qγ log qγ + (p− qγ) log(p− qγ)}
if Tγ

qγ+1 ≤ 1,

where L̂γ is the maximized likelihood in (4.3). As opposed to MML criteria,

CCML can be evaluated easily for each γ model, whether or not X1, . . . Xp are

orthogonal. In situations where 2p is large, it can still be used to find the maximal

CCML model from a manageable subset of models, such as might be obtained by

heuristic stepwise methods.

6. Fully Bayes Selection Criteria

For variable selection under the normal linear model, Cui (2002) developed

various FB alternatives to the EB criteria of George and Foster (2000), focusing

on their evaluation in the case of orthogonal predictors. In contrast to the EB

approach of using plug-in estimates of τ and ω to obtain π (γ|Y, τ̂γ , ω̂γ), the

FB approach puts priors on τ and ω and then margins them out to obtain

π(γ|Y). The EB posterior π (γ|Y, τ̂γ , ω̂γ) ignores the uncertainty about τ and ω

by treating their estimates as if they were known. In contrast, the FB posterior

π(γ|Y) incorporates the variability due to the uncertainty about τ and ω, and so

may be a more reasonable summary of posterior uncertainty. The FB approach

is also attractive because it provides a natural route for incorporating further

unknown parameters, such as φ, into the analysis.

To facilitate FB calculations here, it will be convenient to reparameterize

τ to k ≡ 1/(τ + 1), which yields simpler forms for the iL approximation piL.

We also restrict attention to hyperpriors under which k and ω are independent,

i.e. π(k, ω) = π(k) π(ω). For any such hyperpriors, our FB asymptotic approxi-
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mation of π(γ|Y) by π̃(γ|Y) is then obtained via

π̃(γ|Y) ∝
∫ 1

0

∫ 1

0
piL(Y|γ, k) π(γ|ω) π(k) π(ω) dk dω, (6.1)

where π(γ|ω) is given by (3.2), and π(k) and π(ω) are hyperpriors on k and ω,

respectively. We now investigate a variety of choices for π(k) and π(ω).

6.1. Flat Hyperpriors on k and ω

As a natural starting point, we consider the simple automatic choice of the

uniform distribution on [0,1] for both π(k) and π(ω). From (6.1), we have the

asymptotic posterior distribution of γ, when mγ 6= β̂γ ,

π̃(γ|Y) ∝ L̂γ

∫ 1

0

∫ 1

0
ωqγ (1− ω)p−qγk

qγ+1

2 exp
(
−kTγ

2

)
dωdk

= L̂γ
Γ(qγ + 1)Γ(p− qγ + 1)

Γ(p + 2)
Γ(

qγ + 3
2

)
(

Tγ

2

)− qγ+3

2

G0

(
Tγ

2

)
, (6.2)

where G0(·) is the CDF of the Gamma distribution with parameters α = (qγ +

3)/2 and β = 1. The FB selection criterion under this flat prior is simply to

select the highest posterior γ under (6.2).

The form of this asymptotic posterior for γ is revealing. After taking the log

and ignoring constants, we can decompose it into three parts EL +Eω +Ek. The

first part EL = log L̂γ is simply the maximized log-likelihood of model γ. The

second part

Eω = log Γ (qγ + 1) + log Γ(p− qγ + 1)

is related to the integration over ω. And the third part

Ek = log Γ
(

qγ + 3
2

)
− qγ + 3

2
log

Tγ

2
− log G0

(
Tγ

2

)

is related to the integration over k, or equivalently τ .

EL is increasing as variables are added to the model, and Eω is a convex

function of qγ with its minimum at qγ = [(p − 1)/2]. Because Eω is identical

for the null and full models, EL + Eω will always favor the full model. Hence,

Ek plays a crucial role in penalizing the posterior for added variables. It does so

through its dependence on the data through Tγ = (β̂γ−mγ)T W−1(β̂γ)(β̂γ−mγ)

in (4.4), which tends to increase as variables are added. Since log(Tγ/2) and
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log G0(Tγ/2) are both increasing functions of Tγ , Ek penalizes models with larger

Tγ by reversing the signs of both.

