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Time Series Analysis

Euler�p� q� Processes and Their Application
to Non Stationary Time Series with Time

Varying Frequencies

EUN-HA CHOI1, WAYNE A. WOODWARD2,
AND HENRY L. GRAY2

1Rainbow Technology, Inc., Washington, DC, USA
2The Department of Statistical Science, Southern Methodist University,
Dallas, Texas, USA

We introduce Euler�p� q� processes as an extension of the Euler�p� processes for
purposes of obtaining more parsimonious models for non stationary processes whose
periodic behavior changes approximately linearly in time. The discrete Euler�p� q�
models are a class of multiplicative stationary (M-stationary) processes and basic
properties are derived. The relationship between continuous and discrete mixed
Euler processes is shown. Fundamental to the theory and application of Euler�p� q�
processes is a dual relationship between discrete Euler�p� q� processes and ARMA
processes, which is established. The usefulness of Euler�p� q� processes is examined
by comparing spectral estimation with that obtained by existing methods using both
simulated and real data.

Keywords Continuous and discrete Euler�p� q� processes; Non stationary;
M-stationary; Origin offset; Time deformation.

Mathematics Subject Classification Primary 62M10; Secondary 62M15.

1. Introduction

A variety of natural signals such as “chirps”, Doppler signals, bat echolocations, and
seismic signals are non stationary due to frequency behavior that changes over time.
Gray and Zhang (1988) introduced continuous multiplicative stationary processes
(M-stationary processes) to characterize this type of behavior when frequencies
change like �a+ bt�−1. These processes are non stationary in the sense that the
usual autocovariance of the processes, E��X�t�− ���X�t + ��− ��� depends on time
as well as lag �. However, the multiplicative covariance, E��X�t�− ���X�t��− ���,
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of an M-stationary process depends only on �. That is, a continuous M-stationary
process is stationary under themultiplicative composition law.M-stationary processes
have the same properties as classical stationary processes after a logarithmic
transformation of time. Discrete Euler�p� processes were introduced by Gray et al.
(2005). These authors showed the discrete Euler�p� model to be useful for analyzing
discrete time series data when frequency behavior changes in time like �a+ bt�−1.

In this article, continuous and discrete Euler�p� q� processes are defined
and their properties are developed. We then consider sampling a continuous
Euler�p� q� process at the sample points hk for h > 1 and k = 0�±1�±2 to obtain
a discrete Euler�p� r� process with r ≤ p− 1. Euler�p� q� models are compared with
autoregressive moving average (ARMA) and Euler�p� models on simulated and
actual data.

2. Continuous and Discrete Euler�p� q� Processes

In this section, continuous and discrete Euler�p� q� processes are defined and their
relationship is discussed.

2.1. Continuous Euler�p� q� Processes

Continuous M-stationary processes, as defined by Gray and Zhang (1988), satisfy
the following.

Definition 2.1. �X�t�	 is defined as a continuous weakly M-stationary process for
t ∈ �0��� iff for any t ∈ �0��� and t� ∈ �0���

(i) E�X�t�� = �
(ii) Var�X�t�� < �
(iii) E��X�t�− ���X�t��− ��� = RX���,

where RX��� is referred to as the multiplicative-autocovariance (M-autocovariance)
of X�t�.

We will refer to a weakly M-stationary process as simply an M-stationary
process throughout. Gray and Zhang (1988) showed that M-stationary processes
are stationary processes on the log time scale, which leads to a dual relationship
between M-stationary and classical stationary processes. Gray and Zhang (1988)
also introduced the continuous Euler�p� process. In Definition 2.2 we define the
Euler�p� q� process. Throughout, we make use of the derivatives and their properties
formally. Such results can be rigorously established. See Priestley (1981) for further
discussion.

