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Confidence intervals for the intraclass correlation coefficient (p) are used to determine the optimal
allocation of experimental material in one-way random effects models. Designs that produce narrow
intervals are preferred as they allow more precise inference about the value of p. The authors
investigate the number of classes and the number of observations per class required to minimize the
expected length of confidence intervals. We obtain results using asymptotic theory and compare
these results to those obtained using exact small-sample calculations. The results suggest that for
fixed sample size and fixed number of classes (or groups), one should select a balanced design, or
the design which is closest to balanced. If one is allowed to choose the number of groups, the best
design depends on the unknown value of p. A good overall recommendation, which appears to work

well for all values of p, is to choose a design having group sizes of about 4 each.

KEY WORDS: Expected length; Variance components; Optimal allocation.

1 Introduction

The one-way random effects model is an important design due to its wide range of applicabil-
ity. For example (Vangel, 1992), in industrial applications where a product is manufactured
in batches, this model serves as a tool to highlight how the batch variability influences the
variability in the finished goods. As a second illustration (Gibbons and Bhaumik, 2001),
interlaboratory studies are conducted to determine how the variability of measurements be-
tween laboratories relates to the variability of measurements within laboratories. The source
of variation under study, be it batches in a manufacturing process or laboratories in a in-
terlaboratory study, are random effects in the model if the intent of the investigator is to
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quantify how variability in a population effect the measurements.

In the above examples, the parameters of interest are the variance components associated
with the random effects in the model. A particular function of the variance components, the
intraclass correlation coefficient, is the correlation between measurements in the same class
(or group) of the random effect. If o2 is the variance of the observations between groups and
o3 is the variance of the observations within groups and all the effects combine linearly, then
the intraclass correlation coefficient, denoted by p = 0?/(0? + ¢2), is also the proportion of
total variation in the measurements due to the source of variation under study.

In many instances the objective of the study is to estimate the intraclass correlation
coefficient while being constrained by a limited number of experimental units. When re-
sources are restricted, the investigator must judiciously select the number of groups and/or
the number of measurements per group. The optimal allocation of resources in a one-way
random effects model is the subject of this paper.

According to Scheffé (1956) and Searle, Casella, and McCulloch (1992), the first explicit
use of one-way random effects models was made by Airy (1861). Without explicitly referring
to the one-way random effects model, Bessel (1838) recommended 16 repeated observations
in connection with the measurement of the parallax of the star 61 Cygni, and in 1839 recom-
mended 7 repeated observations when measuring distances of craters on the moon through
a telescope (Koziel, 1985). The optimal number of measurements per group was also dis-
cussed by Chauvenet (1863a, 1863b) using data from an astronomical sighting experiment.
Chauvenet (1863a) recommended 5 to 7 repeated observations of right ascension of a star,
and later compared the results obtained from the 7 observations to that of the 5 observa-
tions (1863b). He concluded that more than this would be wasteful, and not reduce “total
error” very much. These early recommendations on designs seem to have been concerned
with the error of the average measurement, of + o3 /b, where b is the number of measure-
ments per group. It appears that the astronomers used initial data to get estimates of the
variance components and then decided how large b should be to make this error close to the
unattainable o2 that would arise if there was no measurement error.

Tippett (1931) concluded that for estimating the variance components in a one-way
random effects model, an arrangement with many groups and few individuals per group

is better than one with few groups and many individuals per group. Hammersley (1949)
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and Anderson and Crump (1967) minimize the variances of the ANOVA estimators of the
individual variance components in order to obtain optimal allocation results. Anderson and
Crump (1967) also considered estimating 0% /03, which we call ¢. The authors noted that
the optimal design is a function of the unknown parameter values. In particular, as the
total sample size goes to infinity, the optimal value of b for estimating o2 and ¢ are 1+ 1/¢
and 2 + 1/¢, respectively. As a function of p, the optimal group sizes are 1/p and 1+ 1/p,
respectively. When estimating o2 or ¢, one should use a few large groups if p is small but
many small groups if p is large.

The references mentioned above do not directly address the selection of a design when
estimating the intraclass correlation coefficient. Donner and Koval (1982) took up this prob-
lem and indicate that the balanced design is usually preferred, but do not cover the scenario
where many competing balanced designs having the same number of total observations are
under consideration. Shoukri and Ward (1984) and Walter, Eliasziw, and Donner (1998)
consider optimal sampling designs for p based on hypothesis test requirements. Walter,
Eliasziw, and Donner (1998) conclude that when p > 0.4 for balanced designs in which
a = 0.05 and 8 = 0.20, groups of size 2 or 3 will minimize the total number of observations.
Lohr (1995) examines optimal designs for the one-way random effects model from a Bayesian
perspective. Optimal group sizes used to estimate p in balanced designs range from just over
3 to less than 12, depending on the form of the prior distribution. Assuming a uniform prior
for p, one can show that the optimal group size is 1 ++/10, a noninteger value. The Bayesian
results given above correspond to those obtained using A-optimality, in which the average
asymptotic variance of a point estimator of p is minimized.

