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A study is made of the distribution of (X, Y) for X normally

. . . . 2 L . . .
distributed with mean Ml and variance o the conditional distribution

l}
. . . . 2
of In(Y - &) given X = x is normal with mean u2(x) and variance 95 and

the form of E(Y‘X = x) is known. Properties of the distribution as well

as a discussion of maximum likelihood estimation are given for « = O

kx + ¢ . . . ce o
and E(Y}X = X) = e X for two situations. First, it is assumed that
2 2 . .
ul, 0y and o, are known and k and ¢ are to be estimated; next estimators

are obtained when all five parameters are to be estimated.

2 .
k, ¢, o and ¢ is then

. . . . . 2
Maximum likelihood estimation of By, © X

l)

kx + ¢
e

discussed for the case E(Y|X = x) = + .

Three appendixes include a summary of the lognormal distribution,
numerical results obtained from application of the estimators obtained in

the paper to several sets of data, and a FORTRAN program for estimation

kx + ¢
e

2 2
of Ml; c k, ¢, o and o when E(Y‘X = x) = + o.

1’ 2’
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PREFACE

Both the normal and lognormal distributions are used to describe
a great variety of phenomena. This paper is concerned with the bivariate
distribution of (X, Y) that arises when one variate, say X, is distri-
buted normally, the conditional distribution of the other, for a given
X is lognormal, and the form of the regression E(Y|X = x) is known. Two
forms of the regression curve are investigated here; it is hoped that
this method of approach will prove useful for other regression functions.

I would like to express my gratitude to the faculty members of the
Statistics Department at Southern Methodist University who at all times
have been willing to listen, answer, and argue. My particular thanks go
to Dr. Paul Minton, who has helped me in more ways than I can begin to
acknowledge, and to Dr. Donald B. Owen, my principal advisor whose
knowledge of the literature of statistics and whose knack for encourage-
ment when it is needed most has made the task of writing a dissertation
a pleasant one. Finally, to Mr. W. R. Schucany of the Statistical
Laboratory who wrote and ran all the computer programs used in this
paper, and to Mrs. Martha Wells who has spent many hours typing it, my

deepest thanks.
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CHAPTER I
DERIVATION OF THE BIVARIATE DISTRIBUTION

The following three assumptions are made throughout this paper:
1) The marginal distribution of X is normal with mean Hy and
, 2
variance o, .
2) The conditional distribution of Y given X is lognormal with
2
parameters uz(x) and 02.

3) The form of the regression curve of Y on X is known. 1In

the first three chapters it is of the form:

E(¥[X =x) = Xt C

As an example of these assumptions suppose we consider the random variables
X, intelligence quotient, and Y, income. We observe that for a random
sample, X tends to be normally distributed while, according to Quensel
(1944), for a given value of X, Y may be described by a lognormal
distribution. Further, we believe that within the range of the variables,
the expected value of Y for a given X is of the form:

E(Y]x =x) = ¥

Now, if one variable is easy to obtain while the other is not, the problem
becomes one of using a random sample to estimate the unknown parameters of
the bivariate distribution so that one may make probability statements on

the variable that is difficult to observe for a given value of the variable

that is easily obtainable.



The marginal density function of x is given by
2
(x - ul)
-1/2 ——
£, (x) = —1 e / 2 . (1)

1 o]
‘/2
i ol 1
The conditional density function of y given x is

(lny - p2)2
2 . (2)

9,

1 =1/2
£yl - —2— Y
’ 2m 0,¥

By the properties of the lognormal distribution given in Appendix A

we know that

2
.2
E (Y|Xx = x) = eMf2 7 2 (3)
2
2 o)
var (Y|X = xX) = e2u2+ 92 (é 2. 1) . (4)
Since we require that
Ejx =x) =e*tC (5)
by equating (3) and (5) we obtain
2
2
By = kx + ¢ - > . (6)

The joint density function for X and Y is

£ (x,y) = £, 0 £, |0

1

2 % Y
(x-ul) Iny - (kx + ¢ - ?;)
=g 1 e_l/2 2 + 2 . (7)
ﬂUlozy Gl 02




Contours of constant probability for various values of the parameters

are given in Figures 1 through 6.

