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ABSTRACT

We consider the problem of multivariate outlier testing from a population from
which a training sample is available. We assume that a- new observation is obtained, and
we test whether the new observation is from the population of the training sample.
Problems of this sort arise in a number of applications including nuclear monitoring,
biometrics (including fingerprint and handwriting identification), and medical diagnosis. In
many cases it is reasonable to model the population of the training sample using a mixture-
of-normals model (e.g. when the observations come from a variety of sources or the data
are substantially non-normal). In this paper we c%ider a modified likelihood ratio test
that is applicable to the case in which: (a) the training data follow a mixture-of-normals
distribution, (b) all labels in the training sample are missing, (c) some of the observation
vectors in the training sample have missing information, and (d) the number of
components in the mixture is unknown.

The approach often used in practice to handle the fact that some of the data
vectors have missing observations is to perform the test based only on the data vectors
with full data. When large amounts of data are missing, use of this strategy may lead to
loss of valuable information, especially in the case of small training samples which, for
example, is often the case in the nuclear monitoring setting mentioned previously. An
alternative procedure is to incorporate all n of the data vectors using the EM algorithm to
handle the missing data. We use simulations and examples to compare the use of the EM
algorithm on the entire data set with the use of only the complete data vectors.
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1. Introduction

We consider the problem of testing a new data value to determine whether it
should be considered an outlier from a distribution for which we have a training sample,
i.e. "outlier testing." Fisk, Gray, and McCartor (1996) and Taylor and Hartse (1997)
have used a likelihood ratio test for detecting outliers from a multivariate normal (MVN)
distribution fit to the training data when no data were missing. These authors applied the
test to the problem of detecting seismic signals of underground nuclear explosions when a
training sample of non-nuclear seismic events is available.

Our focus in this paper will be the case in which the training data are modeled as a
mixture of normals. A mixture model is an obvious choice for a wide variety of settings.
For example, in the seismic setting discussed above, the population of non-nuclear
observations in a particular region may consist of observations from a variety of sources
such as earthquakes and mining explosions, and dﬁrmg types of earthquakes.
Additionally, in the area of medical diagnosis, benign tumors may be of several types, etc.
The flexibility of the mixture-of-normals model also makes it useful for modeling non-
normality even if distinguishable components are not present. The training data will be
considered a sample of size n from a mixture distribution whose density is given by

f@) = g&fi(z;m,z.-) 1)

where m is the number of components in the mixture, f;(x; u;, ;) is the MVN density
with mean vector p; and covariance matrix 3; associated with the ith component, the A,,
1, ., m are the mixing proportions, and « is a d-dimensional vector of variables.
Letting the training sample be denoted by X, ..., X, and the new observation
(whose distribution is unknown) by X,,, then we wish to test the hypotheses



Hy: X,ell

HI:X,,¢H

where IT denotes the population of the training data.
We consider the case in which data may be missing in the training data. In the case
of a mixture model, there are at least three different ways in which "data" may be missing:
(a) missing labels
(b) unknown number of components
(c) missing data in the data vectors

A "label" is said to be known for a given observation if it is known to which component in
the mixture that observation belongs. Wang, W991$ward, Gray, Wiechecki, and Sain
1997) developed a modified likelihood ratio test for the case in which some but not all of
the labels may be missing. The authors assumed that the number of components, m, is
known and that there is no missing data in the data vectors. The likelihood function under
Hj (i.e. under the assumption that X,, € Hj) is denoted by Ly(8) where @ is an unknown
vector-valued parameter associated with the distribution of X under Hy. Likewise, let
7 .(6) =sﬁ1 £(X,; 8) denote the likelihood based only on the training sample X, ..., X,.