Definition 2.2. Let t ∈ �0���. A continuous Euler�p� q� process is defined to be the
M-stationary solution of the equation

tp�X�p��t�− ��+ 
1t
p−1

(
X�p−1��t�− �

)+ · · · + 
p�X�t�− ��

= tq�0a
�q��t�+ tq−1�1a

�q−1��t�+ · · · + �qa�t�� (1)

where E�X�t�� = �, the 
i’s and �i’s are constants, and a�t� is M-white noise (see
Gray and Zhang, 1988).
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Euler�p� q� Processes 2247

Continuous Euler�p� q� processes can be considered to be an extension of
continuous Euler�p� processes in the same sense that the ARMA processes are an
extension of the AR processes. In other words, the continuous Euler�p� process is
the special case of the continuous Euler�p� q� process with q = 0. The corresponding
Euler moving average process, i.e., Euler�0� q� can be obtained by setting p = 0.

The following result shows the relationship between an Euler�p� q� process,
X�t�, and its dual process, Y�u�, where u = ln t and Y�ln t� = X�t�.

Theorem 2.1. Let X�t� satisfy the Euler�p� q� model in (1) and let Y�u� = X�t� and
��u� = a�t� for t = eu. Then the dual process of X�t� satisfies

(
Y �p��u�− �

)+ 
∗
1

(
Y �p−1��u�− �

)+ · · · + 
∗
p�Y�u�− ��

= �∗0�
�q��u�+ �∗1�

�q−1��u�+ · · · + �∗q��u�� (2)

where the 
∗’s and �∗’s are constants determined by the 
i’s and �i’s in Eq. (1). That
is, the process Y�u� is a continuous ARMA�p� q� process.

Proof. We first consider a continuous Euler�1� 1� process (with � = 0)

tX′�t�+ 
1X�t� = t�0a
′�t�+ �1a�t�
 (3)

Let t = eu and ��u� = a�eu�. Then

tX′�t� = dX�eu�

du
= dY�u�

du

and

ta′�t� = da�eu�

du
= d��u�

du



So, X�t� in Eq. (3) has the dual process Y�u� satisfying

Y ′�u�+ 
∗
1Y�u� = �∗0�

′�u�+ �∗1��u�� (4)

where 
∗
1 = 
1, �∗0 = �0, and �∗1 = �1. In a similar way, we can extend the dual

relationship to higher-order processes. �

It should be noted that although in this example, 
∗
1 = 
1, �

∗
0 = �0, �

∗
1 = �1, etc.,

this will not be true in general. Note: X�t� will be referred to as an M-stationary
solution if X�eu� = Y�u� is stationary, u ∈ �−����.

2.2. Discrete Mixed Euler Processes

Now we consider the more general logarithmic transformation Y�u� = X�hu� and
��u� = a�hu� for h > 1. That is, t = hu instead of t = eu. Then

dY�u�

du
= t ln hX′�t�
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2248 Choi et al.

and

d��u�

du
= t ln ha′�t�


The 
∗
i ’s and �∗i ’s in the dual model are determined by h as well as the 
i’s and �i’s.

We next introduce the concept of a discrete M-linear process (see Vijverberg,
2002).

Definition 2.3. Let h > 1 and t ∈ S where S = �t � t = hk� k = 0�±1�±2� 
 
 
 	. Then
�X�t�	 is called a discrete M-linear process if for all t = hk ∈ S,

X�t�− � =
�∑
j=0

�jahk−j

where at is white noise.

The discrete Euler�p� q� processes to be discussed here is an extension of the
discrete Euler�p� processes discussed by Gray et al. (2005).

Definition 2.4. Let h > 1 and let S = �t � t = hk� k = 0�±1�±2� 
 
 
 	. Then �X�t�	 is
defined as a discrete M-stationary process if for all t ∈ S,

(i) E�X�t�� = �
(ii) Var�X�t�� < �
(iii) E��X�t�− ���X�t��− ��� = RX���.