At this time it should be noted that if we make the transformation

z = 1ln y, we obtain

2 .2
a.
2
(%~ ) (z - {(kx + ¢ - —Z))
1 -1/2 1 + 2
£652) = 30,0, © 0, : ®
172 1 %
which is a bivariate normal distribution with
2
%
E (X) = Hy E (2) = kul + c - 5 - (9)
The covariance matrix for X and Z is
2
01 ko
E ; = o (10}
2 2 2 2
kol k ol + 02

The coefficient of correlation between X and Z is given by

oL = 1 (11)

Reference to (9) and (10) shows that the marginal distribution

for In Y is normal with
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2
%2
= - == 12
E(ln Y) =kp, +¢ 5 (12)
and
2 2
Var(ln Y) = kzcl + oy o (13)
Thus Y has a lognormal distribution with
2 2 2 2
o] kKo, +0
k + c - —2_ + —-L——z_
E(Y) = e\H™ 2 2
kzci
and
2 2 2 2 2
Var(y) = e2fiy T 2¢+ koy (ek oy T oy _ 1) . (15)

Again, reference to (9) and (10) shows the conditional density

of X given Y = y to be normal with

c2
2 2 2
WOy = Oyk\¢ =5 - Iny
E(X|Y =y) = ) > (16)
k cl + 02
0'20'2
vVE|Y =y) = 5 ; 2 5 (17)
ko, +to
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Product moments may be computed either directly or by use of the
characteristic function which is here derived.,

First, consider the univariate lognormal distribution with

2
Iny - A
£ly) = ——— o 1/2 = ] (18)

\fiﬁ oy

. . . th _— .
It is shown in Appendix A that the r moment about the origin for this

distribution is given by

2 (19)

Heyde (1963) has shown that the moments of the lognormal distri-
bution, even though they all exist, do not characterize the distribution.
However by application of Theorem 2.3.3 in Lukacs (1960) we see that the
characteristic function for the lognoxmal distribution (18) may be

represented by

0
=
)

Py ()

1.22 .
e 279 utn)yd + R_(t) (20)
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where

R (t)=—l,—[ «P(n)(et)—u'in]tn , 0<pB<1 . (21)
n n. n

Now, the joint characteristic function for the distribution (7) is

given by

v (W,v) = E <ei (Xu + Yv))
X,Y

[oe] [s o]

1 eixu + diyv o
‘/ - 0 Yy
217 0'102
2
Iny - (kx + c-%og)
+ dydx
%

2nm o \/ZTT o, ¥
5 2
@ lny—(kx+c—§c52)
f 1 ivy -1/2 dy}dx .
= e e o
Y 2
0

Note that the inner integral is simply the characteristic function for a
univariate lognormal distribution with the A3, 02, and t of (18) being

2
replaced by kx + ¢ - % Oy 03, and v respectively. Therefore (20) may

be written
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n . 92 12.2 .
3 ji,(ej (kx te - _2'> + '2"’23) @) | +rR @ ax (23

1
— e
21 O
V 1 (24)

We may integrate (23) termwise to obtain

pu - L2
YX,Y (u,v) = e "1 2 1l (25)
2
n %9 2 1 2 2
O . s _ 1 s .
+ Z 5]__'_ ejC > (j 3j) + 1le (u ijk) 5 (u ijk) ol (iv)j

. 12 n_ o
s —1 f etH %,— [ ¢ (M) (gy) - kX + = 350,) + 3 21“] v
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b . .
This function may be used to compute E(X?Y ) simply by choosing
n=>b+ 1. This is illustrated below for the computation of E (X Y).