Wang, et al. (1997) and Sain, Gray, Woodward, and Fisk (1999) used the modified
likelibood-ratio test statistic

sup Ly (6)
W 850 2
sup L 1(6) @
e



The usual likelihood ratio involves a second factor in the denominator, h(z,,), Where h(z)
is the density function of the outlier population and z,, denotes a single observation
available from that population. However, estimating h(z) is very difficult with only one
observation available and when a priori information is not available concerning the outlier
distribution. Thus, it makes sense to estimate h(z) nonparametrically. Moreover, given
any of the potential nonparametric density estimators of h(x) in the case of only one data
point, the factor h(z,,) will not vary with @ in the maximization process nor will h(z,,)
vary as x,, varies from sample to sample. Consider, for example, a histogram estimator of
h(z). With a single data value, such an estimator would be a constant regardless of the
value of . Thus, for simplicity we use W in (2).

It is easily seen in (2) that if X, does not belong to II, then W will tend to be
small. Hence the rejection region is of the form W < W, for some W, picked to provide
a level « test. Since the null distribution of W has no known closed form, Wang, et al.
(1997) used a bootstrap procedure (see Efron and/fibshirani, 1993) to derive the critical
value W,. Whenever some of the training data are unlabeled, the parameters A; p;, and
X; of the mixture model are estimated via the Expectation-Maximization (EM) algorithm
(see Dempster, Laird, and Rubin, 1977, McLachlan and Krishnan, 1997, and Redner and
Walker, 1984). Based on simulations, Wang, et al. (1997) showed that in this setting, the
modified likelihood ratio test can be used successfully for outlier detection.

Sain, et al. (1999) extend the results of Wang, et al. (1997) to the case in which no
data are labeled and in which the number of components in the mixture is unknown. They
demonstrated their results using simulations similar to those of Wang, et al. (1997) and
showed little or no loss of power when no training data are labeled. Sain, et al. (1999)
obtained excellent results using their procedure on actual seismic data from the Vogtland
region near the Czech-German border and from the WMQ station in western China.

Using the China data, the authors demonstrated that a mixture model may be preferable to
the use of a single multivariate normal model due to apparent non-normality of the data



even when there are not any identifiable groups of observation types represented in the
training data.

In this paper we consider the case in which some of the variables may be missing
for some observations in the training sample. For example, in the seismic setting
log(Pg/Lg) ratios at higher frequency bands are often missing because of attenuation
effects on high frequencies. We consider the case in which d variables are observed on the
new observation, and we denote this observation by X, = (Xu1, Xuzy --ey Xud)’'s Where
X.,; denotes variable j observed on the new observation. We further assume that there

exists a training sample

X = (Xu, X1z, Xi3, .., X1a)’
X3 = (Xq, Xn2, Xas.

Xp = (ana Xn27 Xn3a

from II. When sorne of the training data includes missing data, the training sample has the

general appearance
X =(Xn, ,Xn, .. Xy » Xija, - X))
X =(—, Xz, Xz, - XZ)” X2.j+l, . de),

X, = aly =, Xa3y - an, X,,,j+1, X'n’j.;.g, Xnd)l

where " " denotes that the particular variable is missing for that observation. Thus, to
apply standard or recently developed outlier detection methodology, one must reduce the
data to a subset of the original training data that includes only those [ (where < n)data



vectors for which all of the variables were observed. It is clear that such a procedure can
result in a loss of information and should lead to a reduction in detection power. To
demonstrate the extent of this problem, Woodward, Sain, Gray, Zhao, and Fisk (2002)
show that, depending on the missing data probabilities and the number of variables, the
number of complete vectors available for analysis may be dramatically smaller than the
number of original cases. For example, in the case of d 4 variables and a 25% chance
that an observation will be missing, we expect fewer than one-third of the data vectors to
be retained for analysis using the strategy of analyzing only the complete data vectors.
This is in spite of the fact that about 75% of the original data set should be available for
use.

Another problem arises if there are no cases or only a very few cases in which all d
of the variables are observed. If the strategy of using only the complete vectors is used,
then some of the variables may need to be deleted. This may also result in loss of some
important information. It should also be pointedOut that we are not considering the case
in which there is missing data in the outlier. In an application of the techniques developed
here, the variables observed in the outlier determine the variables to be used in the outlier
test.