Clearly, Var�X�t�� = RX�h
0� = RX�1� from (iii). Gray et al. (2005) consider

the dual process �Yk	 defined by Yk = X�hk�, k = 0�±1� 
 
 
 from which it follows
that the covariance of the dual process, i.e., CY �k�, is given by CY �k� = RX�h

k�.
Consequently, �X�t�	 is discrete M-stationary if and only if �Yk	 is stationary. Gray
et al. (2005) also define the discrete M-spectrum, GX�f

∗�, as

GX�f
∗� =

�∑
k=−�

h−2�if∗kRX�h
k�

where h > 1, �f ∗ ln h� < 1/2, and f ∗ is referred to as the M-frequency, and they point
out that GX�f

∗� = SY �f� where �f � = �f ∗ ln h� and SY �f� is the usual spectrum of the
dual process.

Definition 2.5. Let h > 1 and t ∈ S, where S = �t � t = hk� k = 0�±1�±2� 
 
 
 	. Then
X�t� is a discrete mixed Euler Autoregressive Moving-Average process (Euler�p� q� if

�X�t�− ��− 
1�X�t/h�− ��− · · · − 
p�X�t/h
p�− ��

= �0a�t�− �1a�t/h�− · · · − �qa�t/h
p� (5)

which can be written as

��B��X�hk�− �� = ��B�a�hk��
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Euler�p� q� Processes 2249

where a�t� is M-white noise, h > 1, ��B�, and ��B� have no common factors, and
where �p �= 0 and �q �= 0.

Clearly the discrete Euler�p� q� models contain the discrete Euler�p� process
of Gray et al. (2005) as the special case with q = 0. In the following we assume
without loss of generality that � = 0, and describe the dual relationship between
the Euler�p� q� and ARMA�p� q� models. This relationship produces several useful
properties of the Euler�p� q� process.

Theorem 2.2. If �X�hk�	 satisfies the Euler�p� q� model in (5), then its dual process
Yk = X�hk� is the discrete ARMA�p� q� process �Yk � k = 0�±1� 
 
 
 	 given by

Yk − 
1Yk−1 − · · · − 
pYk−p = �0�k − �1�k−1 − · · · − �q�k−q� (6)

where �k is white noise and, the 
i’s and �i’s are the same coefficients as in (5).

Proof. Let X�hk� = Yk and a�hk� = �k, and the result follows immediately. �

The special case p = 0 is a discrete Euler�p� q� process that has an MA�q�
dual process. The discrete Euler�p� q� processes can be regarded as the resulting
process obtained by observing an underlying continuous Euler�p� q� process at
hk for h > 1 and k = 0� 1� 
 
 
 . The following theorem interprets the relationship
between continuous and discrete Euler�p� q� processes.

Theorem 2.3. Let X�t� be a continuous Euler�p� q� process for t ∈ �0���. When the
continuous Euler�p� q� (q < p� process is sampled at the points hk� for h > 1 and �
sufficiently small, where k = 0� 1� 
 
 
 � n, the resulting process is a realization from a
discrete Euler�p� r� process where r ≤ p− 1.

Proof. Let X�t� be a continuous Euler�p� q� for q < p satisfying

tpX�p��t�+ 
1t
p−1X�p−1��t�+ · · · + 
pX�t�

= tq�0a
�q��t�+ tq−1�1a

�q−1��t�+ · · · + �qa�t�
 (7)

Then according to Theorem 2.1, the dual process Y�u� exists as a solution of

Y �p��u�+ 
∗
1Y

�p−1��u�+ · · · + 
∗
pY�u� = �∗0�

�q��u�+ �∗1�
�q−1��u�+ · · · + �∗q��u��

where the 
∗ and �∗ are constants determined by 
 and �, and where u is a real-
valued constant, Y�u� = X�hu� and ��u� = a�hu�. We sample X�t� at hk� for h > 1
and k = 1� 2� 
 
 
 � n and let Y�k�� = X�hk��. The resulting continuous ARMA�p� q�
process, Y�u�, is then observed at a uniform sampling interval, �, where we assume
that the sampling is sufficiently fast to assure that 1