6.2. Restricted Region Flat Hyperpriors on k and ω

Somewhat surprisingly, simulation evaluations suggest that the FB selection

criterion (6.2) often incorrectly selects very large models, even in the presence of

many redundant and meaningless variables. To understand why this may hap-

pen, consider the penalty term coefficient within the posterior approximation to

π(γ|Y, τ, ω) in (4.8), namely 2 log[(1−ω)/ω]+log(τ +1). This term will be nega-

tive when τ is small enough and ω is large enough, thereby rewarding rather than

penalizing the addition of variables. This is reasonable for such τ and ω because

the model will then tend to have a majority of small nonzero coefficients making

it especially difficult to distinguish signal from noise. However, when τ is small,

it will be difficult to distinguish small ω from large ω. Thus, this phenomenon

can lead to instability of the FB criterion when τ and ω are unknown.

To mitigate this difficulty, we consider modifying the FB criteria by restrict-

ing the range of integration in (6.1) to

D =
{

(k, ω) : 2 log
1− ω

ω
− log k ≥ 0

}
. (6.3)

By doing so, under the uniform priors on k and ω and Tγ 6= 0 (that is, mγ 6= β̂γ),

we have (calculation details in appendix B)

π̃ (γ|Y) ∝ L̂γΓ
(

qγ + 3
2

)(
Tγ

2

)− qγ+3

2
{

Γ(qγ + 1)Γ(p− qγ + 1)
Γ(p + 2)

B0(0.5)G0

(
Tγ

2

)

+
∫ 1

0.5
ωqγ (1− ω)p−qγG0

((
1
ω
− 1

)2 Tγ

2

)
dω

}
, (6.4)

where B0(·) is the CDF of the Beta distribution with parameters α = qγ + 1 and

β = p − qγ + 1. Although (6.4) is not quite in closed form, the remaining one-

dimensional integration can be evaluated easily with simple numerical methods.

To get a sense of how the restriction (6.3) on k and ω, through the form of

(6.4), penalizes a model with large qγ , consider the special case where mγ = β̂γ

where the penalty has a simpler and more transparent form. In this case, without

restrictions on k and ω, the posterior is

π̃ (γ|Y) ∝ 2L̂γ

qγ + 3
Γ(qγ + 1)Γ(p− qγ + 1)

Γ(p + 2)
, (6.5)

12



0 2 4 6 8 10

5
10

15
20

p=10,mγ = β̂

Nonzero Components q

P
en

al
ty

Restricted
Non−Restricted

0 5 10 15 20

10
20

30
40

p=20,mγ = β̂

Nonzero Components q

P
en

al
ty

0 10 20 30 40 50

20
40

60
80

p=50,mγ = β̂

Nonzero Components q

P
en

al
ty

0 20 40 60 80 100
50

10
0

15
0

p=100,mγ = β̂

Nonzero Components q

P
en

al
ty

Figure 1: The Effect of the Restriction 2 log[(1− ω)/ω]− log k ≥ 0

whereas under the restriction (6.3), the posterior is

π̃(γ|Y) ∝ 2L̂γ

qγ + 3

[
Γ(qγ + 1)Γ(p− qγ + 1)

Γ(p + 2)
B0(0.5) +

∫ 1

1
2

ω−3(1− ω)p+3dω

]
(6.6)

(see the calculation details in appendix B). To obtain selection criteria forms

analogous to (4.9), where the first part is −2 log L̂γ and the second part is the

penalty, we consider −2 times the log posterior of (6.5) and (6.6). To compare

the two penalties, we plot each of them for π̃ (γ|Y), both with and without

the restriction in Figure 1. The penalty without restriction is a non-monotone

function that penalizes most around p/2 and least around 0 or p. In contrast, the

penalty obtained with the restriction (6.3) is always increasing in qγ , penalizing

the most at the full model qγ = p. The essential effect of the restriction is to

substantially increase the penalty on models with large qγ .

