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ABSTRACT

We consider the problem of multivariate outlier testing from a population from

which a training sample is available.We assume that a new observation is obtained, and

we test whether the new observation is from the population of the training sample.

Problems of this sort arise in a number of applications including nuclear monitoring,

biometrics (including fingerprint and handwriting identification), and medical diagnosis. In

many cases it is reasonable to model the population of the training sample using a mixture-

of-normals model (e.g. when the observations come ftom a variety of sources or the data

are substantially non-normal). In this paper we consider a modified likelihood ratio test
/

that is applicable to the case in which: (a) the training data follow a mixture-of-normals

distnoution, (b) all labels in the training sample are missing, (c) some of the observation

vectors in the training sample have missing information, and (d) the number of

components in the mixture is unknown.

The approach often used in practice to handle the fact that some of the data

vectors have missing observations is to perform the test based only on the data vectors

with full data. When large amounts of data are missing, use of this strategy may lead to

loss of valuable informatio~ especially in the case of small trajning samples which, for

example, is often the case in the nuclear monitoring setting mentioned previously. An

alternative procedure is to incorporate all n of the data vectors using the EM algorithm to

handle the missing data. We use simulations and examples to compare the use of the EM

algorithm on the entire data set with the use of only the complete data vectors.
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1. Introduction

We consider the problem of testing a new data value to determine whether it

should be considered an outlier from a distribution for which we have a training sample,

i.e. "outlier testing." Fis~ Gray, and McCartor (1996) and Taylor and Hartse (1997)

have used a likehl1ood ratio test for detecting outliers ftom a multivariate normal (MVN)

distn"bution fit to the training data when no data were missing. These authors applied the

test to the problem of detecting seismic signals of underground nuclear explosions when a

training sample of non-nuclear seismic events is available.

Our focus in this paper will be the case in which the training data are modeled as a

mi:xture of normals. A mixture model is an obvious choice for a wide variety of settings.

For example, in the seismic setting discussed above, the population of non-nuclear

observations in a particular region may consist of observations from a variety of sources

such as earthquakes and mming explosions, and ~ring types of earthquakes.

Additionally, in the area of~cal diagnosis, benign tumors may be ofseveral types, etc.

The flexibility of the mixture-of-normals model also makes it useful for modeling non-

The training data will benom1aJity even ifdisting uishable components are not present.

considered a sample of size n ftom a mixture distn"bution whose density is given by

m
j(z) = E~ji(Zj Pi, Ei)

i=1
i)

where m is the number of components in the mixture, fi(Z; J.J.i, Ei) is the MVN density

with mean vector /.I, and covariance matri:x E, associated with the ith component, the Ai'

1, . , m are the mixing proportions, and :z; is a d..djmen..~Qna1 vector of variables.

Letting the training sample be denoted by Xl, ..., Xn and the new observation

(whose distribution is unknown) by Xu, then we wish to test the hypotheses
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Ho : Xu E n

Hl: x.~n

where n denotes the population of the training data.

We consider the case in which data may be missing in the training data. In the case

of a mixture model, there are at least three different ways in which "data" may be missing:

(a) missing labels

(b) unknown number of components

( c) missing data in the data vectors

A "tabel" is said to be known for a given observation if it is known to which component in

the mixture that observation belongs.Wang, W~ard, Gray, Wiechecki, and Sain

1997) developed a modified likelihood ratio test for the case in which some but not all of

the labels may be missmg. The authors assumed that the number of componen~ m, is

known and that there is no missing data in the data vectors. The likehl1ood fimction under

Ho (i.e. under the assumption that Xu E Ho) is denoted by Lo( 9) where 9 is an unknown

vector-valued parameter associated with the distrIbution of X under Bo. Likewise, let
'"'"' n
L 1(8) = I1f(Xs;8) denote the likelihood based only on the training sample Xl, ...,Xn.