2� is greater than the highest
frequency in the continuous dual data. Phadke and Wu (1974) show that when
the continuous ARMA�p� q� (where q < p) process Y�u� is observed at a uniform
sampling interval, �, the resulting discrete process is ARMA�p� r�, r ≤ p− 1 in the
sense that the autocovariance function of the resulting discrete process is equal to
that of the discrete ARMA�p� r�, r ≤ p− 1 model with parameters determined by
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2250 Choi et al.

the parameters of the continuous ARMA�p� q� process. Thus, the outcome discrete
process, Yk = Y�k��, is an ARMA�p� r�, r ≤ p− 1 that satisfies

��B�Yk = ��B��k� (8)

where the order of ��B� is p and the order of ��B� is less than or equal to p− 1.
Equation (8) becomes

��B�X�hk�� = ��B�a�hk��� (9)

since X�hk�� = Yk and a�hk�� = �k. Thus, sampling the continuous Euler�p� q� (for
q < p) at hk� for h > 1 and k = 1� 2� 3� 
 
 
 � n, produces a discrete Euler�p� r� process
where r ≤ p− 1 provided h� is sufficiently close to 1. Since hk� = �h��k = hk

1,
in the following we will without loss of generality simply refer to the sampling
increment hk. �

Theorems 2.4–2.6 establish properties of Euler�p� q� processes. The proofs are
similar to that of Theorem 2.3, and are based on standard results for stationary
ARMA processes.

Theorem 2.4. Let �X�hk�	 be a discrete Euler�p� q� process. A necessary and sufficient
condition that �X�hk�	 is M-stationary is that the dual process, Yk = X�hk�, is
stationary.

Clearly, an Euler�0� q� processes, either continuous or discrete, is always
M-stationary. We next introduce the concept of M-invertibility.

Definition 2.6. If an Euler�p� q� process, X�hk�, can be expressed as

�∑
j=0

�j�X�h
k−j�− �� = a�hk�� (10)

where convergence in (10) is in the mean square sense, then X�hk� is said to be
M-invertible.

The condition
∑�

j=0 ��j� < � assures that
∑�

j=0 �jX�h
k−j� is mean square

convergent and thus that X�hk� is invertible. As in the stationary case, M-
invertibility assures that the present events are related with the past in a
sensible manner and produces a unique model for a given set of Euler�p� q�
M-autocorrelations. The following result relates the concepts of invertibility and
M-invertibility.

Theorem 2.5. Let h > 1 and k = 0� 1� 2� 
 
 
 . A process X�hk� is M-invertible if and
only if the dual process Yk is invertible.

Thus an Euler�p� q� process is M-invertible if and only if the dual process is
invertible.
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Euler�p� q� Processes 2251

2.3. Origin Offset and Estimating the Parameters of the Model Fit
to the Dual Data

Since M-stationary processes are not stationary and the correlation function
depends on time, in order to properly model these processes it is necessary to
estimate the location of the initial observation. We refer to this as the origin offset
or the realization offset. With reference to the Euler time scale described by index
set S in Definition 2.4, Gray et al. (2005) denote the origin offset by hj and thus
hj+k, k = 1� 
 
 
 � K are the first K observations in Euler time.

As will usually be the case in practice, the realizations analyzed in Sec. 3 are
all obtained at equally spaced time points, t = 1� 
 
 
 � n, rather than at the Euler
time points. In the examples, we denote the estimated origin offset by �̂ and thus
the sampled values are actually estimated to be at �̂+ t. Implementation details
regarding the estimation of the origin offset and sampling rate h are discussed in
Gray et al. (2005) and Choi (2003).

After the origin offset has been estimated and the equally spaced dual data
set has been obtained, then an ARMA model is fit to the dual data. In our
implementation, we have used AIC (Akaike, 1973, 1974) to identify the orders p
and q, and we use maximum likelihood methods to estimate the ARMA model
parameters.

2.4. Spectral Estimation for Euler�p� q� Processes

The M-spectrum for an Euler�p� q� process is given in Theorem 2.6 which follows.
See Gray et al. (2005) for discussion of the M-spectrum for Euler�p� models.