6.3. Elaborations to Conjugate Hyperpriors

One can readily see from the likelihood of k and ω that the conjugate prior

for k is the truncated Gamma distribution and the conjugate prior for ω is the

Beta distribution,

k ∼ Truncated Gamma(a, b), ω ∼ Beta(α, β), for k, ω ∈ (0, 1). (6.7)

Under these priors, the iL approximation again makes it easy to obtain a closed

form posterior approximation. For concision of expressions, let uγ = (qγ + 2a +
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1)/2, G(·) be the CDF of the Gamma distribution with parameters (uγ , 1), and

B(·) be the CDF of the Beta distribution with parameters (qγ + α, p − qγ + β).

Then we have

π̃ (γ|Y) ∝ L̂γ
Γ(qγ + α)Γ(p− qγ + β)

Γ(p + α + β)
Γ(uγ)

(
Tγ

2
+

1
b

)−uγ

G

(
Tγ

2
+

1
b

)
(6.8)

when Tγ/2 + 1/b 6= 0, and

π̃ (γ|Y) ∝ L̂γΓ(qγ + α)Γ(p− qγ + β)
uγΓ(p + α + β)

, (6.9)

when Tγ/2 + 1/b = 0. Furthermore, under the restriction (6.3) on k and ω we

have

π̃ (γ|Y) ∝ L̂γΓ(uγ)
(

Tγ

2
+

1
b

)−uγ
{

Γ(qγ + α)Γ(p− qγ + β)
Γ(p + α + β)

B(0.5)G
(

Tγ

2
+

1
b

)

+
∫ 1

0.5
ωqγ+α−1(1− ω)p−qγ+β−1G

((
Tγ

2
+

1
b

)(
1
ω
− 1

)2
)

dω

}
(6.10)

when Tγ/2 + 1/b 6= 0, and

π̃ (γ|Y) ∝ L̂γ

uγ

[
Γ(qγ + α)Γ(p− qγ + β)

Γ(p + α + β)
B(0.5) +

∫ 1

0.5
ωα−2a−2(1− ω)p+β+2adω

]

(6.11)

when Tγ/2 + 1/b = 0 (see calculation details in appendix B). Note that the

‘noninformative’ flat hyperpriors on k and ω considered previously are actually

the special case of the conjugate hyperpriors with a=1, b=+∞, α = 1 and β = 1.

The conjugate priors provide an easy way to incorporate available subjective

prior information into the selection procedure. For example, Beta(1.5, 1.5) is

symmetric concave putting more weight on ω values close to 0.5, Beta(2, 1) is

a line with a positive slope putting more weight on large ω, and Beta(1, 2) is a

line with a negative slope putting more weight on small ω. Another ‘noninfor-

mative’ alternative is Jeffreys’ prior, Beta(0.5, 0.5), which is symmetric convex

putting more weight on ω values close to 0 and 1. For the prior on k, recom-

mendations in the literature have been to choose τ large (Zellner (1986), Smith

and Kohn (1996)), which corresponds to small k. Thus, we might consider the

special form fk(k) = (1− ρ)k−ρ, 0 < ρ < 1, the truncated Gamma(1-ρ,∞), that

puts more weight on small values for k.
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7. Simulation Comparisons

In this section we illustrate and compare the performance of some of our

EB and FB procedures on three particular canonical link GLMs: the normal,

logistic and Poisson linear models. In each case we considered the EB criterion

CCML, and the FB criteria under uniform hyperpriors, both with and without

restriction on the region of integration. We denote these three criteria by CML,

FB and FBR, respectively. For comparison, we also considered the procedures

ORACLE, which includes exactly the correct variables, FULL, which includes

all variables, and AIC and BIC, the well-known fixed penalty selection criteria.

7.1. Simulation Setups

We followed aspects of the simulation setup in George and Foster (2000) for

the normal linear model, and extended it for the logistic and Poisson GLMs.

Generating X: For each class of models, we considered three values of (n, p),

(100,10), (200, 20) and (200, 50), except for the logistic model where (200, 50)

was replaced by (500, 50). This was done to avoid the phenomenon of separation

in the fitting process of a logistic model (i.e., at least one parameter estimate

diverges to ±∞), which often occurs in small samples with several unbalanced

and highly predictive covariates (Heinze and Schemper (2002)). For each value of

(n, p), the n rows of X were independently generated from a Np(0, Σ) distribution

with 0.5|i−j| as the ijth element of Σ. We obtained similar findings using Σ = I,

but have not reported those here for reasons of space.