The purpose of this paper is to examine the extent to which detection power can
be improved by retaining all of the available data as compared to using only the complete
data vectors in the mixture-of-normais case outlined above. Woodward, et al. (2002)
consider this problem in the case in which the population of the training data (IT) is
multivariate normal. They show that substantial increases in power can be obtained by the
use of all available data via the EM algorithm compared to the use of only complete data
vectors. Section 2 describes this method for the case in which the population of the
training data is a mixture of multivariate normals. In Section 3 we discuss three simulation
studies comparing the use of only vectors having complete data with the use of the EM
algorithm on data with some missing observations.



An Ounthe Testing Ap) when Soe T} issing

this 1be the  cedure fos totes ‘hether
hee X I the po nlatio th traming data W consid  the
whic all labe;  th  aming sample  mussing, the nmber  ompo nmkn
and the bservat ecHrsha  mussm mformat
{1} of the M hm K Mode Par
The algorithm eral  ice taining likelih
it ater  Jh data are mussmg Co; nby nsed  th estima
parame vh labels  mussmg the Heatic considere  here the
20y rithm nly eal th nussmg labe.  Hut alan g fa the hservat

tors. The Malg rithn may be tho gh 'as  Prmal pro sdur for performng th

mg o it appealing app to ealing g data:
mussmg val (b, :stimate th parameter usmg the missing vali  stimat
these param ‘er  imates. re the estirnat ing  al find
the paramete usmg the  1sed ralt srimates, tc. this
srat ed col Ice
Th Malg rithm directly MaxXImzm likzlihood fime A: such,
vt ssary  actually  tima ng data sal rathe nlv
isary im  the aff statisti  hase ing and  wilasle dat tha
ded rthe aliatio ‘the likelik fim The al thm thus has siep
the expe p(E ep hie the ndi nal xpectatio th  nfficd
statistic ala  data the timat th are cal d,

and th ep M-step. hic the lo ik lihood fimetior  hased



sufficient statistics calculated in (7)) is maximized to give revised parameter estimates.
See Little and Rubin (1987) for details of the basic method.

The mixture-of-normals setting considered here is a special case of the general
location model discussed by Olkin and Tate (1961) involving both continuous and
categorical variables. Conceptually, the component label can be thought of as a matrix,
Y, of categorical variables specifying component membership for each sample value. If
observation k is known to be from component %, then y; = 1 and yg; = 0 for ¢ # i.
Now, for the kth observation we have

PYp=1)=X
(X|Ya = 1) ~MVN(, X5)

When all data are available, then the sufficient statistics for the mixture model parameters

—
are given by
N =3 Ya
k=1
n
S = kz:lyikxk 3

88 = S Ya XX,
k=1

In words, NN; counts the number of observations from component  while S; and S.S; are
the sum and the sum of squares and cross products, respectively, of observations from
component . When there are no missing data, the corresponding maximum likelihood

estimates are

=1



=5 )
« S.5; -~
E‘-z—]v-;t— pi“é:

fori=1,..,m

Now we consider the case in which some observations can be missing, i.e. the
sufficient statistics in (3) cannot be calculated. Wang, et al. (1997) and Sain, et al. (1999)
considered the case in which some or all of the labels, Y, are missing. In this paper, we
consider the case in which not only the labels but some of the continuous variables can be
missing. When some data are missing, the E-step of the EM algorithm consists of finding
conditional expectations of the sufficient statistics in (3), and the M-step involves simply
calculating the estimates in (4) using the conditional expectations of the sufficient statistics
in place of the sufficient statistics themselves. Sp}iﬁcaﬂy, let X 4, denote the actual
observed data, and let E(j) denote current estimag of the parameters entering the jth
iteration of the algorithm. Then, the conditional expectations calculated in the E-step are :