8=1

Wang, et a1. (1997) and Sain, Gray, Woodward, and Fisk (1999) used the modified

likel1l1ood-ratio test statistic

(2)
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The usual likelihood ratio involves a second factor in the denominator, h(:cu), where h(z)

is the density function of the outlier population and Xu denotes a single observation

available from that popuJation. However, ~~1Jg h(x) is very difficult with only one

observation available and when a priori information is not available concerning the outlier

distnoution. Thus, it makes sense to estimate h(x) nonparametrically. Moreover, given

any of the potential nonparametric density estimators of h(z) in the case of only one data

point, the factor h(xu) will not vary with (J in the maximization process nor will h(:cu)

vary as Xu varies from sample to sample. Consider, for example, a histogram estimator of

h (z ). With a single data value, such an estimator would be a constant regardless of the

value 0 f :1:. Thus, for simplicity we use W in (2).

It is easily seen m (2) that if Xu does not belong to ll, then W will tend to be

small. Eence the rejection region is of the form W ~ W Q for some W Q picked to provide

a level a test. Since the null distn"bution ofW has no known closed form, Wang, et at.

(1997) used a bootstrap procedure (see Efron ~ibshirani, 1993) to derive the critical

value Wa. Whenever some of the training data are un1abel~ the parameters~, JJ.i., and

Ei of the mixture model are estimated yja the Expectation-M~~tiQn (EM) algorithm

(see Dempster, Laird, and Rubin, 1977, Mclachlan and Krishnan, 1997, and Redner and

Walker, 1984). Based on simulations, Wang, et al (1997) showed that in this setting, the

modified likelihood ratio test can be used successfully for outlier detection.

Sain, et at (1999) extend the results of Wang, et at (1997) to the case in which no

data are labeled and in which the number of components in the mixture is unknown.; They

demonstrated their resuhs using simulations similar to those of Wang, et a1. (1997) and

showed little or no loss of power when no training data are labeled. S~ et aI. (1999)

obtained excellent results using their procedme on actual seismic data from the VogtJand

region near the Czech-German border and from the WMQ station m western China.

Using the China data, the authors de~nstrated that a mixture model may be preferable to

the use of a single multivariate normal model due to apparent non-normality of the data
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even when there are not any identifiable groups of observation types represented in the

training data.

In this paper we consider the case in which some of the variables may be missing

for some observations in the training sample. For example, in the seismic setting

log(Pg/Lg) ratios at higher frequency bands are often missing because of attenuation

effects on high frequencies. We consider the case in which d variables are observed on the

new observation, and we denote this observation by Xu = (Xu!, Xu2, ..., Xud)', where

Xu; denotes variable j observed on the new observation. We further ass~ that there

exists a training sample

Xl = (XII, X12, X13, ..., Xld)'

X2 = (X21' X22, X23:

~' 1

"«

Xn = (Xnl' Xn2, Xn8,

ftom ll. When SOIM of the training data includes missing data, the training sample has the

general appearance

Xl = (XUt . XIII)', X13' ... Xl;, , X l.J+20

X2 = ( - , X22, X23, ., '.. Xlii)'X2.j, X2.Jt-l.

X,,= ... Xnd)':Xnl, -, ~, ... Xnj, Xn.j+l. XnJ+2'

where " " denotes that the particular variable is missing for that observation. Thus, to

apply standard or recently developed outlier detection methodology, one must reduce the

< n) datadata to a subset of the original trajning data that includes only those 1 (where
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vectors for which all of the variables were observed. It is clear that such a procedure can

result in a loss of information and should lead to a reduction in detection power. To

denx>nstrate the extent oftbis problem, Woodward, Sain, Gray, Zbao, and Fisk (2002)

show that, depending on the missing data probabilities and the number of variables, the

number of complete vectors available for analysis may be dramatically smaller than the

number of original cases. For example, in the case of d 4 variables and a 25% chance

that an observation will be missing, we expect fewer than one-third of the data vectors to

be retamed for analysis usjng the strategy of analyzing only the complete data vectors.

This is in spite of the fuct that about 75% of the origjnal data set should be available for

use.