Generating β: For each selected p, we considered models with 0, v, . . . , uv

nonzero components in turn, where the positive integers u and v satisfy uv = p.

We set v as 2, 4, 5 for p of 10, 20, 50 respectively. Then we generated differ-

ent values of β = (β0, β1, · · · , βp) in the following way: when q = 0, they were

of the form β0 = (β0
0 , 0, · · · , 0); when q = iv, 1 ≤ i ≤ u, they were of the

form βi = (βi
0,Bi,Bi, · · · ,Bi,Bi), where there are v replicates of Bi, and each

Bi = (bi
1, b

i
2, · · · , bi

u) has i adjacent nonzero values of bi centered around bi
bu+1

2
c,

and zero values of bi otherwise. For example, when p = 50, the 10 Bi’s are of

the form B1 = (0, 0, 0, 0, b1
5, 0, 0, 0, 0, 0), B2 = (0, 0, 0, 0, b2

5, b
2
6, 0, 0, 0, 0), B3 =

(0, 0, 0, b3
4, b

3
5, b

3
6, 0, 0, 0, 0), B4 = (0, 0, 0, b4

4, b
4
5, b

4
6, b

4
7, 0, 0, 0), . . ., B10= (b10

1 , b10
2 ,

b10
3 , b10

4 , b10
5 , b10

6 ,b10
7 , b10

8 ,b10
9 , b10

10). For each i, we then simulated βi
0 and the i

nonzero values of bi from a N(0, σ) distribution where σ was chosen so that
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we can easily control the generated β to yield a value of 0.5 for

Pseudo R2 = 1− log LT

log LN

≈ 1−
{
µTXβ − bT (Xβ)1

}
/φ + cT (µ, φ)1

{nb′−1(µ̄)µ− nb(b′−1(µ̄))} /φ + cT (µ, φ)1
.

In the above, LT is the likelihood of the true model, LN is the likelihood of the

null model, µ = b
′
(θ) is the mean vector of Y and µ̄ = µT1/n.

Generating Y: For each class of GLMs and each setting of (n, p, q), Y was

generated based on 250 different values of β.

Evaluating Criteria: We evaluated the selection criteria at all 2p models when

p = 10. However, to make the computation feasible for the other values of p, we

instead applied the criteria to a subset of models obtained by a heuristic stepwise

method. For each simulated Y, we simply used each criterion to select a model

from the subset visited by forward selection stepwise regression. Although one

can point to the likely inadequacy of the subset of models investigated, this is

of little concern for the purpose of performance comparison. We defer more

discussion of this until Section 9.

7.2. Assessment of Performance

We used predictive loss to measure the distance between a fitted model and

the true model with known coefficients. At each iteration, within which Y was

regenerated, we summarized the disparity between the selected γ̂ and the true γ

by predictive loss defined on the fitted scale by

L
{

β, β̂(γ̂)
}
≡ (µ̂(γ̂)− µ)T (µ̂(γ̂)− µ).

It should be emphasized that we are simply using predictive loss to capture the

closeness of γ̂ to γ, and so do not consider further estimative improvements such

as shrinkage estimation or model averaging.

From a decision theory point of view, 0/1 loss, which is 0 if and only if γ̂ is

the true γ, is the appropriate loss for model selection. However, this measure is

not meaningful if the true γ is not included in the subset selected by the stepwise

procedure. Thus for illustration and comparison, we only considered 0/1 loss for

the case p = 10 where the entire model space was evaluated. A drawback of 0/1

loss occurs when the probability of selecting the correct model exactly is small,
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such as when p, q and the amount of noise are large. In such cases, the true

model may never be selected and the fact that γ̂ is ‘close’ to γ is ignored, so the

companion measure of predictive loss is especially useful.

7.3. Simulation Results

In what follows, Figure 2 plots the relative predictive losses LR by q un-

der the normal, Poisson and logistic models, respectively. For each criterion,

LR ≡ log(L̄/L̄0), where L̄ is the average predictive loss over models selected

by this criterion, and L̄0 is the average predictive loss over models selected by

ORACLE. Note that LR ≥ 0. The closer LR is to zero, the better selection cri-

terion performance. Table 1 presents the proportion of times the selected model

is the true model for each case with p = 10. For a much more comprehensive

simulation evaluation, see Wang (2002).