First, write (25) with n = 2

iup, - i u202
Y =
X,Y(u’v) e 1 2 1
. . 1 2 2
+ ec + 1ul(u ik) > (u - ik) Ol iv
2 1 2 2
1 2 . o _ 1 -
_ 5 o c + 02 + 1ul(u 2ik) 2(u Zik) Ol V2
Cy . 12 2
+ 1 [ el'U.X [CP(Z) (6v) + e2 (kx + ¢ 5'02) + 202 V2
24/2m o ®
2
X =
e—l/2 —E_—__ dx
1
QY (u,v) . s .22
X,¥Y - i &S + 1ul(u ik) 2(u ik) oy
ov
2 1 2 2
. = o _ 1 — 23
- e2c + 02 + 1ul(u 2ik) 5 (u ik) cl
2
R S / Jiux e-l/z(———cl ) 2V(q,(z) (6v)
24/2w ol =©

12

2
L 2(kx + o - 305) + 20, >+ 2 3_‘a’(Qp(z) (ev)) ax
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2
0 YX,Y(U’V) . ¢ + ip. {(u - ik) - l(u - ik)2c52
¢ ov ie 1 2 1

2 . : 1
(iul - (u- ik)czl)- v(e[2c+ Op * iuylu =230 =5 e

2.2
- 2'
(u - 2ik) GJ_)(ip,l - (u- 2ik)ci>

2

1 °° i 1/2 i
R S / ixeiUX T / o [ZV (@(2) (6v)

2 4f21 01 J o

12 2 2 5 (2)
- e2 (kx + ¢ 202) + 202>+ v -a—v-<cp (6V)>:,dx

2
Yy
° X,Y(u’v) 4= 0 = e Tkt %kzoi . ko2
du ov - - (l“‘l t1 cl)
v = 0
1.2 2
2 + =
== (u, + kol)ec uk + 3k oy
and
1.2 2
2 _
E(XY) = (u + kol)ec gk ko (26)
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We may now compute the covariances

Cov(X,Y) = E(XY) = E(X)E(Y)

1.2 2
- e© tRuyp T3k 0y (y + koi)

f

1
=k
_ulekp,l+c+2 a

e

1.2 2
2 k + + =k
= ko] e Pl T T2 (27)

The coefficient of correlation between X and Y is then given by

1.2 2
Ly
koi iy T e+ 3k

2 2 22 2
01‘/e2k“1 + 2¢ + k oy (ek 01 * 0 _ 1)

(28)

ko

22 , 2
et %1 7% -1

If we expand

2 2 2 2
ko +o0 2 2 2 1.2 2 2
e 1 2 - = =
1 (k c; + 02) + 2(k oy + 02) +
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we see that

) kdl

XY 2 2 2 1 22 2 2
‘/(k01+02) +2—: (k ol+c52) + ...

so that

|pX,Y| ilpx,ln Y (29)

with equality holding only when k = 0.

Y

2
Figure 7 shows —XY_ a5 a function of kzoi + g, .
X,1n y
koy 2
If p - 1 then ————— ~ 1 which implies g, = 0 and
X,In v 2
2 k2 2 + 2
17 9%
kcl
- = vV, Figure 8 shows v as a function of kg,.
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CHAPTER II
ESTIMATION OF PARAMETERS

Let (x ), (xz, y2), cee, (xn, yn) be a sample of n independent

1’ 1
observations drawn from the bivariate population with density given by
(7). As there are 5 parameters to be estimated there are 25 -1 =31
separate estimation problems, depending on which parameters are known.
This paper will treat only 2 of these cases. It is felt that these
typify the situations most likely to confront the statistician. The
following cases are considered.

1. by s ci 5 cﬁ are known.

2. All five parameters are unknown.

2 2
Case 1. by » O » O, are known.

The likelihood function is given by

. . 2\2
(%, - )2 R W - (k + - SZ
321 i je\1n y; - (xy + e -9

= i
- 1 — o 1/2 02 + 02
n n 1 2
@m ol My,
i=1 (30)
and
n 2 n 2
= d— 2 - — - _ -
in L n ln 277 5 1n oy > In o, in 1] Yy
2
o \2
1 2 1 2
7 Zxymwy) - o IlIny; - kxy - oo+ 8 (31)
201 202

20
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The derivatives of 1ln L with respect to k and c¢ are