Another problem arises if there are no cases or only a very few cases in which an d

of the variables are observed. If the strategy ofusing only the complete vectors is used,

then some of the variables may need to be deleted. This may also result m loss of some

jmportant information. It should aJso be pointed'Out that we are not considering the case

in which there is missing data in the outlier. In an application of the techniques developed

here, the variables observed m the outlier determine the variables to be used in the outlier

test.

The pm-pose of this paper is to examine the extent to which detection power can

be improved by retaining all of the available data as compared to using only the complete

data vectors in the mixture-or-normals case outlined above. Woodward, et aL (2002)

consider this problem in the case in which the population of the training data (ll) is

multivariate normal. They show that su~ial increases in power can be obtained by the

use of all available data via the EM algorithm compared to the use of only complete data

vectors. Section 2 descn"bes this method for the case in which the population of the

trajDing data is a mixture of multivariate normals. In Section 3 we discuss three simulation

studies comparing the use of only vectors having complete data with the use of ~ EM

algorithm on data with some missing observations.
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sufficient statistics calculated in (z)) is maximized to give revised parameter estimates.

See Little and Rubin (1987) for details of the basic method.

The mixture-of-normals setting considered here is a special case of the general

location model discussed by OJkin and Tate (1961) involving both continuous and

categorical variables. Conceptually, the component label can be thought of as a matrix,

Y, of categorical variables specifying component membership for each sample value. If

observation k is known to be from component i, then Yik = 1 and Yik = 0 for if i= i.

Now, for the kth observation we have

P(Y.. = 1) = i\C

XfY ik = 1) "" MVN(p., E.)

When all data are available, then the sufficient statistics for the mixture model parameters
~

are given by

(3)

f&

Ni = EYik
k=I
f&

Si = EYikXk
k=I

f&

SSi = EYikXkX~
pI

In words, Ni counts the number of observations from component i while Si and S Si are

the sum and the sum of squares and cross products, respectively, of observations from

component i. When there are no missing data, the con-esponding ma:xjmum likelihood

estimates are

~=.& n
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(4).§j.Jl.i = Hi

§.§:j "" ,
Ei = ~T. - PiPi'

,lY,

fori = 1, ... , m.

Now we consider the case in which some observations can be missing, ie. the

sufficient statistics in (3) cannot be calculated. Wang, et at (1997) and Sain, et at (1999)

considered the case in which some or all of the labels, Y, are missing. In this paper, we

consider the case in which not only the labels but some of the continuous variables can be

missing. When some data are missing, the E-step of the EM algorithm consists of finding

conditional expectations of the sufficient statistics in (3), and the M-step involves simply

calculating the estimates in (4) using the conditional expectations of the sufficient statistics

in place of the sufficient statistics themselves. S~j:fically, let XobB denote the actual

observed ~ and let iU) denote current ~ of the parameters entering the jth

iteration of the algorithm. Then, the conditional expectations calculated in the E-step are :

(5)

i(J) , Xob8

More details concerning the calculation of the conditional expectations can be found in

Little and Rubin (1987), McLacbJan and Peel (2000), McLacbJan and Kri.c;~n (1997),

and Miller, Woodward, Gray, Fisk, and McCartor (1994). Upon convergence of the EM

algorithm, the estimates obtained by wing the conditional expectations in (5) in the final
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iteration to solve (4) are called the EM estimates. It should be noted that the likelihood

function depends on the data only through the sufficient statistics. Thus, upon

convergence, the maximized likelihood function can be calculated using the final EM

parameter estimates and final conditional expectations of the sufficient statistics.

(b) The Outlier Testing Algorithm

In this section we discuss an algorithm for outlier testing in the mixture-of-normals

We assume that the distnoution oithe trajnjng datasetting when some data are missing.

can be approximated by a mixture-of-normals where the number of components, m, is

unknown, but a maximum number of components to be considered is given (MAXM).