E[A g [ X ob
IR ©) B,
F Lb"’l 8. —Xobsi ®

More details concerning the calculation of the conditional expectations can be found in
Little and Rubin (1987), McLachlan and Peel (2000), McLachlan and Krishnan (1997),
and Miller, Woodward, Gray, Fisk, and McCartor (1994). Upon convergence of the EM
algorithm, the estimates obtained by using the conditional expectations in (5) in the final




iteration to solve (4) are called the EM estimates. It should be noted that the likelihood
function depends on the data only through the sufficient statistics. Thus, upon
convergence, the maximized likelihood function can be calculated using the final EM
parameter estimates and final conditional expectations of the sufficient statistics.

(b) The Outlier Testing Algorithm

In this section we discuss an algorithm for outlier testing in the mixture-of-normals
setting when some data are missing. We assume that the distribution of the training data
can be approximated by a mixture-of-normals where the number of components, m, is
unknown, but a maximum number of components to be considered is given (MAXM).
Note also that we assume that the outlier contains no missing data. The algorithm is as

follows:

Step 1: Using the d variables and for eackm, m =1, , MAXM, fit an m-
component mixture to the training data and calculate AIC. Specifically
 For each m we use a hierarchical/k-means clustering routine to find

starting values for the mixture parameters (see Sain, et al., 1999 and
Kaufman and Rousseeuw, 1990). Distance is calculated using a
'normalized" Euclidean distance metric that takes into account missing
values. The distance (A ;) between points X; and X} is measured

by first defining A 3 (I) = 0 if X4 or X}, is missing and

A (1) = Xj — X otherwise. We then calculate the distance as

Aj = E-_fi—d;éAfj(l) where d,, is the number of A;;({)'s that were set

equal to zero because of missing data. The variables are prescaled to
have mean zero and unit variance in each dimension.

» Using these starting values, we obtain EM estimates of the parameters
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and find the associated maximized likelihood (Ly,qe (m)) using the
procedure described in Section 2(a) above
AIC and BIC are calculated using the formulas

AIC(m) = — 2In(Lypee(m)) + 2(# of free parameters) ,

BIC(m) = — 2In(Lyp,.(m)) + In(n)(# of free parameters) ,
where the number of free parameters is m — 1 + dm + dm(m — 1) /2
and where n is the number of observations in the training sample.

Step 2: Select the number of components for which AIC/BIC is minimized. The
number of components selected will be denoted majc or mgyc. Note that a
number of components, m, will not be considered as a candidate for the
number of components if:

any computational problems are encountered while obtaining EM
estimates based on an m-compoént—model because of singular
covariance estimates, etc.

when fitting an m-component model, any of the X. 's,1=1, ..., mare
less than the maximum of 0.05 and (d + 2)/n. This restriction is
imposed to avoid instability encountered when one of the mixture
components, and the resulting estimates, are based on a very small
number of data values.

Step 3: The modified likelihood ratio statistic, W, is calculated for the data, using
the number of components, m, found by AIC or BIC. The denominator of
W is calculated for the n observations in the training sample, while the
numerator of W is obtained by augmenting the training sample with the
outlier point and recalculating the EM estimates and associated likelihood
function. It should be noted that in this case, the number of components,



m, and the starting values for the parameters in the EM algorithm are those
obtained from the n observations in the training sample.

Step 4: The bootstrap is used to find the distribution of W. At each bootstrap
iteration, b, b = 1, ..., B, we use the parametric bootstrap to obtainn + 1
observations from the distribution of the training data. Data froma
mixture distribution are generated where the number of components, m,
and pa.rametef values are those estimated from the n observations in the
training sample. Each bootstrap sample is generated so that it involves the
same missing data structure as the original sample. We perform the
modified likelihood ratio test on each bootstrap sample using parameter
estimates based on the number of components and the starting values
obtained from the training data.. The associated test statistic is denoted
we. =
Note that the (n + 1)st observation must have complete data for the
variables under consideration. If the nonparametric bootstrap were used,
only those training sample values with complete data would be available for
resampling as the (n + 1)st observation. If there were only a few
observations in the training data with complete data, then it is clear that
nonparametric bootstrapping would not be desirable, and thus we use the
parametric bootstrap.

