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Abstract

In this article we implement the minimum density power divergence estimator (MDPDE)
for the shape and scale parameters of the generalized Pareto distribution (GPD). The MDPDE
is indexed by a constant a > 0 that controls the trade-off between robustness and efficiency. As
« increases, robustness increases and efficiency decreases. For a = 0 the MDPDE is equivalent
to the maximum likelihood estimator (MLE). We show that for & > 0 the MDPDE for the
GPD has a bounded influence function. For a < 0.2 the MDPDE maintains good asymptotic
relative efficiencies, usually above 90%. The results from a Monte Carlo study agree with these
asymptotic calculations. The MDPDE is asymptotically normally distributed if the shape pa-
rameter is less than (1 + «)/(2 + «), and estimators for standard errors are readily computed
under this restriction. We compare the MDPDE, MLE, Dupuis’ optimally-biased robust esti-
mator (OBRE), and Peng and Welsh’s Medians estimator for the parameters. The simulations
indicate that the MLE has the highest efficiency under uncontaminated GPDs. However, for
the GPD contaminated with gross errors OBRE and MDPDE are more efficient than the MLE.
For all the simulated models that we studied the Medians estimator had poor performance.
Keywords: Excesses over high thresholds, extreme values, minimum distance, optimally-biased

robust estimator, medians estimator.



1 Introduction

The generalized Pareto distribution (GPD) is an extreme value model widely used for excesses
over high thresholds. The most common estimators for the shape and scale parameters of the
GPD are maximum likelihood, moments, and probability weighted moments. Other estimators
have been proposed motivated by disadvantages of the common estimators, other than their lack
of robustness. Even though the non-robustness of maximum likelihood and probability weighted
moments was pointed out in Davison and Smith (1990), only recently have robustness issues come
into consideration for fitting the GPD. To the best of our knowledge, robust estimation for the
GPD was not addressed until the articles by Dupuis (1998) and by Peng and Welsh (2002). Dupuis
implements Hampel’s optimally-biased robust estimator (OBRE). Peng and Welsh derive estimators
(denoted by Medians here) from equating medians of sample and population score functions. In this
article we implement a general class of minimum-divergence type estimators. The class contains
robust and efficient estimators for the parameters of the GPD.

In extreme value modeling the extremes are the important part of the data, as opposed to other
statistical procedures where extreme observations are removed or their influence downweighted. In
a sample of excesses, the larger extremes may be the most informative observations for estimating
the parameters of the GPD, or other quantities derived from the fit of this distribution. Apparently,
the implication is that the “extreme extremes” should not be downweighted with the use of robust
procedures. However, it is precisely in the “extreme extremes” where contamination by gross
errors most likely will occur. Since procedures such as maximum likelihood or probability weighted
moments are non-robust, a single extreme that is not consistent with the bulk of extremes may
jeopardize the inferences drawn. On the other hand, a robust fit to a sample of excesses would be
relatively insensitive to departures from the model. This is valuable in those real problems where
it is desirable to have a model that fits well for the bulk of the data without being affected by
outlying observations. Clearly, there are situations where a more complex modeling approach has
to be followed, for example using mixture models or changepoint models. Another good reason
for a robust fit for the GPD, is that it automatically takes into account departures from the
postulated model. This is especially good with large data sets where contaminating observations
are almost certain to occur and a detailed diagnostic analysis is not feasible. Even when a detailed
diagnostic analysis is possible, robust procedures are valuable too. They serve as diagnostic tools
for standard techniques, such as maximum likelihood, because they can indirectly help to validate
model assumptions. For instance, if the MLE fit does not differ from a robust fit, then one may be

confident that there are not grossly outlying observations affecting the MLE.



The article is organized as follows. In Section 2 we introduce the MDPDE, some asymptotic
and finite sample properties with technical details relegated to the appendix. In Section 3 we report
the results of a simulation comparing MDPDE, OBRE, Medians, and MLE. In Section 4 we apply
the previous estimators to 100 years of monthly rainfall data. Finally, in Section 5 we conclude by

itemizing the competitiveness of MDPDE with MLE.