Note also that we assume that the outlier contains no missing data. The algorithm is as

follows:

, MAXM, fit an m-Step 1: Using the d variables and for e~~, m = 1,

component mixture to the training data and calculate AIC. Specifically

. For each m we use a hierarchica]/k-means clustering routine to find

starting values for the mixture parameters (see Sain, et ai, 1999 and

Kaufman and Rousseeuw, 1990). Distance is calculated using a

'normalized" Euclidean distance metric that takes into account missing

values. The distance (~jk) between points X j and XA: is measured

by first defining ~jk(l) = 0 if XiI or Xkl is missing and

~jk(l) = Xjl- Xkl otherwise. We then calculate the distance as
Ii

~jk = 4 E~~(l) where dm is the number of ~j(l)IS that were set
1=1

equal to zero because of missing data. The variables are prescaled to

have mean zero and unit variance in each dimension.

. Using these starting values, we obtain EM estimates of the parameters
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and find the associated maximized likelihood (LmIJZ ( m ) ) using the

procedure descn"bed in Section 2(a) above

AIC and BIC are calculated using the formulas

AlC(m) = - 21n(L_(m)) + 2(# offtee parameters) ,

BIC(m) = - 21n(Lmo.z(m)) + 1n(n)(# offtee parameters) ,

where the number offtee ~ters m m -1 + dm + dm(m -1)/2

and where n is the number of observations in the training sample.

Step 2: Select the number of components for which AIC/BIC is minimi7.ed. The

number of components selected will be denoted mAiC or mBIC. Note that a

number of components, m, will not be considered as a candidate for the

number of components if:

any computational problems are encountered while obtaining EM
~

estimates based on an m-COmP6~t-D¥>del because of singular

covariance estimates, etc.
.-

when fitting an m-component model, any oftbe ~ Is, i = 1, ... , mare

less than the maximum. of 0.05 and (d + 2)fn. This restriction is

imposed to avoid instability encountered when one of the mixture

components, and the resulting estimateS, are based on a very small

number of data values.

Step 3: The modified likeh11ood ratio statistic, W, is calculated for the data, using

the number of components, m, found by AIC or BIC. The denominator of

W is calcuJated for the n observations in the trajning sample, while the

numerator ofW is obtained by augmenting the trajning sample with the

outlier point and recalculating the EM estimates and associated likelihood

function. It should be noted that in this case, the number of components,



m, and the startjng values for the parameters in the EM algorithm are those

obtained from the n observations in the training sample.

Step 4: The bootstrap is used to :find the distn"bution ofW. At each bootstrap

iteration, b, b = 1, ..., B, we use the parametric bootstrap to obtain n + 1

observations from the distnoution of the training data. Data from a

mixture distribution are generated where the munber of components, m,

and parameter values are those estimated from the n observations in the

training sample. Each bootstrap sample is generated so that it mvolves the

same missing data structure as the original sample. We perform the

modified likelihood ratio test on each bootstrap sample using parameter

estiImtes based on the number of components and the starting values

The associated test statistic is denoted
/~

obtained from the training data.

w:.

Note that the (n + l)st observation must have complete data fur the

variables under consideration. If the nonparametric bootstrap were used,

only those training sample values with complete data would be available for

resampling as the (n + l)st observation. If there were only a few

observations m the trajning data with complete data, then it is clear that

nonp~tric bootstrapping would not be desirable, and thus we use the

parametric bootstrap.

Step 5: Define W Q to be the (lOOa)th percentile of the W:'s. Reject Ho and

conclude that the (n + l)st point is an outlier jfW ~ Wa,

12



It should be noted that prior to performing the likehllood ratio test on the training data m

Step 3 above, we check to determine if the potential outlier is "super extreme". Numerical

probl~ in computing likelihoods can occur if the outlier is too far removed from the

trajnjng data. Of course, if a potential outlier is siIfficientiy fur away from the trajnjng

data, there is actually no reason to perform. the likelihood ratio test. C\nTeDtly, a new

observation Xu is considered to be a "super-extreme" outlier if each of the estimated

component density functions evaluated at the new observation is less than e-25 ( Le.