Step 5: Define W, to be the (100c)th percentile of the W';'s . Reject H, and
conclude that the (n + 1)st point is an outlier if W < W,,.
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It should be noted that prior to performing the likelihood ratio test on the training data in
Step 3 above, we check to determine if the potential outlier is "super extreme”". Numerical
problems in computing likelihoods can occur if the outlier is too far removed from the
training data. Of course, if a potential outlier is sufficiently far away from the training
data, there is actually no reason to perform the likelihood ratio test. Currently, a new
observation X,, is considered to be a "super-extreme” outlier if each of the estimated
component density functions evaluated at the new observation is less than e~ (ie.

~ 10~11). If the new observation is "extreme"” by this criterion, then it is declared an

outlier and the algorithm terminates.
3. Simulations

In this section we report the results of simulation studies that examine the effect of
missing data, missing labels, and unknown numb€r of components on the detection power
of the outlier test based on W. In each case the training data are generated from a
mixture distribution as in (1) with m = 2, where A\; = Ay = 0.5 and the component
distributions are multivariate normal.

(a) Bivariate Examples
In this section we consider two mixture scenarios and in each case we use training
sample sizes of n = 30, 40, and 60. In the first setting, we let the training data be froma

: . : 1 .50 (1 -5
mixture where 1 = (0, 0), ps = (6,4), 2 = ( s 1 )f and 2y = ( z ; J The

outlier population is MVN(,, X;) Where 1, takes on the values y, = (0,5Y, (1,4.5),

(2,4Y, and (5,8.5Y. In the second scenario, the training data are from a mixture where
U1, 21, and 3, are as before and where uy = (0, 6)'. In this case we consider outlier

populations that are MVN(so, T,) where pto = (4,3Y, (-23Y, (43Y, (5,3 and (-

13




1,10.5Y. These mixture distributions and outlier means are shown in Figures 1 and 2.
The contours of the mixture components are shown with solid contours while the means
of the simulated outlier populations are shown with "x". The outlier population with mean
(0,5) is shown with dashed contours.

In Tables 1 and 2 we show the results of simulations based on 1000 replications
from the scenarios described above in which the testing procedure is run at the a = 0.05
level of significance. In each case we generate a training sample (that has some missing
data) along with an outlier from MVN(io, I;). Denoting the ith observation in the
training sample by z;  (zi1, Z;2)', then a random procedure is used to give each of the
T4 @ Pmis Probability of being declared missing and thus replaced in the data set by a
missing data indicator. If, however, by using this procedure both variables in an observed
vector are missing, then we repeat the procedure of randomly assigning these individual
features as missing until at least one of x;;0r z;, is not declared to be missing. Based ona
given missing value probability, p,, the expectéﬁumber of vectors for which all of the
observations are available, is given in the case of d variables by

nl—p,,,.-,d

ng = .
(I_Pm)

The simulations shown in Tables 1 and 2 are based on the case in which p,ss .5. Inthe
tables we show the proportion of the 1000 replicated outliers that were detected. These
detection proportions are found using two approaches. First we consider the strategy of
using only those vectors for which both variables are observed, and we denote this the
"full vector" approach. It should be noted that the expected number of complete data
vectors in this case is one-third of the sample size. As a second approach we use all
available data in the training sample through the use of the EM algorithm. In both cases
we let AIC select the number of components up to a maximum of two components. It
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(b) A Three Variable Example
In this section we consider a simulation study in which there are three variables to
be used for outlier testing and the population of the training data is described by a mixture