2 Minimum Density Power Divergence Estimators

Let X1, ..., X, be arandom sample from the distribution G with density g, and let F = { f(z;0),z €
X : 0 € © C RP} be a parametric family of densities. Assume this family is identifiable in the sense
that the set {x € X' : f(x;61) # f(x;02)} has positive Lebesgue measure if 6; # 6s.

Basu, Harris, Hjort, and Jones (1998), BHHJ henceforth, introduce the density power divergence
(DPD) between the densities f and g as

dato.$) = [ {7@ = (14 1) 0@+ Lo s

«

for positive «, and for a = 0 as

do(g. ) = lim d(g. ) = /X o) loglg()/ £ (x)|da.

For fixed a > 0, the minimum DPD functional T, at G is defined as the point in the parameter

space © corresponding to the element in F closest to g so that

do(g, f(Ta(Q))) = inf da(g, f(50)).

This minimum DPD functional 6y = T,,(G) is the target parameter. BHHJ define the minimum
density power divergence estimator (MDPDE) as the point 0., = T (Gp) € © associated with the
element of F that is closest to the empirical density function g,. Here G, denotes the empirical
distribution function. That is, éam minimizes dy(gn, f) with respect to #. Thus, the MDPDE is

obtained by minimizing with respect to 6
0= [ pee@oa— (141 1y oo (1)
y 9 o n P ) 9

over the parameter space ©. When a = 0, Ty(G,,) maximizes (1/n)> " log f(X;;6), and To(Gr)
is the MLE. When a = 1, T} (G,,) minimizes [, f?(z;0)p(dz) — (2/n) S0, f(X4;0), and T1(Gh) is
the L? estimator. BHHJ show that under certain regularity conditions the MDPDE is a consistent

estimator of Ay and its distribution, properly normalized, is asymptotically normal.



In our case, X1, Xo, ..., X,, is a random sample of excesses from an unknown excess distribution

with density g. The parametric model is given by the GPD family

£1-1
f(x;&ﬁ)—%<l—§%> o € D(E,5),(£,0) €6,

where D(&,3) = [0,00) if £ <0, and D(&,3) = [0,3/€] if € >0, and © = {(£,8) e R? : £ €R, 3 >
0}. Let (€0, 00) be the target parameter. That is, inf (¢ gyco da(g, f) = dalg, f(:;€0, B0)). Thus, for
fixed @ > 0 the MDPDE for the GPD is the value (fa, Ba) that minimizes

n
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over
{(ﬁ,ﬁ) 6@:ﬂ>0,1r£1a<X{Xi}£<ﬁ,—oo<§<0, and 0 < £ < (1+a)/a}.

The restriction maxj<;<,{X;}¢ < (3 is due to the dependence of the support on the parameters.
The restriction £ < (1 + «)/a is needed to assure the existence of the integral in (1). The limiting
case £ = 0 is omitted because it corresponds to the exponential distribution, which is treated in

BHHJ.

2.1 Asymptotic Distribution

Consider the score function and the information matrix of the GPD, S(z;¢,3), and i(x;&, ),

respectively. Their expressions are in Appendix I. Define the symmetric 2 x 2 matrices K, and J,

as follows
Ka€f) = [ S(i6,0)8! € 0)f42 w6 9)de — Ual&, B)UL(E. 9. (2)
D(E,B)
where
| Sewemtiae o)
Ua(€7 ﬁ) = DEp) )
Sp(x; &, B) f*T (2;¢, B)da
D(¢,5)
and

Ju(6.8) = / S(a:6,8)S! (w: €, ) (s €, B da
D(E)
+/ {i(;¢,8) — aS(x;€,8)8 (x:€,8) } [9(x) — f(a; €, B)]f* (2 €, B)da. (3)
)

The asymptotic bivariate normality of the MDPDE for the GPD is established in the following

theorem.