~lO-ll). If the new observation is "extreme" by this criterion, then it is declared an

outlier and the algorithm temnnates.

3. Simulations

In this section we report the results of simulation studies that ex~rome the effect of

missing data, missjng labels, and unknown num~ of components on the detection power

of the outlier test based on W. In each case the training data are generated from a

mixture ~oution as in (1) with m = 2, where Al = A2 = 0.5 and the component

distn"butioDS are multivariate normal.

(a) Bivariate Examples

In this section we consider two mixture scenarios and in each case we use training

outlier population is MVN{JJo, 1:::1) where J1.o takes on the values J1.o = (O,sy, (1,4.sy~

In the second scenario, the training data are from a mixture where(2,4)', and (S,&.sy

In this case we consider outlierJJ.l, ~l, and ~2 are as before and where JJ.2 = (0, 6)'.

populations that are MVN(.l'o, EJ where.u.o = (-4,3Y, (-2,3Y, (4,3Y, (5,3)' and (-
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These mixture distnoutions and outlier means are shown in Figures 1 and 2.1,10.5)',

The contoW'S of the mixture components are shown with solid contours while the m~-D5

of the simulated outlier populations are shown with "x". The outlier population with mean

(0,5)' is shown with dashed contours.

In Tables 1 and 2 we show the results of simulations based on 1000 replications

from the scenarios described above in which the testing procedure is run at the a = 0.05

level of significance. In each case we generate a training sample (that has some missing
.

data) along with an outlier from MVN(JLo, E1). Denoting the ith observation in the

(XiI' Xi2)', then a random procedure is used to give each of thetraining sample by Xi

Xii a PmiB probability of being decJared missing and thus replaced in the data set by a

missmg data indicator. If, however, by using this procedure both variables in an observed

vector are missing, then we repeat the procedure of randomly assigning these individual

features as missing until at least one of XiI or Xi2 is not declared to be missing. Based on a

given missing value probability, PmiB,the expect~um.ber of vectors for which all of the

observations are available, is given m the case of d variables by

!~=~~~(l-Pmie) .RF=

The simulations shown in Tables 1 and 2 are based on the case in which Pmu .5. Intlle

tables we show the proportion of the 1000 replicated outliers that were detected. These

detection proportions are found using two approaches. First we consider the strategy of

using only those vectors for which both variables are observed, and we denote ~ the

"full vector" approach. It should be noted that the expected number of complete data

vectors in this case is one-third of the sample size. As a second approach we use all

avanable data in the training sample through the use of the EM algorithm. In both cases

we Jet AIC select the number of components up to a maximum of tWo components. It
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(b) A Three Variable Example

In this section we consider a simulation study in which there are three variables to

be used for outlier testing and the population of the trajning data is descn"bed by a mixture

~ = ( .~5

..5

-.5

1

.5

-5

).~ ' and where PI In each case the training sample size.5.PJ

=.5. We considered 27 outlier populations each with covariance1 00 with PmislSn

In Figure 3 we show the 3-dimensional (solid) contours of thematrix equal to El

component distributions. Also shown in the figure are the 27 means used for the outlier

populations in the simulation study. We also show the (dashed) contour for the outlier

population centered at (2, 2, 5.5)'. In Tables 3 afltr4 we show the simulation results based

on 1000 replications of training samples of size n 100 using the a ,05 level of

significance. The missing data probability is PmiB 0.5 for each variable and the

expected number of full vectors is about 14. In Table 3 we show the results for the case

in which AIC was used to choose between the options of 1 and 2 components for the

mixture distnoution. Of course, the actual number of components is 2. In the table we

see that the detection results using the EM algorithm are substantially higher than those

obtained using only the full vectors. This provides strong evidence of the fuct that in this

case, it would be a serious mjstake to ignore the information contained in the incomplete

vectors. The dramatic increase in detection power is expJained by the separation in all

variables as shown in Figure 3 along with the dramatic reduction in sample size when

restricting to full vectors. AJso impacting the detection power is the fact that because of

the reduced sample size, AIC tends to incorrectly select only one component in about one-

third of the samples when using the full vector approach This is somewhat surprising