model with . = 2 components. Specifically, the components are MVN (z;, 23;),

ek

*j\

Un
U

i = 1,2 where u1 =(0,0,0), 2 = , o = (4,4,4),

N
h
bt .LJ'I

1 -5 -5
Ty = (-.5 1 .5>,andwherep1 p; .5. Ineach case the training sample size
-5 5 1

isn 100 with p,,;,=.5. We considered 27 outlier populations each with covariance
matrix equal to X, In Figure 3 we show the 3-dimensional (solid) contours of the
component distributions. Also shown in the figure are the 27 means used for the outlier
populations in the simulation study. We also show the (dashed) contour for the outlier
population centered at (2, 2, 5.5)". In Tables 3 afd 4 we show the simulation results based
on 1000 replications of training samples of size n = 100 using the o .05 level of
significance. The missing data probability is p,,;;, 0.5 for each variable and the
expected number of full vectors is about 14. In Table 3 we show the results for the case
in which AIC was used to choose between the options of 1 and 2 components for the
mixture distribution. Of course, the actual number of components is 2. In the table we
see that the detection results using the EM algorithm are substantially higher than those
obtained using only the full vectors. This provides strong evidence of the fact that in this
case, it would be a serious mistake to ignore the information contained in the incomplete
vectors. The dramatic increase in detection power is explained by the separation in all
variables as shown in Figure 3 along with the dramatic reduction in sample size when
restricting to full vectors. Also impacting the detection power is the fact that because of
the reduced sample size, AIC tends to incorrectly select only one component in about one-
third of the samples when using the full vector approach. This is somewhat surprising
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based on the fairly wide separation between the two components in the mixture. On the
other hand, AIC nearly always correctly chooses two components using the EM algorithm
with all available data. Estimates of observed significance level based on 5000 replications
are .066 for the full vector approach and .061 using the procedure based on the EM
algorithm. The standard error for the significance level estimates is .003 indicating that
the observed significance levels are slightly inflated over the nominal .05 level.

In Table 4 the detection power results are shown for the case in which the
maximum allowable choice for AIC is three components. For the full vector procedure,
when three components are allowed, AIC continues to choose one component in about
one-third of the samples and three components in less than 2% of the cases. Thus, the
detection results in Table 4 for the full vector case are very similar to those in Table 3
However, when choosing among one, two, and three components in the EM procedure,
AIC almost never chose one component, correctly chose two components 60% of the
time, and incorrectly chose three components in dﬁut 40% of the cases. It can be seenin
Table 4 that the result of allowing a possible third component in the model fit to the
training data is to somewhat reduce the detection power for the EM procedure in Table 4
as compared to Table 3 However, it should be noted that in Table 4, the detection power
for the EM procedure is still substantially higher than that for the full vector approach.
Estimates of observed significance level based on 5000 replications are .064 for the full
vector approach and .075 using the EM and all available data. Thus, the effect of the
allowable third component is to somewhat increase the observed significance using the
EM approach.

It is well known that the model order selected by AIC tends to be high when the
sample size is large. For this reason, we considered the use of BIC to pick the number of
components, allowing from one to three components. In this case using the full vector
approach, BIC incorrectly picks one component a little over 40% of the time and rarely
picks three components. The detection power using the BIC allowing up to three

17



compo 1its  similar to that Tahles and 4 fo the full  :tor appr Usmg

the EM procedur RIC pick compo and cksthree mponent only
aho the sampl  Thus, surprismgly ni etect  po fo th¢ EM
app m this similar to thase  Tahle  Thus,  this setting ©

be preferre  er AIC. The hserved significanc els based 0 pyglicatio

fo the full ectoran EM app ach respectively

A sw lected  ulatin results at p,, here CO expecter nimber
full ecto sh  that the FM algorithm substantially defactio wer
the filll veet approac  this although as dramatically the Prmis
sho Tahl -4,
(c)  Simulatio has:d  SNe Daatex
In the pr hl detectio  wclear exp certain rariab
caleulated from rhe associated  ith Fhf- ent st Trammg
data  these variahl llecred on non-m lear seismic events. ns=