Theorem 1. Let (§o, Bo) be the target parameter in the GPD model. Suppose & < (1+a)/(2+ «)
for a > 0 fized, and that the integrability conditions (8)-(13) in Appendiz I are satisfied. Then
there exists a sequence of MDPD estimators {(éom, Ba,n)} that is consistent for (o, o) as n — oo.

Furthermore

\/E(éoz,n - 507 Ba,n - ﬁO)t ~ N((O, O)ty V(ny BO))y (4)
where V(£07 ﬁU) = Ja_l(g()a ﬁO)Ka(&)a BO)'](;l(gO? 50)

This result is proved in Juarez (2003). Under model conditions, meaning the true distribution g is
GPD, the integrability conditions (8)-(13) are all satisfied and the matrices K, and J, have closed
form expressions (Judrez, 2003). Note that when o — 0 and under model conditions we obtain
the well known restriction {y < 1/2 for which the MLE of the GPD parameters is asymptotically
normal (Smith, 1985). Also note that for any o > 0 the MDPDE slightly enlarges the region of the
parameter space where it is asymptotically normal as compared to the MLE. Furthermore, under
model conditions, the integrability conditions in Appendix I do not imply o < 1/2. In theory for
certain &y, the MDPDE can be implemented for any positive value of «, however, we will only be
interested in small values of « (see next section).

The empirical versions of the matrices K, and J, are

Ral€,8) = =0 S(Xi6A)S'(Xi & )/ (X6,
1=1

n n t
—% {Z S(Xi;é,ﬁ)fa(Xi;&ﬁ)} {Z S(Xi;ﬁ,ﬁ)f“(Xi;&ﬁ)}
i=1 i—1
and

Ju68) = (1+a) /D o SEEDS @B w6, Bl
- / (s €, 8) /(@3 €, B)de
D(¢,8)
o G 6.0) ~ aS(Xi 6 0)5 (X 0} (X556,

Substituting (€4, fa) in these matrices, we obtain n™1J; (€, Ba)Ka(Eas Ba) st (€, Ba) as a con-

sistent estimator of the variance-covariance matrix of the MDPDE for the GPD.

2.2 Influence Function and Efficiency
Under model conditions the influence function of the MDPDE with fixed « for the GPD is given
by

IF(z;0) = J, (€, B)[S(23€, B)f* (23€, B) — Ual(€, B)]. (5)



For £ <0, S¢(x; ¢, 3) and Sg(x; &, B) are continuous on [0, 00) and the density vanishes as & — oo.
Use of ’'Hopital’s rule yields limg .o Se(z; &, 8) f*(x; &, 8) = 0 and lim, .o Sg(x; &, B) f4(; €, 5) =
0. Therefore, the influence function (5) is bounded. For 0 < ¢ < (1+«)/(2+ «) the boundedness of
the influence function follows from the compactness of the support [0, 3/¢]. For £ > (1+a)/(2+ ),
J;1 does not exist, Judrez (2003), and so the influence function does not exist. When f is fixed,
the influence function of £ is

Se(: £, 8) (w36, 9) — / Se(;6,8)f14 (w3 €, f)da

D(&,8)

IFe(z;00) =
/D ( SE(x;€,8) f 1T (a;€, B)da

)

For fixed ¢ the influence function of 3 is

Sp(as€,0) [ (216, ) — / Sp(as€,0) (s €, B)da
IFs(z; o) = D&.A)

: (7)
/D( SH(a; &, B) 1 (€, B)da

In Figures 1 and 2 we see the unboundedness of the influence function of the MLE (the solid line).
In particular, when the scale (shape) parameter is fixed, arbitrarily increasing a single observation
would make the MLE of the shape (scale) parameter decrease (increase) with no lower (upper)
bound. Also, the influence function of the MDPDE approaches a horizontal asymptote more slowly

as « gets closer to zero.