We begin with the normal linear model, for which the iL approximation is

exact. From the top three panels of Figure 2, one can see clearly that for small q,

the criteria have very different performance in selection; when q gets large, their

performance becomes similar and gets close to ORACLE (i.e., the horizontal

axes). Among them, FBR appears to have the best overall performance; its line

of losses is below the lines for any other criteria almost always and so is closest

to ORACLE. It is not surprising to see that AIC and FULL are worse than

the others when q is small, and BIC is the worst when q is large. The adaptive

nature of FBR, FB and CML can be seen immediately from the evidence that

they beat AIC and FULL at small q, and beat BIC at large q. The pattern

shown in Figure 2 is consistent among different p, although we adopted different

strategies in searching the model space.

Table 1: Simulation Results: the proportion that the selected model is the true model
q Normal, p=10 Poisson, p=10 Logistic, p=10

FBR FB CML BIC AIC FBR FB CML BIC AIC FBR FB CML BIC AIC

0 98 78 0 73.6 15.2 99.2 86 0 70.8 19.6 95.6 53.2 0 66 17.6

2 84 82.8 88 79.6 29.2 89.6 89.6 92.8 77.2 27.2 44 2.4 22.4 69.6 20

4 28.4 16.4 25.2 31.6 21.6 41.6 39.2 42 46 26 7.6 0 0 29.6 13.2

6 10.8 0 1.6 10 12.4 20.4 13.6 17.2 20.4 22.4 6.8 0 0 8 10.4

8 6.8 0 0 2.8 6.4 11.2 0 0.8 8.4 14.4 4.8 0 0 4.4 7.2

10 10.4 90.4 0 1.6 4.4 12 72.4 0 0.8 6.8 19.6 99.6 0 0 3.2
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Figure 2: Relative Predictive Loss in Log Scale

Here, it should be mentioned that we did not employ the George and Foster

(2000) ad hoc adjustment to CML of picking the smaller mode in bimodal cases.

This adjustment improves CML when q is small, but denigrates its performance
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when q is large. Such an ad hoc adjustment to CML was also not employed in

the logistic or the Poisson cases.

Now we proceed to discuss the case of Poisson GLMs where φ = 1, b(θi) =

µi = exp(θi) and c(yi, φ) = − log(yi!). We deliberately generated Yi from small

µi here to more easily observe differences in performance between the Poisson

and the normal linear models. In terms of overall comparisons, the relative

performances of the criteria under Poisson GLMs are very similar to what we

saw in the normal case. In particular, FBR appears the best, with the lowest

line of losses. It is substantially better than the others when q = 0. The adaptive

nature of FBR, FB and CML is manifested by their improvements over AIC

and FULL when q is small, and by their improvements over BIC when q is large.

Finally, we discuss the case of logistic GLMs where φ = 1, b(θi) = log(1+eθi)

and c(yi, φ) = 0. Here, only FBR seems to retain the adaptive performance from

the normal case above. It substantially beats AIC and FULL when q is small,

and beats BIC when q is large. However, it is beaten by BIC, and slightly by

AIC, for some small to moderate values of q. Both FB and CML performed

similarly to FULL except for small q, when they were sometimes slightly better.

8. An Example: Predicting Doctor Visits

We have focused on GLMs with canonical link functions in our simulation

study. Beyond these, GLMs with noncanonical link functions are also used in

practice. Such noncanonical links include
√

µ , (µ + c1)c2 (c1 and c2 known),

log[− log(µ/n)] and Φ−1(µ/n). Here, for noncanonical link GLMs, we provide

an illustration of our proposed criteria and comparison with AIC and BIC by

applying them to the doctor visits data described in Chapter 3 of Cameron and

Trivedi (1998), which consists of a single-adult sample of size 5190 from the

Australian Health Survey 1977-78. According to the authors, the data set was

collected to study the potential link between health-service utilization and eco-

nomic variables. The response variable is the number of consultations with a

doctor or specialist in the previous two weeks (DVISITS). There are nine pre-

dictors in the data set: (1) Sex (1 if female, 0 if male); (2) Age in years divided

by 100; (3) Age squared (AGESQ); (4) Annual income in Australian dollars di-

vided by 1000; (5) Heath insurance (HINS) containing four categories: private

health insurance, free government health insurance due to low income, free gov-
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ernment health insurance because of old age, disability or veteran status, and