Theorem 2.6. The M-spectrum of a discrete Euler�p� q� process �X�t�	 is given by

GX�f
∗� = �2

a

���e−2�if∗ ln h��2
���e−2�if∗ ln h��2 � �f ∗� ≤ 1

2 ln h
� (11)

where ��B�= 1−
1B−
2B
2 − · · · −
pB

p and ��B�= 1− �1B− �2B
2 − · · · − �qB

q.
The corresponding M-spectral density is

gX�f
∗� = �2

a���e−2�if∗ ln h��2
�2
X���e−2�if∗ ln h��2 � �f ∗� ≤ 1

2 ln h

 (12)

Proof. Follows at once from Theorem 2.2. �

The M-spectrum is obtained in practice using the relationship GX�f
∗� =

SY �f
∗ ln h� where SY denotes the spectrum of the dual. Thus, the M-spectrum

describes the time-varying frequency behavior in the original series in terms of the
fixed frequencies present in the dual. If, for example, the M-spectrum has a single
sharp peak, then this indicates that the time-varying frequencies in the original data
can be interpreted by means of a single frequency in transformed time. While such a
representation can provide a useful characterization of the frequency behavior in the
original data, the M-frequency, f ∗, does not usually have a physical interpretation.
For this reason, it is useful to convert the information in the M-spectrum to a
format in which frequency has its usual interpretation. Gray et al. (2005) define the
instantaneous spectrum which is a conversion of the M-spectrum into a format that
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2252 Choi et al.

describes the spectral content in the series across time. The instantaneous spectrum
for an Euler�p� q� process is defined as follows.

Definition 2.7. The instantaneous spectrum of an Euler�p� q� process at t = hk is
defined by S�f� hk� hj� = GX�f

∗� where GX�f
∗� is given in (11) and where f ∗ =[

ln
( 1+fhj+k

fhj+k

)]
where hj is the origin offset as defined in Sec. 2.3.

3. Application to Simulated Data

In this section, we consider three examples that illustrate the application of
Euler�p� q� models to simulated data sets generated from M-stationary processes.
For each data set, the best fitted Euler�p� q�, Euler�p�, and classical ARMA models
will be compared. We first consider a realization from a sinusoid-plus-noise model
on a log time scale to examine the usefulness of modeling such data with an
Euler�p� q� model.

Example 3.1. Let X�t� be defined by

X�t� = A cos�2�f ∗ ln�t + ��+ ��+ n�t�� (13)

where n�t� ∼ N�0� �2�, � is uniform �0� 2��, and where A = 15, � = 19, and f ∗ = 3.
Then, X�t� is an M-stationary process with M-frequency f ∗. A realization of length
111 from this process and �2 = 0
01 is shown in Fig. 1(a) where the elongating
behavior can be seen. For this realization an AR(10) model was found to be the best
fitting AR(p) model. Because of the time-varying frequency behavior in the data,
this model will clearly be poor. An Euler(9) model with �̂ = 18 and h = 1
0176 was
found to be the best fitting Euler�p� model, and an Euler�2� 3� model with �̂ = 18
and h = 1
01748 was the optimal Euler�p� q� model. The dual series corresponding
to the Euler�2� 3� fit is shown in Fig. 1(b).

Table 1 shows the irreducible first- and second-order factors associated with the
ARMA�2� 3� model fit to the dual data in Fig. 1(b). This presentation is similar
to that used by Gray et al. (2005). The M-frequency associated with 1− 1
899B +
B2 is 2.9084, which is very close to the M-frequency, f ∗ = 3 of the process from
which the original data were generated. It should also be noted that the M-frequency

Figure 1. (a) A realization generated from (13); (b) the dual data associated with �̂ = 18
and h = 1
01748.
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Euler�p� q� Processes 2253

Table 1
Factor table for ARMA�2� 3� model for the dual data shown in Fig. 1(b)