2
a.
d ln L 1 2\
S =3 Z(ln Yy kxi c + 2> Xi
a
2
02
3 1n L 1 2
3 - 2 Z(ln Y; kx c + 2) .
%,

Setting these derivatives equal to zero it is easily seen that

Z(xi - x)1n Y,
= " (32)
T(x, - x)
i

R

2
%2
2

(933

1 ~ -
=n21nyi+ kx . (33)

2 2
. . . . L L
Investigation of these solutions by consideration of -§—2, _6__5_ s
2 gk ¢
J L -
and show that they do maximize L,
acak y

We now check these estimators for bias

E(K) = E(E(ﬁ[§)>

T(x, - x)E(Iln ¥_|X)
1 1

Sx, - %)°
bR

E(ﬁ|§) =

Reference to equation (6) shows that

2

o)
2
kxi + cC >

1

E(ln Y, |X)
i 1%
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Thus
2
- - - 5,
r(x, = X)([kx. - kx] + [kx + ¢ - ——J)
i 1 2

S(x, - %)°
1

E(K|x)

(34)

and

E(E(ﬁ]g_)) =k . (35)

Likewise, we show that ¢ is unbiased.

2
O ~
E(C) = E(E[l T 1lnvY, + =2 - kx|X]
n 1 2 -
02 02
1 2 2 -
_E(nZ(kxi+c— 2) + - kx)
02 02
1 2 2
=(nknu,l+c—7+2—kp,
= C (36)

~

To find the variance of k we use the fact that
var (k) = Var(E(}2|x)> + E(Var(k]x)) (37)
Since by (34) E(K|X) = k Var(E(12|§)> =0 .

: 2
We see from (2) that Var (ln Yi|§) = 0, so that
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Var(ﬁlﬁ)
=TT 5 e (38)
(x., - X)
i

Suppose U has a chi-square distribution with Vv degrees of freedom.

Then

v
55— P
1 v 2
U S A > 2p .
v.ovz G~ P2 » V74P (39)
F(E)Z
We note two special cases
1 1
=) = > 2
E(U) N v (40)
1 1
E(—) = o v > 4
(U2) (v = 2) (v - 4) (41)
-2
Z(Xi - X)
Since > has a chi-square distribution with n~1 degrees of
o]

1
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freedom it is readily seen that

2

O2
E(Var(fi\ﬁ)) = —"—"'_'——2— .
(n - 3)(51

Thus from (29)

var (k) = ——— . (42)

We will employ a similar technique for finding the variance of ¢.

Var (¢) = Var(E(é[X)) + E(Var (é[)_(_)) . (43)
From the derivation of (36) we see that since E(8|§) = C
var E(E|x) = 0 . (44)
2
n 1 %9 -
Var(€|X) = Var {= £ ln v, + =— - kx X
— n i 2 —

2 A
= —12— L Var (1n Yilg(_) + % Var (k |X)
n
2x ~
- = Cov(Z In vy, k[x) . (45)
n

From equation (2) we have

2
a
1 2
5 I Var(ny,/x) = = . (46)

n
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From (38)

var (R|x) = ———2— . (47)

To calculate Cov (¥ 1ln Yj?klx) first we note that

Ek © 1n Y, |X)
l_—

2{x, - x)1n Y,
i

= EIZ 1n Y, _ ’x
2(x, - x)
i
1 - 2 -
= ElZ(x, - xX)InY, +Z 2 (x. - x)In Y, 1In Y.|{X}. (48)
- i i . i i jl=
Z(xi - x) i£3
Now, since given X, 1ln Yi has a normal distribution with mean
2
° 2 1,2
kxi + c - > and variance 02 it follows that ) 1n Yi has a noncentral
(e}
2

chi-square distribution with one degree of freedom and noncentrality

parameter

2
A= L kx, + ¢ - SE i
.2 i 2 *

202



Thus

_ %\ 2
= Z(xi—x)<kxi +c——2 .
Further,
E(% S (x, - x)ln Y, 1n Y-IX)
. i i ji=
i#]