Medibank health insurance; (6) Number of illnesses in the previous two weeks

(ILLNESS); (7) Number of days of reduced activity in the past two weeks due to

illness or injury (ACTDAYS); (8)General health questionnaire score using Gold-

berg’s method, with high scores indicating bad health (HSCORE); (9) Chronic

conditions (CHCOND) containing three categories: chronic condition(s) but not

limiting activity, chronic condition(s) limiting activity, and otherwise. For a

detailed description, see Cameron and Trivedi (1998).

Due to overdispersion, negative binomial (NB) models rather than Poisson

models had been used to analyze this count data in several papers (e.g., Cameron

and Trivedi (1986); Cameron, Trivedi, Melne and Piggott (1988)). However,

they only considered fitting the full model by assuming there were no irrelevant

predictors. Because this might not be the case, we considered model selection

among the 29 = 512 NB models where the density of Yi is given by

f(yi|µi, α) =
Γ(yi + α−1)

Γ(yi + 1)Γ(α−1)

( α−1

α−1 + µi

)α−1( µi

α−1 + µi

)yi

,

with mean µi, variance µi + αµ2
i , dispersion α and a log link function that is

noncanonical. If α → 0, this reduces to the Poisson model. For this application,

each categorical variable was either completely included or completely excluded;

we did not consider partial inclusion of the separate categories as is typical in

many other applications with categorical variables (e.g., Section 5.1 of Meyer and

Laud (2002)).

To investigate selection performance of different criteria, we randomly per-

muted the data set and split it into a training set (60%) and a testing set (40%).

Each criterion was applied to the training set to select a “best” model that was

used for prediction in the testing set. To represent the situation where there is

little prior information, CML, FB and FBR were calculated under the default

prior choice, i.e., mγ = (β̄0, 0, . . . , 0)T , a = 1, b = +∞, α = 1, β = 1, where

β̄0 is the MLE of β0 under the null model. We fixed the dispersion parameter α

at its estimated value under the full model.

We repeated the above procedure 100 times and summarized the results in

Table 2. For each count group (grouped by the number of visits) reported in the

table, we define the average predictive loss as L̄i =
∑ni

j=1 (ŷj − yj)2/ni where ni
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is the number of subjects in the ith count group, ŷj is the predicted doctor visits

for the jth subject in the group and yj is the observed count.

Table 2: Results for Doctor Visits Data Based on Negative Binomial GLMs (100 samples)
Avg. predictive loss Avg.

by number of visits model Most frequently selected model

0 1 2 3 4+ size

FBR 0.21 0.79 2.69 5.68 16.81 4.45 SEX, AGESQ, ILLNESS, ACTDAYS, HSCORE

FB 0.22 0.79 2.69 5.68 16.81 4.89 SEX, AGE, ILLNESS, ACTDAYS

CML 0.21 0.79 2.68 5.68 16.80 4.47 SEX, AGE, ILLNESS, ACTDAYS

BIC 0.21 0.77 2.66 5.73 16.85 3.74 SEX, AGESQ, ILLNESS, ACTDAYS

AIC 0.22 0.81 2.73 5.60 16.78 5.79 SEX, AGESQ, HINS, ILLNESS, ACTDAYS, HSCORE

In Table 2, all the criteria indicate that the full model is not the best choice.

They all agree SEX, ILLNESS, ACTDAYS, and one of the two age variables

might be included to describe the relationship, and INCOME and CHCOND

might be excluded. Among all five criteria, AIC prefers larger models while

BIC prefers smaller models, as shown by the average sizes of selected models.