Absolute reciprocal
of root Frequency M-frequency

AR factors
1− 1
899B + 
9992B2 0.9992 0.0504 2
9084
MA factors
1− 1
692B + 
799B2 0.8940 0.0524 3
0238
1+ 
416B 0.4158 0.5000 28
8534

associated with the second-order MA factor is also very close to f ∗ = 3. This is
consistent with the fact that an ARMA�2� 2� model with near canceling factors can
be used as an approximate model for data of the form

X�t� = A cos�2�ft + ��+ n�t� (14)

where n�t� is random nose and � is uniform �0� 2��. The residuals pass the Ljung
and Box (1978) white noise test. The final fitted Euler�2� 3� model is:

�1− 1
899B + 0
9992B2�Z�hk� = �1− 1
692B + 0
799B2��1+ 0
416B�a�hk�
 (15)

In this example, the Euler�p� q� model is clearly more parsimonious than the
Euler�p� fit. Also in Fig. 2(a) only a single sharp peak at about f ∗ = 2
9 appears in

Figure 2. (a) M-spectrum based on the Euler�2� 3� model; (b) AR(10)-spectrum of the
original data; (c) M-spectrum based on Euler(9) model.
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2254 Choi et al.

Figure 3. Instantaneous spectra (a) based on the Euler�2� 3� model and (b) based on the
Euler(9) model.

the M-spectral density estimator based on the Euler�2� 3� model, while the energy is
spread over a wide band from .03 to .14 in the AR(10) spectrum, shown in Fig. 2(b).
This is typical of spectral estimation results obtained by fitting data of the form
in (14) with an AR�p� model. In Fig. 2(c) we see that the M-spectrum for the
Euler(9) fit has a single sharp peak but also has suggestions of other peaks at higher
frequencies. In Figs. 3(a) and (b) we show the instantaneous spectra associated with
the Euler�2� 3� and Euler(9) fits, respectively. In both cases it can be seen that the
instantaneous frequency decreases from about f = 
14 at the beginning of the series
to less than f = 
05 at the end. As with the M-spectrum, the instantaneous spectrum
associated with the Euler(9) shows the effect of a non parsimonious model with
associated spurious frequency behavior at higher instantaneous frequencies.

Figure 4. The plot of the last 25 steps of series forecast of Euler�2� 3� and AR(16) models,
where (+++) and (o-o-o) indicate the forecasts based on the Euler�2� 3� and AR(16) fits,
respectively.
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Figure 5. (a) realization of length n = 111 from model (16) and (b) dual data associated
with h = 1
01791 and origin offset 19.

Forecasts based on the Euler�2� 3� and AR(10) models are shown in Fig. 4.
The forecasts of the last 25 points using the Euler�2� 3� model are very close to the
actual data but the forecasts using the AR(10) are out of phase and die out more
quickly in Fig. 4. More specifically, the mean square forecast errors (MSFE) for
the last 25 time points of the series is 0.0148 for the Euler�2� 3� model and 0.8093
for the AR(10). Forecasts using the Euler(9) are similar to those obtained using the
Euler�2� 3� model and are not shown here.

Example 3.2. Figure 5(a) shows a realization of length 111 from the series given by

X�t� = A cos
[
2�f ∗

1 ln�t + 19�+ �1
]+ B cos

[
2�f ∗

2 ln�t + 19�+ �2
]+ n�t�� (16)

which has sinusoidal behavior at M-frequencies, f ∗
1 = 9 and f ∗

2 = 3. The Euler�4� 4�
model

�1− 1
895B + 
998B2��1− 1
146B + B2�X�hk�

= �1− 1
088B + 
616B2��1− 1
1742B + 
349B2�a�hk� (17)

is fit to the data with �̂ = 19 and h = 1
01791. The factor table associated with the
Euler�4� 4� is shown in Table 2. The estimated M-frequencies are 2.8899 and 8.6078
which are good estimates of the true M-frequencies, f ∗

1 = 3 and f ∗
2 = 9.