hservad. the prohl  offy est  to ecide hether shonld be onsidered nthier

m the populatio he training data and  therefo  potentially lear T+
lese variahles variahles tha he ured by sta veral
thonsand kil meters the are ed to depth based
hypo calculatior and ff) the difference hetween bodv and surface
magnr udes simplicity  will deno  these variables depth’ e A
respectively. In this example, the mixture model  the training data to

eep earthgquake  T) () and shall  garthquakes (¢ Q)
surprising that eep earthquakes end ha larger depth estimates than either shallo
garthquake lear xpl ps, whil the depths of shallo  earth uakes and sxp
similar  each the The alie BT arable my end @l larger fo deep

earthquake and explosi han for hall yw earthquakes explo pro Jow



mag surface and the surfa magnitudes fearthquak tend to

screase as depth increases. Actal alue: nfthese ariables  databases of earthauakes

and exp ms tend  Z€ classified He in gure illustrate the sitnation
describe  hove scaled versions the  ariahl  showng larive positioming
th The large ed with epth  deep earth uakes flects the fact
that eep earthquake may be many kilomet th while the shallo
earthquak by definitio earth nakes relat ely In the surface

In yur  wlations. onsid  twe separate nilier populations These two
populations  illnstrated  Fig with twy stvles fdashed onto The tlier

populatio e the lo  right igure and denoted by FEX epresentativ.
the loeatio xpl The wut po ulatio denoted by "HYP" mnsed for

ilhistrati arpo only and ill be eferre the 'hyvpothetical utlier po ulation.
We co-  der the distribatio  composed gep and shallo  earthqnake to be

mode composed equal mixture  the t  components and we assume that (1%

the hservations mussing We also tha hserved from the
nther popnlati wlati 000 replications fr  this scenaro
ty  samp and the proportion of the replicates for which thier de ectad
giv i Table  Inth imulati ns, A} nsed  select hetween and
omponents. W sh  simula esnlts fo the twe  utlier populatio nsidered. In
Tahle ;an be the the M approach ga  consistentlv higher detecti
po rer than that htained using finll vect the explo popiia the
improvement using the Eh most pr - unced at the hypothetical utlier
populati n, there ery propounced mpr  ement usmg the EM  ith and
Examinatio the sho  that he full
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component model has a deleterious effect on detecting the hypothetical outlier, thus
providing an explanation for the striking improvement of the EM approach in this case. It
can also be seen from Figure 4 that incorrectly choosing a 1-component model would not
have the dramatic negative effect on outlier detection from the explosion population, and
in Table 5 it can be seen that the full vector and EM results forn 30 are not
dramatically different in this case. For n = 50 AIC picked two components in about 80%
of the cases using full vectors and in about 99% of the cases using the EM approach,
while forn 75, AIC picked a 2-component model at least 97% of the time using either
approach for handling missing data.

4. Concluding Remarks

In this paper we have examined the use of two techniques for handling missing
data in the problem of testing for outliers from am%ixture of multivariate normal
distributions. The simulations shown here indicate that the utilization of all available data
via the EM algorithm can result in higher detection probabilities than those obtained using
only the full vectors. Woodward, et. al. (2002) showed similar improvement using the
EM algorithm in outlier testing from a multivariate normal distribution. The mixture case
discussed here is more complex in nature, and among other factors, detection performance
depends on the number of components selected. In general, caution must be used to
assure that sufficient sample size is available to provide reasonable estimates of the
mixture model parameters. We have aiso shown in Example 3a that performance of the
EM algorithm depends on the amount of information concerning component membership
that is available in data values with missing observations.