16



based on the fairly wide separation between the two components m the mixtme. On the

other hand, AIC nearly always correctly chooses two components using the EM algorithm

with all available data. Estimates of observed significance level based on 5000 replications

are .066 for the full vector approach and .061 using the procedme based on the EM

algorithm. The standard error for the significance level estimates is .003 indicating that

the observed si~ca--I1ce levels are slightly inflated over the nominal.O5level

In Table 4 the detection power results are shown for the case in which the

maximum allowable choice for AIC is three components. For the full vector procedure,

when three components are allowed, AIC contmues to choose one component m about

one-third of the samples and three components in less than 2% of the cases. Thus, the

detection results in Table 4 for the full vector case are very sim1-~r: to those in Table 3

However, when choosing among one, two, and three components m the EM procedure,

AIC almost never chose one component, correctly chose two components 60% of the

time, and incorrectly chose three components m~ut 40% of the cases. It can be seen m

Table 4 that the result of allowing a possible third component in the model fit to the

training data is to somewhat reduce the detection power for the EM procedure m Table 4

as compared to Table 3 However, it should be noted that in Table 4, the detection power

for the EM procedure is still ~tjal1y higher than that for the full vector approach.

Estimates of observed significance level based on 5000 replications are .064 for the full

vector approach and .075 using the EM and all available data. Thus, the effect of the

allowable third component is to somewhat increase the observed significance using the

EM approach.

It is well known that the model order selected by AIC tends to be high when the

sample size is large. For this reason, we considered the use ofBIC to pick the number of

components, allowing from one to three components. In this case using the full vector

approach, BIC mcorrectly picks one component a little over 40% of the time and rarely

picks three components. The detection power using the BIC allowing up to three
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component model has a deleterious effect on detecting the hypothetical outlier, thus

providing an explanation for the striking improvement of the EM approach in this case. It

can also be seen ftom Figure 4 that incorrectly choosing a l-component model would not

have the dramatic negative effect on outlier detection from the explosion population, and

in Table 5 it can be seen that the full vector and EM results for n 30 are not

dramatically different m this case. For n = SO AIC picked two components m about 80%

of the cases using full vectors and in about ~/O of the cases using the EM approach,

75t AlC picked a 2-component model at least 97% of the time using eitherwhile for n

approach for handling missing data.

4. Concluding Remarks

In this paper we have examined the use of two techniques for handling missjng

data in the problem of testing for outliers from a~ of multivariate normal

distn"butions. The smulations shown here indicate that the utilization of all available data

via the EM algorithm can result in higher detection probabilities than those obtained using

Woodward, et. al (2002) showed similar improvement using theonly the full vectors.

EM algorithm in outlier testing from a multivariate normal distn"bution. The mixture case

discussed here is more complex in nature, and among other factors, detection performance

depends on the number of components selected. In general, caution must be used to

assure that sufficient sample size is available to provide reasonable estimates of the

We have also shown in Example 3a that performance of themixture model parameters.

EM algorithm depends on the amount of information concernjng component membership

that is available in data values with mjssing observations.

It is shown that when using the full vector approach, AIC tends to 1mderestimate

the number of components for relatively smaIl sample sizes and a substantial amount of

missing data, Le. for cases m which the resulting sample of full vectors is small. This can
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lead to very poor discrimination performance. e.g. the n = 30 case using the hypothetical

outlier in Example 3c. Example 3b shows dramatic improvement using the EM algorithm

in a tlnoee variable case over results obtained using onty the full vectors. In this case it is

shown that the tendency of AIC to pick too many components for large samples may

Thus it may 00 useful to e~_~e the application ofnegatively effect detection power.

alternative order selection criteria such as BIC.