AIC did worst for predicting low counts, and BIC did worst for predicting high

counts, while FBR, FB and CML yield a reasonable compromise between low

and high counts. Among FBR, FB and CML, performance was quite similar

in terms of predictive loss. This is understandable, as we can observe the same

information in Figure 2 for Poisson models with p = 10 and q = 4, and the

NB model, as a simple extension of the Poisson, may be expected to perform

similarly as in the simulation.

Finally, we conducted model selection with the whole data set (n = 5190).

The same model including SEX, AGESQ, ILLNESS, ACTDAYS and HSCORE

was chosen by FBR, FB and CML. The model with SEX, AGE, ILLNESS

and ACTDAYS was chosen by BIC, and the model with SEX, AGESQ, HINS,

ILLNESS, ACTDAYS and HSCORE was chosen by AIC. We observe that for

FBR or AIC, the selected model is the same as the most frequent one in Table

2. This finding, combined with results in Table 2, makes us lean toward using

FBR rather than the others for variable selection here.

9. Discussion

Over twenty years ago, Freedman (1983) argued that classical variable se-
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lection methods were woefully inadequate. In the null case where there is no

relationship between the predictors and response, he showed that such methods

often selected large models with highly significant overall F values. Our simula-

tion results at q = 0 confirm this for the fixed-penalty criteria: AIC works poorly

and seldom selects the null model; with a larger penalty, BIC works better than

AIC for the null case but its performance at large models is then sacrificed. In

contrast, our adaptive penalty criteria can resolve this conflict by performing well

at both small and large models. FBR, which was adaptive in all our simulation

experiments, performed remarkably well, especially at small q, and appears to be

the most promising overall. Therefore, using FBR may achieve better selection

performance, especially in problems where it is suspected that most potential

predictors are irrelevant or where there is no information about the model size.

We would also like to emphasize that our criteria are obtained using the

integrated Laplace approximation. It is often sufficiently accurate for GLM fam-

ilies that satisfy the Laplace regularity conditions (Kass, Tierney and Kadane

(1990)). Nevertheless, this is not to guarantee a good approximation in any par-

ticular instance. For example, it may induce bias for sparse data where p(Y|γ, τ)

no longer peaks around β̂γ (Lai and Shih (2003)), and may not work well for

small sample sizes.

Finally, we should mention an important direction for future investigation.

Selection criteria such as AIC, BIC and ours are devised for the comparison of

all models under consideration. Such enumeration is only feasible when p is not

large (e.g., p < 20). So for the variable selection problems we have considered, it

is simply impossible to compare all 2p models when p is large, especially when the

predictors are not orthogonal. A common approach is to use a version of greedy

stepwise selection to select a manageable subset of models, and then to apply a

selection criterion to that subset. Indeed, this is what we did in our simulations.

Of course, stepwise methods are fallible. It may well be that alternatives search

methods will lead to better results. In particular, Bayesian MCMC methods that

stochastically search for high posterior probability models (see Clyde (1999) and

the references therein) seem particularly well suited for use with our criteria.
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Appendix A. The Order of the Approximation piL (Y|γ, τ)

Let us show that the order of the integrated Laplace approximation piL (Y|γ, τ)

to p (Y|γ, τ) is

p (Y|γ, τ) = piL (Y|γ, τ)(1 + O(n−1)), (A.1)

the same order as the Laplace approximation pL (Y|γ, τ) to p (Y|γ, τ).

To do this, compare the Laplace approximations for

p (Y|γ, τ) =
∫

Rqγ+1
p (Y|βγ , γ)π (βγ |γ, τ) dβγ ,

piL (Y|γ, τ) =
∫

Rqγ+1
piL (Y|βγ , γ)π (βγ |γ, τ) dβγ ,

where log piL (Y|βγ , γ) is the second-order approximation to log p (Y|βγ , γ) by

expanding the latter around β̂γ , as in (4.2). Note that β̂γ maximizes both

log p (Y|βγ , γ) and log piL (Y|βγ , γ), that they are equal at βγ = β̂γ , and that

log p (Y|βγ , γ) and log piL (Y|βγ , γ) have the same Hessian matrix at β̂γ . Hence

p (Y|γ, τ) and piL (Y|γ, τ) have the same Laplace approximation pL (Y|γ, τ).