It is shown that when using the full vector approach, AIC tends to underestimate
the number of components for relatively small sample sizes and a substantial amount of
missing data, i.e. for cases in which the resulting sample of full vectors is small. This can
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lead to very poor discrimination performance. e.g. the n = 30 case using the hypothetical
outlier in Example 3¢c. Example 35 shows dramatic improvement using the EM algorithm
in a three variable case over results obtained using only the full vectors. In this case it is
shown that the tendency of AIC to pick too many components for large samples may
negatively effect detection power. Thus it may be useful to examine the application of

alternative order selection criteria such as BIC.

\
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Table 1. Detection Power at a = .05 Level of Significance for the
Bivariate Case -- Components Separated in Each Variable

n =30 n =40 n = 60
Full Full Full
Vectors EM Vectors EM  Vectors EM
0,5) .796 867 872 937 967 989
(1,4.5) 576 740 653 .859 .868 924
2,9 339 560 502 677 .689 .786
(5,8.5) 741 819 797 927 904 960
Sig. Level | .072 .083 072 .064 .068 .063

Table 2. Detection Power at o = .05 Level of Significance for the
Bivariate Case - Components Separated in Only One Variable

n=30 “fi=40 n =60
Full Full Full
Vectors EM Vectors EM Vectors EM
+4.3) .804 .836 .899 901 .969 955
(-2,3) 418 552 .595 638 .808 .786
4,3) .609 .681 654 723 814 847
5,3) .738 823 795 872 930 930
(-1,10.5) 509 .646 710 781 885 916
Sig. Level | .051 .069 .066 .085 057 .066
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Table 3. Detection Power at the o = .05 Level of Significance for the

where at most Two Components are Allowed

Trivariate Case using AIC to Select the Number of Components

-1.5 20 5.5
Full Full Full
X Y Vectors EM Vectors EM  Vectors EM
-1.5 | .147 277 .629 .839 942 1.000
-1.5 | 20} .626 836 510 .846 8394 997
55| .940 1.000 894 .999 819 994
-1.5 | .568 841 613 .847 906 1.000
20| 20| .666 914 121 249 618 .856
551 915 999 .606 364 321 411
-15 | .893 997 .841 990 915 1.000
55| 20} .849 993 324 A82 .593 .806
551 921 999 .586 831 317 .633
1000 replications of size n = 100
AIC selection for m < 2 ‘
Missing probability is .5 for all 3 vanablms/

SE for tabled estimates of power is .016
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Table 4. Trivariate Case using AIC to Select the Number of Components
in which at most Three Components are Allowed

VA
-1.5 2.0 5.5
Full Full Full
X Y Vectors EM Vectors EM Vectors EM

-1.5 1 .150 267 .611 791 934 981

1.5 201 .613 785 547 784 916 974
551 .948 978 .893 964 844 .949

-1.5 .506 758 .591 781 916 972

20| 2.0} .619 783 109 252 614 .789
551 902 974 .603 779 350 416

-1.5 879 .963 834 | 937 921 971

551 2.0 .825 930 323 423 597 758
551 922 970 566 727 284 582

1000 replications of size n = 100
AIC selection for m < 3
Missing probability is .5 for all 3 variables

SE for tabled values is .016
=
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Table 5. Simulation based on Nuclear Monitoring Setting
Described in Section 3¢

Explosion Hypothetical
Full Full
Vectors EM Vectors EM
30| -.538 541 315 483
50 | .669 .761 520 655
75 | .781 821 647 719
100 | .849 384 719 757
1000 replications

AlC selection form < 2

Missing probability is .5 for each variable
SE for tabled values is .016
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Figure 1. Mixture Distribution 21d OutleirMeans for Example 3a with some
- . Separation between the Components in each Variable
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Figure 2. Mixture Distribution and Outlier Means for Example 3a with Separation
between the Components in only One Variable
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Figure 3. Mixture Distribution and Outlier Means for Trivariate Case in Example 35
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Figure 4. Solid Contours Showing the Components of the Mixture Distribution of
Shallow and Deep Earthquakes along with Dashed Contours for the
Explosion and Hypothetical Outlier Populations