~

q
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Table 1. Detection Power at a = .05 Level of Significance for the
Bivariate Case -- Components Separated in Each Variable

n=60
Full

Vectors

n=30
Full

Vectors EM

n=40
Full

Vectors EMEM
.967
.868
.689
.904
.068

.989

.924

.786

.960

.063

.796

.576

.339

.741

.072

867
.740
560
819
,083

.872

.653

.502

.797

.072

.957

.859

.677

.927

.064

(0,5)
(1,4.5)
(2,4)
(5,8.5)
gig. Level

Table 2. Detection Power at a = .05 Level of Significance for the
Bivariate Case - Components Separated in Only One Variable

n=60
Full

Vectors

n=30 %=40
Full

Vectors EM
Full

Vectors EM EM
.969

.808

.814

.930

.885

.057

.955

.786

.847

.930

.916

.066

(-4,3)
(-2,3)
(4,3)
(5,3)
(-1,10.5)
gig. Level

.804

.418

.609

.738

.509

.051

.836

.552

.681

.823
':646
.069

.899

.595

.654

.795

.710

.066

.901

.638

.723

.872

.781

.085
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Table 3. Detection Power at the a = .05 Level of Significance for the
Trivariate Case using AIC to Select the Number of Components
where at most Two Components are AIlowed

-1.5 2.0 5.5
Full

Vectors
Full

Vectors
Full

VectorsEM EMx y EM
.147

.626

.940-

.568

.666

.915-

.893

.849

.921

.277

.836

1.000-
.841

~

.999
-

.997

.993
--

.999

.629

.510

.894-

.613

.121

.606
-
.841

.324
~

.839

.846

.999-

.847

.249

.864-

.990

.482

.831

.942

.894

.819-

.906

.618

.321-

.915

.593
317

1.000
.997

.994
-

1.000

.856

.411-
1.000

.806

.633

-1.5
-1.5 2.0 I

m
-1.5

2.0 ! 2.0
5.5

-1.5

~
~

-'.j I

1000 replications of size n = 100
AI C selection for m .$: 2
Missing probability js.5 for all 3 variab1es~-
SE for tabled estimates of power js .016 Y
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Table 4. Trivariate Case using AIC to Select the Number of Components
in which at most Three Components are Allowed

z
.1.5 2.0 5.5

Full
Vectors

Full
Vectors

Full
VectorsEM EM EMx y

.981

.974

.949
--
.972

.789

.416
---
.971

N
.582

.150

.613

.948-

.506

.619

.902
-
.879

.825

.922

267
.785
.978-
.758
.783

.974
---
.963

.930

.970

.611

.547

.893-

.591

.109

.603
~

.834

.323

.566

.791

.784

.964
--
.781
.252-
.779
--
.937

.423

.727

.934

.916

.844
-:

.916

.614

.350
--=

.921

.597

.284

1000 replications of size n = 100
AlC selection for m :$: 3
Missing probability is .5 for all 3 variables
SE for tabled values is .016

.y

26



Table 5. Simulation based on Nuclear Monitoring Settmg
Described in Section 3c

Explosion Hypothetical
Full

Vectors
Full

VectorsEM EM
30
50
75

100

.538

.669

.781

.849

.541

.761

.821

.884

.315

.520

.647

.119

.483

.655

.719

.757

1000 replications
AlC selection for m :$: 2
Missing probability is .5 for each variable
SE for tabled values is .016

;/
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Figme 1. Mixture Distributiott.ma Ou~Means for Example 3a with some
-;, Separation betw;een fhi Qoniponents in each Variable -.,- . ,- , '.

-5 0 5.
Figure 2. ~ Distn"bution and Outlier Means for Example 3a with Separation

between the Components in only One Variable

..
~
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Figure 3. Mixture Distn"bution and Outlier Means for Tri~te Case in Example 3b
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Figure 4. Solid Contours Showing the Components of the Mixtme Distnbution of
Shallow and Deep Earthquakes along with Dashed Contours for the
Explosion and Hypothetical Outlier Populations