0
n
[
ol Y
10 ]
c
K]
g ST -
=
S5 O
2 9]
o |
o
c
[
=
£ 3]
! — alpha=0
"""" alpha=.1
alpha=.2
o —— alpha=1
S
[Te}
&
0 10 20 30

Figure 1: Influence functions for MDPDE of the shape parameter (6) for four values of a. The
model is GPD(¢ = —.1,3 = 1). The solid line is the influence function of the MLE.



influence function

Figure 2: Influence functions for MDPDE of the scale parameter (7) for four values of «. The

model is GPD(¢ = —.25,3 = 1). The solid line is the influence function of the MLE.

Table 1 displays some values of the ARE of the MDPDE with respect to the MLE for estimation
of the shape parameter £ with 3 = 1. These AREs are calculated from the 1-1 element of V (&g, 5o)
in (4) and the asymptotic variance, (1 — &y)?, of the MLE of £&. We see that the MDPDE has high
relative efficiency for small values of a. However, for larger values of « the efficiency decreases to
unacceptable levels. We also see that as the tail of the GPD gets heavier ({ decreases) the ARE

tends to decrease. Values of the tuning constant « close to zero retain a reasonable level of the

ARE.

Table 1: Asymptotic relative efficiencies of the MDPDE of the shape parameter for different values

VYD
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10

30

40
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of a with respect to the MLE for scale parameter § = 1 and six choices of the shape &.

¢l .05

2

3

A4

5

.6

7

.8

9

0.45 | 0.97
0.10 | 0.98
—0.10 | 0.98
—0.25 | 0.98
—0.50 | 0.97
—1.00 | 0.96

0.92
0.93
0.92
0.92
0.90
0.86

0.79
0.79
0.77
0.75
0.71
0.65

0.67
0.64
0.61
0.58
0.54
0.48

0.56
0.51
0.48
0.45
0.42
0.37

0.46
0.41
0.37
0.35
0.33
0.30

0.39
0.33
0.30
0.29
0.27
0.26

0.32
0.27
0.25
0.24
0.23
0.22

0.27
0.22
0.21
0.20
0.20
0.19

0.22
0.19
0.18
0.18
0.18
0.17

0.19
0.16
0.16
0.16
0.16
0.15




2.3 The Effect of o in Finite Samples

We conducted a simulation experiment to investigate the effect of @ under model conditions. For
each pair (n, &), where n € {50,100, 200,400} and ¢ € {—1,—.5,—.25,.25,.45}, we generated 500
samples of size n from the GPD(&, 5 = 1). Without loss of generality we fixed the parameter 5 = 1,
because both the MLE and the MDPDE are equivariant under scale changes. For each value of o
in {0, .02, .04, .05, .06, .08, .1, .2, .3, 4, .5, .6, .7, .8, .9, 1} we evaluated the MDPDE (4.1, Ban)
and computed their empirical variances, biases, and MSEs.

Table 2 reports the values of a yielding the smallest estimated MSEs for £ and for 3. The
interesting feature is that small values of « (in general o < 0.2) give empirical MSEs close to the
empirical MSEs of MLE. However, this may not be surprising since under model conditions, the
MLE is asymptotically efficient. We observed that the estimated MSEs increased drastically and
the non-convergence rate of the MDPDE increased as the value of « gets closer to 1. There is good

agreement among these minimizers for moderate to large n.

Table 2: The pairs (a1, ag) are the values of a; and «ay yielding the smallest Monte Carlo MSEs

for £ and (3, respectively.

3
n -1 —05 —0.25 025  0.45
50 (0,02) (0,.1) (0,.2)  (2,.5) (.2,.5)
100 (0,.04) (0,.1)  (0,0) 0,0)  (2,.3)
200 (0,04) (0,.04) (0,0)  (.08,0) (.08,.1)
400 (0,0) (.02,0) (0,0) (.06,.08) (.1,2)