Table 2
Factor table associated with the Euler�4� 4�, where h = 1
01791

Absolute reciprocal
of root Frequency M-frequency

AR factors
1− 1
146B + 
999B2 .9994 .1528 8
6078
1− 1
895B + 
998B2 .9990 .0513 2
8899
MA factors
1− 1
088B + 
616B2 .7850 .1282 1
2510
1− 1
174B + 
349B2 .5909 .0181 
1766
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Figure 6. (a) M-spectral density estimator based on the Euler�4� 4� model; (b) AR(4)-
spectral density; (c) M-spectral density based on Euler(14) model.

The dual process associated with the Euler�4� 4� fit is shown in Fig. 5(b), and it
has the appearance of a process with two cycles that do not change with time. An
AR(4) and an Euler(14) were selected as the best fitting AR and Euler�p� models
fit to the original data. The M-spectrum based on the Euler�4� 4� fit is shown in
Fig. 6(a) where two sharp peaks at about 2.9 and 8.6 appear. However, there is
no prominent peak and the energy spreads over a wide range of frequencies in the
AR(4) spectrum of the original process, shown in Fig. 6(b). The Euler(14) spectrum
is shown in Fig. 6(c) where the two sharp peaks are apparent, but extraneous peaks
appear at higher frequencies. The instantaneous spectra based on the Euler�4� 4�

Figure 7. Instantaneous spectra based on (a) Euler�4� 4� and (b) Euler(14).
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Figure 8. The plot of the last 40 steps of forecasts based on Euler�4� 4� and AR(4) models
where (+++) and (o-o-o) indicate the forecasts based on the Euler�4� 4� and AR(4) fits,
respectively.

and Euler(14) models are shown in Figs. 7(a) and (b), respectively, where the two
instantaneous frequencies are clearly visible, but again the plot associated with the
Euler(14) fit shows the effects of a non parsimonious fit.

The forecasts of the last 40 points based on the Euler�4� 4� and ARMA(6)
models are shown in Fig. 8. There it can be seen that forecasts based on the
Euler�4� 4� are very close to the actual data, while forecasts using the AR(4) model
are out of phase and die out very fast. Again, the forecasts using the Euler(14) model
are similar to those obtained using the Euler�4� 4� and are not shown here.

Example 3.3. A realization of length n = 150 generated from the Euler�2� 2�
process

�1− 1
7234B + 
99B2�X�hk� = �1− 1
37B + 
72B2�a�hk�� (18)

Figure 9. (a) A realization from the Euler�2� 2� in (20); (b) the dual process associated with
Euler�2� 3� fit.
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Table 3
Factor tables associated with Euler�2� 3� models

Absolute reciprocal
of root Frequency M-frequency

AR factors
1− 1
7195B + 
9011B2 .9955 .0841 8
4027
MA factors
1− 1
368B + 
718B2 .8471 .1004 10
0312
1+ 
559B .5594 .5000 49
9563

is shown in Fig. 9(a) where �2
a = 0
03 and � = 40. It can be seen that the data have

a cyclical behavior with periods that elongate. For this realization, an Euler�2� 3�
model with h = 1
010059 and �̂ = 42 is fit to the data. The fitted model is given by

�1− 1
7195B + 
9911B2�X�hk� = �1− 
8088B − 
0477B2 + 
4014B3�a�hk�� (19)

and diagnostic tests indicate a suitable fit. The coefficients and system frequencies
of the Euler�2� 3� model, shown in Table 3, are close to those of the Euler�2� 2� in

Figure 10. Spectral plots associated with the Euler�2� 2� data in Fig. 9(a): (a) M-spectral
density based on the Euler�2� 3� model; (b) spectral density estimator based on the
ARMA�11� 1� model; (c) M-spectral density based on Euler(5) fit.
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Figure 11. Instantaneous spectra for the Euler�2� 2� data in Fig. 9(a): (a) based on
Euler�2� 3�; (b) based on Euler(5) fit.

(18) from which the data were generated. An Euler(5) model is fit to the data when
the dual model is restricted to be an AR�p�. Using standard procedures for fitting
an ARMA�p� q� model to the original data, an ARMA�11� 1� model was selected.