2 2
- % 9
=ZZ(x,-—x)<kx.+c——)6<x.+c——-)
C i i 2 3 2
i#3

E[ﬁ(x. - ¥)in’y, + T2 (x, - Hin v, In Y_[x]
i i it9 i i j'=

2
= n(x, -x)(kx. + c ———)
i i 2

i#3

- _ - 02
={ D(x. - %) p(kx, = kx) +kx + ¢ - ——)
1 1 2

02
2
Z(kxi + c - 7)}

2
- 9, %
+ T2 (x. - X kx, + ¢ - =]lkx, + ¢ - =
< o i i 2 J 2

26
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2

_ _ (o}
=k):l(x.-x)2 <1kx+n(c--—2-)) o

i 2

So that by (48)

~ _ C.
E(k Z 1n Yi|§) =k€1kx+n (: —-—;—)) . (49)

We know from (34) and (6) that

Ek|X) =k

E(Z 1n Y, |X)
1%

"’qum
S

Z(«x. +c -
i
nk;< +n<c -

So that Cov(k, ¥ 1n v.|% = 0. (50)

i

NINQM
e’
L ]

Using (46), (47) and (50) in equation (45) we find

0_2 }—(2 0'2
var (8]X) = —1-12— + 2_
Zl(xi - x)

- -2
Now, since x and 'Z(x:.L - xX) are independent

C.
E(Var(€[§)> =0+ 0'2 E(;:.z) E —-—1—_-2— (51)
El(x:.L - X)
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From (40) we know that

- . . 2
Since x is distributed normally with mean by and variance Gl/n
we know
2
91, 2
n

-2
E(x) = g . (52)

Finally from (40), (43), (44), (51) and (52) we see that

E(Var (8\@)

Var(a)

02 02 02
2 2 1 2
=7 + > o + ul o (53)
(n - 3)0
1
To find the covariance between k and 8 we use
cov(k, ¢) = E(kc) - E(R)E(C) (54)

1l
o

2
AN ’\1 C72 A -
E (kc) kKM= 2 1InyY, +— -k x
n i 2

A Oi A AD—
= E(k £ 1n Yi) + ?; E(k) - E(k x)

S -

From (49) we see that

~ _ 9)
E(k £1n Y. |X) = kfn k x +n G:— -2>
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and

Ek ¥ 1n Y.)
1

E(E(ﬁ 1n Yﬂg)
%
k nkp,l + n(: —-2—-)> .

since kK is unbiased, E(k) = k.

With the help of (30) we find

Bk %) = E(;cE(]/? ]5))

E<>_<[Var(}/;|§) + B (1’2[_)9]

I
3]
|
A~
™
"
= Q
N
|
%
N
+
=
\S]
N—

Thus

=TTy . (55)
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If one is interested only in the large sample distribution of k and

¢ he may verify by the usual properties of maximum likelihood estimation

K k
that asymptotically, \ _ has a bivariate normal distribution with mean
c c
and covariance matrix
2 2
% W%
2 n 2
n Ol a
vV = o (56)
2 2
B9 % 2 2
no, no,

The techniques leading to this result may be found in Chapter 18

of Kendall and Stuart (1961).

. 2 . : . .
Since we know by and =i it seems reasonable to investigate estimators

of k and ¢ which involve these known valuesrather than the random variables

- 2 -2
x and s = 1 S(x. = x) which estimate them.
~ ~Z n-—l ~1 ~

From equation (32) we know the maximum likelihood estimator of k

is

Suppose we construct an estimator similar to this, say

- 2 xiln Yy T a kg Z 1n Yy
k = 2 (57)

b
01
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where a and b are constants that may be adjusted to eliminate bias.