3 Comparison to Other Estimators

To compare the performance of MLE, OBRE, Medians and MDPDE, we generated samples from
the mixture contaminated model (1 — €)GPD(p, By) + eGPD(&1, 1), € € {0,.1,.2}. This model
is denoted by (&, b0, €,&1,31). From each mixture model we generated 500 samples of size 100
and evaluated the four estimators. For the OBRE we used Dupuis’ (1998) iterative algorithm
with robustness constant ¢ = 4. The S-Plus routines for computing the estimators are available
at http://www.smu.edu/statistics/faculty/SPlusFilesSergio.pdf. Based on Tables 1 and

2, we decided to use a fixed & = 0.1. We used several of the parameter values from Peng and



Welsh (2002). Table 3 presents the models in our simulations together with the frequency of failure
to converge of each estimator. We see that Medians and OBRE had a very high non-convergence
rate when £y = 1/3. Thus, to avoid selection bias, we did not include Medians and OBRE in the

comparisons in Table 4 when &, = 1/3.

Table 3: Number of samples, out of 500, where there was no convergence. The models marked with

* were also considered by Peng and Welsh (2002).

(&0 Bo, €, €1, B1) MLE MDPDE Medians OBRE
(—1,1,x,x,x) * 0 0 7 28
(=1,1,0.1,-2,1) * 0 0 9 25
(=1,1,0.1,—-1,2) * 0 0 6 24
(-1,1,0.2,—2,1) 0 0 0 18
(-1,1,0.2,—1,2) 0 0 0 10
(—1/4,1,0.1,-2,1) 6 6 52 30
(1/3,1, x,x,x) * 0 0 187 307
(1/3,1,0.1,2/3,1) * 0 0 196 274

As an empirical measure of relative efficiency, in Table 4 we display the estimated relative mean
square errors (MSE) of the robust estimators with respect to the MLE. When the ratio is less
than one, the MLE has smaller MSE by that factor. In parentheses are estimates of the standard
errors of these ratios (see Appendix II for details of the computation of these standard errors). The
magnitudes of these standard errors indicate that 500 Monte Carlo repetitions estimate the true
ratios of MSEs with adequate precision.

For &g = —1 with no contamination, the MLE is the best for £ but tied for 3. MLE is better than
the other estimators for £ under contamination with 10% from a GPD with & = —2. However, for
estimation of 3 both the MDPDE and the OBRE perform slightly better than MLE. The MLE of £
is also better than the other estimators under 10% contamination from a GPD with 8; = 2. When
we increased the amount of contamination from 10% to 20%, MDPDE and OBRE slightly improved
their performance. Medians had a poor performance in all the models with g = —1. In these cases
OBRE performs slightly better than MDPDE. When & = —1/4 and 10% of contamination with
& = —2, MLE was very badly affected. For estimation of £, MDPDE and OBRE halved their
empirical MSE’s with respect to the empirical MSE of the MLE (ratios > 2). Once again, Medians
had a poor performance. When & = 1/3, MDPDE had a slightly better performance than MLE.



Table 4: Estimated relative MSE of the robust estimation procedures with respect to the MLE. In
parentheses are the estimated standard errors of these empirical relative MSEs. Information not

available in the empty cells.

(&0, Bos €, €1, B1) Parameter | MDPDE | Medians | OBRE
(=1,1, x, X, x) ¢ 0.84 (.03) | 0.21 (.03) | 0.87 (.03)
3 0.98 (.02) | 0.60 (.03) | 0.99 (.02)
(=1,1,0.1,—-2,1) ¢ 0.99 (.04) | 0.35 (.03) | 0.99 (.03)
3 1.02 (.02) | 0.68 (.05) | 1.02 (.01)
(—1,1,0.1,—1,2) ¢ 0.87 (.03) | 0.25 (.03) | 0.93 (.01)
3 1.03 (.02) | 0.70 (.02) | 1.07 (.05)
(-1,1,0.2,-2,1) ¢ 1.11 (.04) | 0.55 (.04) | 1.11 (.04)
3 0.99 (.02) | 0.65 (.02) | 1.02 (.02)
(-1,1,0.2,—1,2) ¢ 0.86 (.03) | 0.25 (.02) | 0.84 (.03)
3 1.02 (.02) | 0.71 (.04) | 1.02 (.03)
(—1/4,1,0.1,—2,1) ¢ 2.12 (.08) | 0.07 (.01) | 2.60 (.03)
3 1.23 (.04) | 0.81 (.06) | 1.21 (.05)
(1/3,1, x, x, x) ¢ 1.05 (.02)
3 1.05 (.01)
(1/3,1,.1,2/3,1) ¢ 1.02 (.02)
8 1.01 (.01)