Therefore, pL (Y|γ, τ) = p (Y|γ, τ)(1+O(n−1)) and pL (Y|γ, τ) = piL (Y|γ, τ)(1+

O(n−1)) from which (A.1) follows.

Appendix B. Calculation of the Restricted Range π(γ|Y)

Let us show (6.10) and (6.11), from which (6.4) and (6.6) follow as special

cases. From (4.7), we have that

π (γ|Y, τ, ω) ∝ L̂γωqγ (1− ω)p−qγk
qγ+1

2 exp
(
−Tγ

2
k

)
(1 + O(n−1)),

where L̂γ and Tγ are given by (4.3) and (4.4), respectively. Thus, under the

conjugate prior (6.7) on k and ω, the restricted range asymptotic posterior is

obtained from

π̃(γ|Y) ∝ L̂γ

∫∫

D
ωqγ+α−1(1− ω)p−qγ+β−1kuγ−1 exp

[
−

(
Tγ

2
+

1
b

)
k

]
dωdk,

(B.1)

where D = {(k, ω) : 2 log[(1 − ω)/ω] − log k ≥ 0} is given in (6.3) and uγ =

(qγ + 2a + 1)/2. D can be decomposed into D1 and D2 as shown in Figure 3. To

evaluate (B.1), we consider separate cases depending on whether Tγ/2 + 1/b is

zero or not.
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ω
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Case 1: Tγ/2 + 1/b > 0.
∫∫

D1

ωqγ+α−1(1− ω)p−qγ+β−1kuγ−1 exp
[
−

(
Tγ

2
+

1
b

)
k

]
dωdk

=
∫ 0.5

0
ωqγ+α−1(1− ω)p−qγ+β−1dω

∫ 1

0
kuγ−1 exp

[
−

(
Tγ

2
+

1
b

)
k

]
dk

=
Γ(qγ + α)Γ(p− qγ + β)

Γ(p + α + β)
B(0.5)Γ(uγ)

(
Tγ

2
+

1
b

)−uγ

G

(
Tγ

2
+

1
b

)
,

∫∫

D2

ωqγ+α−1(1− ω)p−qγ+β−1kuγ−1 exp
[
−

(
Tγ

2
+

1
b

)
k

]
dωdk

=
∫ 1

0.5
ωqγ+α−1(1− ω)p−qγ+β−1dω

∫ ( 1
ω
−1)2

0
kuγ−1 exp

[
−

(
Tγ

2
+

1
b

)
k

]
dk

= Γ(uγ)
(

Tγ

2
+

1
b

)−uγ
∫ 1

0.5
ωqγ+α−1(1− ω)p−qγ+β−1G

((
Tγ

2
+

1
b

)(
1
ω
− 1

)2
)

dω.

Adding these two integrals yields (6.10). The special case (6.4) is obtained when

α = 1, β = 1, a = 1, b = +∞, which yields the uniform priors on k and ω.

Case 2: Tγ/2 + 1/b = 0. Since both Tγ and b are non-negative, this case can

only happen when Tγ = 0 and b = ∞, i.e., mγ = β̂γ .

∫∫

D1

ωqγ+α−1(1− ω)p−qγ+β−1kuγ−1dωdk

=
∫ 0.5

0
ωqγ+α−1(1− ω)p−qγ+β−1dω

∫ 1

0
kuγ−1dk

=
Γ(qγ + α)Γ(p− qγ + β)B(0.5)

Γ(p + α + β)uγ
,
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∫∫

D2

ωqγ+α−1(1− ω)p−qγ+β−1kuγ−1dωdk

=
∫ 1

0.5
ωqγ+α−1(1− ω)p−qγ+β−1dω

∫ ( 1
ω
−1)2

0
kuγ−1dk

=
∫ 1

0.5
ωqγ+α−1(1− ω)p−qγ+β−1 1

uγ

(
1
ω
− 1

)2uγ

dω

=
1
uγ

∫ 1

0.5
ωα−2a−2(1− ω)p+β+2adω.

Adding these two integrals yields (6.11). Again, the special case (6.6) is obtained

when α = 1, β = 1, a = 1, b = +∞, which yields the uniform priors on k and ω.
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