Unlike previous literature on the subject, we consider confidence intervals for p as a mea-
sure of the quality of the design. For equal-tailed intervals having a fixed level of confidence,
short intervals are desirable as they indicate with a high degree of certainty plausible values
of p. We investigate the optimal allocation of resources in terms of number of groups and
number of observations per group in order to minimize the expected length of confidence
intervals for p. We calculate expected length using two methods. The first is an exact
calculation based on a pivotal quantity for p. While this approach is valid for both small
and large sample applications, it can be computationally intensive and theoretical results

are absent. The second method, which is approximate, is based on the asymptotic normal
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approximation to the ANOVA estimator of p. We obtain theoretical results based on this
second method and use empirical results based on the first to justify the theory. In some
cases the allocation of resources depends on the true value of the parameter p. We suggest
removing the dependence by considering the average expected length of confidence intervals
or the minimax expected length of confidence intervals for p.

The paper is organized as follows. Section 2 provides background information and intro-
duces the notation used in the one-way random effects model. Included in the discussion are
the computational aspects associated with the expected length of confidence intervals for p.
In Section 3, examples are given to help illustrate the use of the optimal allocation procedure
described in this paper. Optimal designs are based on large and small-sample computations
of the expected length of confidence intervals for p. The designs recommended in this paper

do not depend on the value of p. Section 4 presents a discussion and summary.

2 The One-way Random Effects Model

Consider the one-way random effects model given by
)/ij = M+Ai+6i]‘, (1)

where i = 1,...,a, j = 1,...,b;, and 0 b; = n. Y}; is the j™ observation associated with the
i" class (or group) of factor A. The a groups of A in the model are assumed to be randomly
selected from some large population of groups. Furthermore, a random sample of size b; has
been obtained from the i group. e;; is often referred to as random error. It is assumed that
Ai%lN(O,a%), eij%iN(O,ag), and that A; and e;; are mutually independent. In addition,
0? >0 and 02 > 0. pu is a fixed but unknown quantity that represents the overall mean of
Y.

Recall that p = 0% /(07 + 03), which may be interpeted as the correlation between two
observations within the same group or as the proportion of the variation in the Y;;’s attributed
to factor A. By definition, 0 < p < 1. Since p is a function of variance components,
and the objective is to select the design which provides the most information about p, we
begin by examining the properties of a set of quadratic forms used to estimate the variance

components. These quadratic forms, denoted by Q1, ..., @4, form a set of minimal sufficient

statistics associated with the reduced linear model void of the parameter p. The number
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of quadratic forms and their corresponding distributions depend on the underlying model
structure.

The properties of the quadratic forms may be obtained by diagonalizing the variance-
covariance matrix of a linear transformation of the observations. Specifically, if 0 < A; <
... < Ay represent distinct eigenvalues of that part of the aforementioned variance-covariance

matrix associated with o7, and each A, has multiplicity 7,,, then it can be shown that
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Qn~ 72 (1 oA = D) (rm) 2)

where m = 1,...,d. By construction, )y, ..., Q4 are independent. A complete description of
the distributional theory associated with the quadratic forms in a one-way random effects
model is described by LaMotte (1976). Burch and Iyer (1997) discuss the theory used to
construct the quadratic forms and associated eigenvalues in a more general setting.

The total variation in the observations, given by 3¢, Eg’-;l (Y;; — 7,,)2 where Y is the
overall sample mean, may be partitioned (see LaMotte, 1976) as

S, V) = S E.)ﬂibi(?i.—?..)z

i=1j=1 i=1j=1

= QL+ Q2+ ... +Qq. i (3)

Of particular interest is the fact that A; = 0 if at least one b; > 1. The zero eigen-
value signifies that there is replication in the experiment (multiple observations per group)
and thus an estimate for o3 is readily available. For the one-way random effects model,
Q1 ~a3x*(ry) with r; = n — a. In addition, 3¢ ; E;’-;l (Y — Vi,)z = (9, and it follows that

¢ bi(Yi — 7“)2 = Q3 + ... + Qg, which is distributed as a linear combination of scaled
chi-squared variates. The analysis of variance table for any one-way random effects model
of the form (1) is given in Table 1.