- L(x, - ap,) kx, - kayu + kay, + ¢ - >
B®|x) = —— o L (58)

bOl

Xk 2

E(k) = E Z(xi - aul) . (59)

>
b
o

1 2 . . . . .
Now——E-Z(xi - aul) has a noncentral chi-square distribution with n

9

degrees of freedom and noncentrality parameter

L le(l - a)?
)\ . e ————
- > 5 .
%1
Thus
2
S(x, - aw.) W21 - a)?
E = 1 - n+—=
2 = 2
Ol Gl
and
2 2
- K ul(l - a)
E® =7 |n+—7F—]. (60)
%

1l and b = n. Thus

We may eliminate bias if a

- Z(xy =) Iny,
- — .
%1

(61)

var (k) = E (Var(§|§) ) + Var ( E(ﬁlz) ) . (62)
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Var(i|g_(_) = 214 z (xi - p,l) o, *
no
1
2
~ 2
E(Var<k|§)> - =2 B (Z(Xi - “1’)
n g
1
2
_ %
= n 2 L ]
91 (63)

We use (58) to find for a = 1 , b=n

2
2
- k T(x, = u,) +(kp, +c——->2(x.-u)
Var(E(k]§)) var 1 1 > 1 2 = 1

nGl

1 2 2
> 2 [k Var(Z(xi - u,l) )
n oy
oj 2
+ \kpy +C = Var Z(Xi - p.l)

2

o]
+ 2k<cp,l + c - -23) Cov( Z(x:.L - p.l)2 5 '2:l(x:.L - ul)i] .

2 4
Var (Z(xi - ul) > 2nc5l

2
Vaxr (Z(xi - p,l)) = ncl

2 2
Cov Z(xi - ul) P El(xi - ul)) = E (Z(xi - “’1) Zl(xi - “‘1)) -0

i
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E Z(xi - ul)
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2
+ 2 Z ; (x; - By) (xj - W)

1
i#]
=0,
Further,
2
lo} 2
~ 1 2 4 2 2
Var E(k|§) =52 2k nG, + kul + c 5 no,
nag
1
022
2 kp, + ¢ - —=
_ 2k + 1 2 . (64)
n n02
1
Applying equations (63) and (64) to (62) yields
02 2
02 2 k 4+ cC 2
o ot e
var (k) = 2 + 2k + 1 > (65)
no, n noy

Recall from

vVar (]2) =
(n

In order to

better estimator

(42) that
2
)
2 -
- 3)01

A

decide whether, in a given situation, k or k is the

of k let us examine the relative efficiency of X to k.

E~ _ Var (ﬁ)
k to k Var (E)
_ n 1
" n-3 2 (66)
2 2
1+ 2k°0; + 1 fkp +c- 2
2
ol 202
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The above qguantity exceeds unity when

2
5 2 o; 2 302
- — < _
2k oy + k“l + c > - (67)

The quantity on the left will be zero, thus insuring the inequality,

2

02 -~
only if k = 0 and ¢ = - - If this is the case, k is certainly the more
efficient estimator for all finite n. If this is not the case, there will
be some value for n above which the inequality will not hold and ﬁ will be
the better estimator.

Although ¢ and k are not known, it may be possible to place upper

bounds on their values based on previous experience. If this is the case,
one may use (67) as a criterion for choosing an estimator.

2
.

Recall that kul + c - ?§ is the expected value of 1In Y. If, on the
basis of past experience one is able to estimate the upper bound of
E(ln Y) this may be useful in the application of (67) to the choice of
estimators.

Let us investigate the efficiencies of ﬁ and X relative to the Cramer-
Rao minimum variance bound. These quantities may give us more insight into
the proper choice of the estimator of k.

If we compute the Cramer-Rac bound for the variance of t, an unbiased

estimator of k, we find, with the help of (56) that
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We see that the efficiency of k relative to this bound is given by

= . (69)

This estimator is asymptotically efficient.

The efficiency of ¥ relative to the minimum variance bound is given

by
2
%2_
0 2
0]
B 1 (70)
Ek B 2 2k2 2 K + e - 05 2
i S S G | 7
2 2 2
ncl nOl ncl
L 2
= 2
2k202 c
1+ t, L kp, + ¢ - =2
2 2 1
% %2
2
k is efficient only when kX = 0 and ¢ = - If these properties do

not hold, there will be some value of n above which kK will be a better
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estimator of k than k.

To summarize, in a given situation in which k and ¢ are not known,
but k can not be considered zero, i.e. X andy are not independent, we
see from (66) that k is asymptotically relatively more efficient than k
and probably would be chosen. If, on the other hand we have some infor-
mation about k and c, inequality (67) might indicate the use of X for a
particular n.