The high rate of non-convergence observed in our Medians and OBRE runs is troublesome. Peng
and Welsh also considered very short tail scenarios (§o = 2,4). In pilot Monte Carlo runs we
observed high rates of non-convergence for all the estimators when & = 2,4. That Peng and
Welsh do not report convergence problems is puzzling. The non-convergence of the MLE for the
GPD when £ > 1 is well documented in the literature; see for instance Hosking and Wallis (1987).
While other authors may find ways to finesse the convergence problems that we encountered with
Medians, we find the resulting estimates to be unacceptably erratic.

To get a better understanding of the sampling distributions of the MDPDE and MLE, we ran
a larger more focused simulation experiment. For each of two models without contamination and
two contaminated, (—1/4,1, x, x, x), (=2,1, x, x, x), (=1/4,1,.1,—1,1) and (—1/4,1,0.1, -2, 1),
we generated 20,000 samples of size 100 and evaluated the MLE and the MDPDE.

10



Figure 3 displays nonparametric density estimates of the sampling distributions of the MLE and
MDPDE of £ and scatterplots of the pairs. From these graphs we see that under model conditions,
the empirical sampling distribution of the MDPDE of ¢ has a heavier lower tail than the MLE.
Contamination with the heavier tails (§; = —1 and & = —2) affects the MLE, causing a heavy
tail to the left of the true value of the shape £ = —1/4. This tail is heavier than the tail of the
sampling distribution of the MDPDE. In the scatterplots we see that under model conditions MLE
tends to be closer to the true value of £ than the MDPDE. However, for the contaminated models
the MDPDE is consistently closer to the true value {x = —1/4 than the MLE. For estimation
of # and under model conditions (we omit the plots for 3), MLE and MDPDE had very similar
empirical sampling distributions. Contamination of the shape with & = —1 had no major effect
on the estimation of 3. However, the more severe contamination with & = —2 affected the MLE
and not the MDPDE. The MDPDE was consistently closer to the true value 8y = 1 when the
contamination was with & = —2, and it was slightly closer than MLE under contamination with
& = —1. We examined Pitman closeness as well as MSE. The comparisons yield the same general

conclusions as from Table 4.
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Figure 3: Empirical sampling distributions of the MDPDE (dotted line) and the MLE (solid line)
of £ based on 20,000 Monte Carlo samples of size 100 for each model. Scatterplots of MLE ver-
sus MDPDE, the line plotted is y = z. First and second rows: Left, (—2,1, x, x, X); right,
(=1/4,1, x, x, x). Third and fourth rows: Left, (-=1/4,1,0.1,—1,1); right, (—-1/4,1,0.1,-2, —1).
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4 Example

Figure 4 displays the monthly accumulated rainfall in Xalapa, Ver., México, from 1904 to 2003. To
see the differences between the estimators with a particular data set, we fit the GPD to the monthly

rainfall excesses over 300 mm, see Table 6 in Appendix III. The resulting fits are presented in Table
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Figure 4: Monthly accumulated rainfall in Xalapa, Veracruz, México. Source: National Commission

of Water, Management of the Center Gulf Region.

5. We see that all four estimators agree with a finite right end point for the excess distribution of
rainfall. MLE and MDPDE with a = 0.1 are in close agreement. OBRE produces a shape estimate
that gives the largest right end point at 3338. Conversely, the Medians shape estimate is such that
the estimated right end point is the smallest. In other words, OBRE has estimated the GPD with
largest tail while Medians produced the GPD with the shortest tail. Both MLE and MDPDE yield
similar GPDs.