Consider the example presented by Vangel (1992) in which tensile-strength measurements
were made on five consecutive batches of composite material used to make aircraft compo-
nents. Five measurements per batch were obtained for a total sample size of 25. The coded
strength measurements for this balanced model are displayed in Table 2. The focus of atten-
tion is not on the actual measurements, but on the design itself. For this design, d = 2 where
Ay =0 and Ay = 5. In addition, r; = 20 and r, = 4. Using (2) we find that Q; ~ o3 x*(20).

The 20 degrees of freedom are generated from the five groups, each group contributing 4
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Table 1: ANOVA Table

Source df Sum of Squares
Between Groups a—1 Q2+ ...+ Qq
Within Groups Eaj b; —a (N
i=1
a a b; _
Total b — 1 > ¥ (v -Y)
=1 i=1j=1

Table 2: Balanced Design of 25 Observations

Batch 1 Batch 2 Batch 3 Batch 4 Batch b

379 357 390 376 376
363 367 382 381 359
401 402 407 402 396
402 387 392 395 394
415 405 396 390 395

degrees of freedom so that 5(4) = 20. The second eigenvalue is equal to the number of repli-
cates per group and the degrees of freedom associated with the second quadratic form is the
number of groups minus 1. In general, for a balanced one-way random effects model having
a groups and b = n/a replicates per group, d = 2 with A; =0, r; = a(b—1), Ay = b, and
ro = a — 1. In this case the sum of squares column in Table 1 contains only two quadratic
forms with Q, =3¢, (Vi — 7“)2.

Table 3 displays a configuration for an unbalanced model using a sample of size 25. In

Table 3: Unbalanced Design of 25 Observations

Batch 1 Batch 2 Batch 3 Batch 4 Batch 5 Batch 6 Batch 7 Batch 8 Batch 9

Yiu Yo Y Y Y51 Yo Yn Ys1 Yo1
Yio Y2 Y3o Yio Yso Y62 Y7o Yso Yoo
- - Y33 Yas Vs3 Vo3 Y73 Ys3 Yo3

this case, d = 4 with Ay =0, ry =16, Ay = 2, ry = 1, A3 = 2.16, r3 = 1, Ay = 3, and
ry = 6. The values of Ay and 7, are due to the two replications per group in the first two
groups. The values of Ay and r, are due to the three replications per group in the last

seven groups. The noninteger eigenvalue is a result of the unbalanced nature of the design.
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For unbalanced designs having two distinct group sizes, there are at most three nonzero
eigenvalues. In general, suppose there are ¢ groups each of size x and a — ¢ groups each of
size y, where x < y and ¢z + (a — ¢)y = n. It can be shown (see the Appendix for details)
that Ay =0,r1=n—a, Ay =2, 19 =c—1, A3 =axy/n,r3=1, Ay =y,and ry =a—c—1.

As the total sample size is the same for the designs displayed in Tables 2 and 3, it would
be interesting to determine which setup provides more information about p. This question,

as well as similar questions, will be addressed later in this article.

2.1 Exact Confidence Intervals for p

Equation (2) indicates that the distributions of the quadratic forms involve the parameter
of interest, p, and a nuisance parameter, o2. A ratio of linear combinations of the quadratic
forms produces a pivotal quantity for p since the nuisance parameter is eliminated in the
resulting distribution. Pivotal quantities that can be inverted to obtain confidence intervals

for p and their associated distributions are

d d
m:k+17 m=k-+1 N F< Xd: , Xk:r ) (4)

zk: - Qm_ / zk: T m=k+1 m,m:1 "

o2y He(An 1) =,
where k ranges from 1 to d — 1. Note that the quadratic forms in the numerator of (4)
correspond to the larger eigenvalues and the quadratic forms in the denominator of (4)
correspond to the smaller eigenvalues. Only by grouping the ()’s in order of their eigenvalues
can one ensure the pivotal quantity is a monotonic function of p. In this manner the pivotal
quantity in (4) for a given value of k£ produces a single confidence intervals as opposed to a
union of disjoint intervals. See Burch and Iyer (1997) for more details on the relationship
between pivotal quantities and confidence intervals for p.

For balanced one-way random effects models, d = 2 and the value of k is self evident.
That is, £ = 1 and there is one quadratic form in the numerator and one quadratic form
in the denominator of (4). For the unbalanced model, the investigator must select k. The
natural choice is k& = 1 since the resulting pivotal quantity partitions (@1, ..., Q4) into @
and Q)s, ..., ()4, which is consistent with the division of the total variation into the “between
groups” and “within groups” sources found in the analysis of variance table in Table 1.