The dual process associated with the Euler�2� 3� fit is shown in Fig. 9(b) where
there are approximately 12 points in each dual cycle which is consistent with
the single peak at f ∗ = 8
4 in the M-spectrum based of the Euler�2� 3� shown in
Fig. 10(a). The spectrum based on the ARMA�11� 1� fit is shown in Fig. 10(b)
and it does not show a distinct peak and indicates periodic behavior over a wide
range of frequencies from 0 to .2. In Fig. 10(c) the M-spectrum associated with
the Euler(5) model fit to the data shows a single dominant peak at about f ∗ = 10
and a very small spurious peak at about f ∗ = 30. In Figs. 11(a) and (b) are shown
the instantaneous spectra for the Euler�2� 3� and Euler(5) fits, respectively. These
instantaneous spectra are quite similar.

4. Application of Euler�p� q� Processes to Real Data

Bat echolocation calls are known to contain frequencies that vary over time. In
this section, we will apply Euler�p� q� processes to a signal of length n = 96 from

Figure 12. (a) The plot of Noctule bat signal of size 96; (b) The dual process of the Noctule
bat signal based on an Euler�2� 2� model.



D
ow

nl
oa

de
d 

By
: [

Sm
u 

C
ul

 S
ci

] A
t: 

15
:5

5 
28

 M
ar

ch
 2

00
7 

2260 Choi et al.

Figure 13. (a) The AR(12)-spectrum of the original Noctule bat signal; (b) The M-spectrum
based on the Euler�2� 2� with h = 1
01121 and origin offset 49.

a Nyctalus noctula (Noctule) bat. The bat calls are taken at 25kHz, and the data
are shown in Fig. 12(a). Using standard procedures, an AR(12) model is fit to the
original data, and the corresponding AR(12) spectral estimate is shown in Fig. 13(a)
where it can be seen that the spectrum is spread over several frequencies none of
which are dominant. This type of spectrum is typical of data with time-varying
frequencies as we have seen in the case of the simulated realizations in the previous
examples. Using the procedure described in this article we fit an Euler�2� 2� model
with �̂ = 49 and h = 1
01121. A dominant cycle of about 5 time units is seen in the
dual process, shown in Fig. 12(b). The factor table is shown in Table 4. As we expect
from the dual process, there is a sharp peak at around 20.46 in the M-spectrum
based on the Euler�2� 2� model.

The instantaneous spectrum associated with the Euler�2� 2� fit is shown in
Fig. 14(a) where it can be seen that the instantaneous frequency decreases from
about f = 
4 at the beginning of the signal to about f = 
15 at the end. In Fig. 14(b)
we show the Wigner–Ville spectrum (see Mecklenbräuker and Hlawatsch, 1997)
which gives similar results except for the fact that the estimates break down at the
beginning and end of the series as is typical of such window-based methods. The
results given here indicate that a logarithmic transformation of time is appropriate
for stationarizing the bat signal.

Table 4
Factor tables associated with Euler�2� 2� models for the

Noctule bat data

Absolute reciprocal
of root Frequency M-frequency

AR factors
1− 
272B + 
983B2 .9916 .2281 20.46
MA factors
1− 
163B + 
252B2 .5022 .2241 20.10
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Figure 14. (a) Instantaneous spectrum for Noctule bat signal in Figs. 12(a) and (b) the
Wigner–Ville plot.

5. Concluding Remarks

In this article we have defined continuous and discrete Euler�p� q� processes and
developed their properties. It is shown that sampling a continuous Euler�p� q�
process at Euler time points, hk for h > 1 and k = 0� 1� 
 
 
 � n, leads to a realization
from a discrete Euler�p� r� process where r ≤ p− 1. We show that the Euler�p� q�
can be used to find parsimonious models in much the same sense that the ARMA
model can provide more parsimonious representations than an AR model in many
cases. In addition, we point out that Jiang et al. (2006) describe time deformation
based on the Box-Cox transformation that includes the logarithmic transformation
considered here as a special case. It is also possible to consider ARMA as well as
AR models for the resulting dual processes in that setting.
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