Table 5: Estimated parameters.

MDPDE MLE OBRE Medians

¢ 0.102 0.107 0.0286 0.156
3 101.8 101.8  95.49 95.59
B/ 998 951 3338 612
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5 Concluding Remarks

Maximum likelihood has been the preferred estimation procedure used for the GPD, and in extreme
value analysis in general. Some of the arguments favoring maximum likelihood offered by the advo-
cates are that: (1) These procedures can be generalized without major changes to more complicated
data structures in which trends, covariates, or multivariate extremes can be included. (2) MLEs
have convenient large-sample properties such as asymptotic efficiency and asymptotic normality.
(3) It is relatively straightforward to produce standard errors using the likelihood function. In this
article we have seen that the MDPDE has characteristics (2) and (3) plus the additional feature of
robustness against gross errors. Furthermore, the MDPDE also has property (1), a general proce-
dure that may be applied to problems involving complex structures in the data.

For example, suppose one wants to fit the GPD(&;, 3;) to the excesses X;; of year ¢, i =1,...,ny,
t=1,...,T. Suppose one wants to include a yearly linear trend in the log-scale of the scale pa-
rameter and keep the shape parameter fixed. The MDPDE for this situation would be obtained by
setting £(t) = € and [(t) = exp(vo + 71t) in equation (2). More specifically, the MDPDE would be

obtained by minimizing

3

T
1 1
H. (&, v, = —
(€70:m) ; ne {exp(70 + 1t)}*(1 + a — af)
L1 (€ -1a
1 1 1 X;
_ ]_ _|_ _ _ 1 o ’
< 04) ; ny ; {exp(y0 + 711t)} ( §exp(% + rylt)>

over the parameter space

{(5,70,71) €R3:n0,71 €R, max {Xi}¢ <exp(yo+mt),—c0 <E<(1+a) /o, § # 0} :
SNt

The relatively straightforward implementation of the MDPDE using S-Plus, the convergence
problems of the OBRE with short tail data, and the poor performance of the Medians estimator,
recommend the MDPDE for the GPD in practical situations. As the rainfall example suggests, when
the MLE is reasonable the MDPDE can agree with it well. Our final conclusion is that MDPD
estimation for the GPD offers a feasible and reliable robust alternative to maximum likelihood

estimation.
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Appendix I: Integrability Conditions

The components of the score function and the information matrix,

Se(z; &, ie (2 €, ien(: €,
swes=| U0 i ) = .5( £:8) fﬁ( §.0)
53¢, 6) iep(w;€,8)  ip(x;€, )

of the GPD, are given by the usual partial derivatives of log f(x;&, 3), namely

Se(wse,p) = 8%10g f(z:6.8)

T 1/1 2\ !

- g1 %)*z(z‘l){l‘(“%) }

0 1 1/1 z\ !

Sg(x:€,0) = a—ﬂlogf(wﬁﬁ) §_ﬂ+5(g_1> (1—§E> ;
ig(x;€,8) = —%bgf(ﬂ«“;f,ﬁ)

_ o), 3-¢ 22-9 ( 2\
= 531°g< 5ﬁ>+ RS (1 55)

§ —2
tet(ieg)

92 -2
ia(@i6.0) = —pmlorfwe ) =g+ (-1) (1-65)
82
igg(v:€,8) = *awﬁlogf(x;é*,ﬁ)

__1 2 ¢ _5115(_§>2
= et e (1 55) e \'7%5) -

Let [0,2*], 0 < 2™ < 00, be the support of the unknown true excess density g. The consistency and

asymptotic normality of the MDPDE of the GPD follow from the integrability conditions:

/ " ek folo)de < oo, (®)

/0 S2(w; o0, o) 22 (w360, fo)g(@)de < oo, (9)
5 S0, o) s o, o)gla)ds < o, (10)