The confidence interval built from the pivotal quantity having £ = 1 also corresponds to
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the Wald (1940) interval. Furthermore, selecting k = 1 as opposed to another value of k
produces desirable large-sample properties for point estimators of p as discussed by Burch
and Harris (2001).

Let F,/» and Fy_,/» be the a/2 and 1 — /2 percentiles of the F' distribution having
numerator and denominator degrees of freedom equal to Efn:2 r; =a—1and ry =n — a,
respectively. A 100(1-«)% confidence interval for p is given by (L(Q),U(Q)) where

d d
mZ—Z%/mE—2Tm
PlFup < B2 g2 < Bup] = PlUQ < <U(Q) (5)
1=,/ 71

and Q = (Q1, ..., Qq).

When d = 2, as is the case for the balanced model (or unbalanced models with a = 2)

the endpoints of the confidence interval for p are available in closed-form. They are

_ a(b—1)Qs — (a — 1) 1421
L = alb—1)Q2+ (a—1)(b — 1)F/1a/2Q1 (6)

a(b—1)Qz — (a — 1)F, /201

UQ = oG+ @ 0= D)Fs0r ™)

When d > 2, however, the endpoints must be obtained via numerical methods. A relatively

straight-forward procedure derived by Pratt (1961) can be used to compute the expected
length of the confidence interval. From Pratt (1961),

BU@-L@)] = [ BLQ <y <U@)]dr (8)

p*Fp
where P,[L(Q) < p* <U(Q)] is the probability of covering false values of the parameter
when p denotes the true value of the unknown parameter. When p* = p, it follows that
P,[L(Q) < p<U(Q)] =1— a. Equation (8) illustrates the fact that the expected length
of a confidence interval is equal to the integral over false values of the probability of false
coverage.

Combining (5) and (8) and noting the parameter space of p is [0, 1), we obtain

i >, T/ X, Tm
E,[U(Q) - L(Q)] = / Pp{Fa/z iy 7 ; 2™ o)
0 1—p*

The expected lengths of confidence intervals for p are essentially integrals of cumulative dis-

tribution functions of linear combinations of independent Y2 random variables. One may
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note that the computed expected lengths depend on the true value of the parameter. Fur-
thermore, since cumulative distribution functions take the form of integrals, the expected
lengths can be obtained by computing the double integrals implicitly given in (9). See Burch
and Iyer (1997) for details.

Comparing the expected lengths of confidence intervals for p from different one-way
random effects designs will serve as a way to ascertain which designs yield the most precise
inference about p. Designs which result in short intervals indicate more efficient use of the
experimental material. Since expected length depends on the value of the parameter, it may
be the case that one design is not uniformly better than another design. The dependence
on p may be eliminated by computing the average or the minimax expected length of the

confidence intervals.

2.2 “Approximate” Confidence Intervals for p

“Approximate” confidence intervals for p are based on the asymptotic distribution of the

point estimator of p. For simplicity, we use an ANOVA estimator of p,

d d
1 E Qm - Z Tle
m=2 m=2

d d
(A—-1) 22 rm@1 + 11 22 Qm

where

d
E rmAm

A . m=2
A= d
> Tm
m=2

(11)

Equations (10) and (11) may be written in terms of sample size and group sizes by recognizing
that ry = n — a, Efnﬁ rm =a—1, and

b?

;L : (12)

d
ZrmAm = p-—~°

m=2

Qa

See Donna and Koval (1982) for further discussion of the ANOVA estimator. The asymptotic
properties of the ANOVA estimator of p can be determined using regularity conditions.

Burch and Harris (2001) show that

p T N(p.V (7)) (13)
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where V(p) is the asymptotic variance of p given by