Let us now consider a similar modification for €, our ML estimator
for c.

Recall that

Since x is an estimator of by we shall investigate

2
G ~o

~ 1 2
c=273 1n v, *t 5 kul . ) (71)

where X is the gquantity discussed in the foregoing section whose formula
is given by (61).

Using equations (13) and (60) we see that

2 O_2
(0]
~ 1 2 2
E(c) = o PN kul + c - ?r + > " kul

= C (72)



~s 2 ~s
var(c) = l; Var (¥ 1n yi) + ul var (k)
n

2“’1 o~
i Cov(k, ¥ 1n yi) .

We know from (13) and (65) that

2 2 2
var (Z 1ln yi) = n(k Gl + 02

2 2 k + c - 0—2 ’
~ 9 2k by 2
var (k) = > + + > .
ng n ncl

We need to find Cov (r]Z, * 1n Yi)

cov(k, ¥ 1n Y,) = EX ¥ 1n v.) = E(E(T 1n ¥,)

E(k ¥ 1n Yi) E<—5 Z(xi - u,l)ln Yi Y 1ln Yi)
nOl

1 2
= 5 E [Z‘.(xi p.l)ln Yi + Z Z (xi th)ln Yiln Yj] -
noy i#]
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~ 1 2 %\ 2
E(k ¥ 1n Yilz) === Z(Xi - ul) 02 + kxi +c - >
noy

2 2
% 9,
+ T (x, - u)lkx, +¢c - — fkx. + ¢ - —
P S 1 i 2 j 2
i#37
1 2
-2 2lx; = wyo,
%1
2 2
% %
+Z(Xi—p,l)kxi+c-—2— kai+c——— o
2
~ %
Ek £ 1nvY,) = kGul+ c--5)01+1).
Thus
2
Cov(k, Z 1ln yi) = k(%ul + c - —5) .
We see that
~ 1.2 2 2
Var (c) = n[k cl + 02] (73)
02 2
2 k +c - =2
)2 9, , 2k Hy 2,
"1 2 n nc2
nol 1
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This is a complicated expression which will be difficult to examine
for efficiency. Recall, however, that since Ky the expected value

for X is known, we may make the transformation

A

Our ¢ or c now estimates the exponent of the regression function at

X = Wy but our transformation allows us to replace My by 0. Thus, let

us work with

O2
~ _']_ 2 A -
:—2 - -
cT a in yi + 5 kz (75)
02
~ 1 2
=5 > 1n Yy + 5. (76)

Note that k is unaffected by the transformation.

Now, by (73)

S|

~ 2 2 2
vVar (cT) = [k Gl + oé] o (77)

We may see from (53) that

=0 + _—_n(n—B) . (78)

~ A
The relative efficiency of cT to cT is given by

2 2
% %
n n{n - 3)
Ec to ¢ 02 k2 2 ° (79)
2 !
—= ¢
n n
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Clearly E& is the more efficient estimator of c when

2 2
k
% S Oy
nin - 3) n
that is
o_2
2 > k2 . (80)
(n - 3)0l

Again we see that if k cannot be considered quite small we
would probably choose g since it is asymptotically relatively more
efficient than ¢,

Let us consider, as was done with k, the individual efficiencies,
The Cramer=-Rao minimum variance bound for t, an unbiased estimator for

q is given by

blnew

Var (t)

%

. (81)

Using this, together with (77) and (78) we may compute the

efficiencies of Cr, and E& relative to this bound, to be, respectively

n -3
By = mo3 (®2)
T
2
G2
LT 22, 2 (83)
1 7 9,

Again, as was the case with estimators of k we would probably be

inclined to use CT’ especially for large n unless some extra knowledge
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concerning k led us to believe that inequality (80) holds for some

particular sample size.

Reference to Appendix B will show a comparison of calculated

value of 8, E’ ST, ET’ k, and X with actual values of these parameters

for data generated from bivariate normal lognormal distributions.