/0 e s 0, o) £ (s o, Bo)lg(@)de < oo, (1)
/Ox iz €0, 60) 122 (2 €0, Bo)lg(@)dz < oo, (12
/ " ligalas 0, B0) P2 (60, Bo)lg(adde < oo, (13)
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Appendix II: Variance of the Ratio of two Empirical MSEs

Suppose 6 and 0 are estimators of 6. Furthermore, suppose one has IV independent random samples
and computes 6; and 6; from each sample, i = 1,..., N. According to equation (10.17) in Stuart

and Ord (1994) page 351, the variance of the ratio of the empirical mean squared errors of 6 and

0 is

+Var[MSE(0~)] _ 2E[MSE(d)MSE(f

_ J EMSE(9)] Var[MSE(0)] MSE(6)
E?[MSE(A)]  E[MSE()]E[MSE(d

2
~ P =~ +25.(14
{E[MSE(G)] } { E?[MSE(0)] )] } (14
A straightforward calculation shows that E[MSE(§)] = E62 — 20E6 + 62, Var[MSE(0)] = Var[(§ —
0)2]/N, and E[MSE(A)MSE(6)] = E[(§—0)2(0—0)2]/N +(N —1)E[(§—0)2]E[(§—6)%]/N. Analogous
expressions are obtained for E[MSE(6)] and Var[MSE(#)]. So, if  is known we have the following

Var

MSE(6)
MSE(0)

estimators

Again, analogous expressions for E[MSE(6)] and Var[MSE(6)] follow. When these estimated quan-
tities are plugged into (14), we obtain an estimator of the variance of the ratio of the empirical

mean squared errors of 6 and 6.
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Appendix III: Rainfall Data

The following table displays the monthly accumulated rainfall excesses over 300 mm observed in

Xalapa, Ver, México, from 1904 to 2003. The month and the year when the excess occurred is also

included.

Table 6: Monthly accumulated rainfall excesses over 300 mm.

10/1904/4.2
05/1911/42.9
06/1915/287.9
06/1920/52.7
06/1925/95.6
09/1928/1.2
09/1933/13.3
09/1944/298.3
06/1956/22.8
09/1960/38.7
09/1969/57.4
09/1974/262.5
08/1979/41.9
09/1990/19.8
07/1998/33.9
08/2001/18.7

06/1905/129.3
06/1912/32.2
07/1916/8.3
09/1921/36.8
09/1925/22.7
06/1929/86.8
06/1935/92.6
06/1952/392.8
06/1958/34.1
07/1961/112.9
09/1970/99.5
09/1975/160.6
06/1980/25.3
06/1991/95.0
09/1998/119.8
06/2002/32.5

08/1906/46.3
09/1912/107.9
09/1916/145.5
06/1922/34.1
06/1926/124.5
09/1929/32.0
07/1936/103.8
09/1952/17.0
07/1958/63.0
07/1962/3.6
06/1971/53.1
06/1976/82.2
06/1981/105.9
06/1993/189.4
06/1999/43.1
09/2002/68.6

06/1907/47.1
06/1913/73.3
06/1917/52.7
06/1923/63.0
09/1926/328.8
07/1931/17.8
09/1941/146.7
06/1954/100.2
09/1958/28.0
06/1965/100.6
06/1972/74.7
06/1977/17.0
07/1983/32.1
09/1994/1.3
07/1999/45.4

08/1909/62.8
09/1913/181.9
09/1918/36.8
06/1924/19.8
06/1927/238.7
09/1931/110.3
08/1942/ 30.0
07/1955/296.7
06/1959/338.3
06/1966/48.8
07/1972/186.1
09/1978/56.9
09/1984/36.0
08/1995/146.1
06/2000,/122.2

09/1910/39.7
04/1914/19.9
06/1919/34.1
09/1924/22.2
07/1928/128.5
08/1933/192.3
09/1942/188.5
09/1955/87.2
07/1960/66.1
08/1969/196.9
06/1973/155.7
07/1979/29.5
06/1985/60.8
10/1997/82.4
08/2000/209.6
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