21— p)> (Ap*+ Bp+C)

o= ooy & )
where
= (n—a)Var(A) + (n—1)(A -1)° (15)
= 2(n—1)(A-1) (16)
= n-—1 (17)

and Var(A*) =X _rp (A — Z)2/(a — 1) is the variance in A, ..., A4 (as if the A’s were
random variables themselves). The asymptotic variance of p given in (14) is equivalent to
that given by Donner and Koval (1982) since

a 2 a
d 2 (zgl bzz) igl b? - 2
dorpAL = -2 - + >0 (18)
m=2 i=1

n2

For a balanced design, the asymptotic variance of p reduces to

n— (1 — o2 (14 p0b—=1)
o el

At this point it is worth clarifying what is meant by “asymptotic” when talking about
one-way random effects designs. For a balanced design with groups of size b the idea is
simple; asymptotic results are generated by looking at the number of groups going to infinity
(a — o0), with all group sizes fixed at b. Any particular design, say 5 groups of 4, is thought
of as an element in a sequence of designs (in this case all designs with groups of size 4), where
successive members of the sequence have progressively more observations. Note that both
the number of groups and total number of observations go to infinity in this sequence. For
an unbalanced design the challenge is to conceptually construct a sequence of designs which
again has number of groups and number of observations going to infinity, but also contains
the unbalanced design, and extends it in a reasonable way. There are various ways to do
this, but we consider repetitions of the design. Thus, the design (2,3,4) is considered as
the first design in the sequence of designs {(2,3,4),(2,2,3,3,4,4),(2,2,2,3,3,3,4,4,4), ...}
When we refer to the asymptotic variance associated with the design (2,3,4), we mean the

leading term in the limit of the variances of these designs. Whether or not this asymptotic
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formula will give a variance which is actually close to the true variance for a particular design
is an open question, but the statistician’s usual hope is that it will, at least for a large enough
design.

A 100(1-a))% asymptotic confidence interval for p is given by p + Za/2m where V(p)
indicates that p in (14) is replaced by p and Z,, is associated with the «/2 percentile of the
standard normal distribution. The expected length of the asymptotic confidence interval for
p is 2Za/2\/m. Comparing expected lengths associated with different designs using this
approximate method is easier than comparisons using the exact method discussed in Section
2.1.

It can be shown in some cases that V' (p) for a specific design is uniformly less than V' (p)
for a competing design. It follows that the expected length of the asymptotic confidence
interval for p associated with the first design is uniformly less than the expected interval
length associated with the alternative design. Note, however, that the asymptotic results
rely on a normally distributed estimator whose distribution is not constrained to the unit
interval. While truncation issues are not addressed in the approximate method, they are
dealt with in the exact method since the probabilities in (5) are unaffected by truncation.
Truncation is particularly common when p is small, so we expect poor agreement between

the exact and asymptotic methods for small p, even for very large sample sizes.

3 Results on Best Designs
3.1 Fixed n (sample size) and a (number of groups)

Suppose that the total sample size as well the the number of groups are fixed. As shown in
the theorem below, large-sample results verify that for fixed n and a, the balanced design
yields more information about p than does any unbalanced design. See the Appendix for the

proof of Theorem 1.
Theorem 1. In one-way random effects models where the total number of observations

as well as the number of groups are fixed, the balanced design (if one exists) outperforms

any unbalanced design when estimating p using the asymptotic variance criterion.
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Theorem 1 assumes the existence of a balanced design, but this will often not be the case.
Intuition suggests that the best design will be the one closest to balanced, that is, if b = n/a
is non-integer then the best design should consist of groups of size [b] and [b] + 1 where [b]
represents the integer part of b. We will call this the straddling design. In a closely related
problem concerning the asymptotic variance of the ANOVA estimator of o7 /03, Anderson
and Crump (1967) showed that this is indeed the best design. The following theorem (Theo-
rem 2) extends Anderson and Crump ’s result to the intraclass correlation. The outline of the

proof of Theorem 2 given in the Appendix is a modification of Anderson and Crump’s result.

Theorem 2. In one-way random effects models where b is noninteger and total number
of observations as well as the number of groups is fixed, the best design when estimating p

using the asymptotic variance criterion is the straddling design.

It is difficult to obtain theoretical results concerning best designs using exact methods as
the expected lengths of confidence intervals for p are computed using (9). However, we can
examine results in small-sample scenarios to see if they agree with the asymptotic results.
Consider the example from Vangel (1992) where n = 25 and a = 5. Table 4 lists a selection

of competing designs that satisfy the sampling constraints. The designs in Table 4 are

Table 4: Selected Designs when n =25, a =5

Design by by b3 by b
1 5 5 5 5 5
2 3 4 5 6 7
3 2 5 6 6 6
4 2 2 2 2 17

compared to one another in terms of the expected length of confidence intervals for p using
the small-sample calculations. Figure 1 displays the expected lengths of the 90% confidence
intervals for p where /2 = 0.05. The values of b; are listed next to each expected length
curve. It is interesting to note that the exact results suggest that the balanced design is

uniformly better than its competitors, in agreement with the asymptotic calculations.
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3.2 Fixed n: Balanced Designs

Suppose the total sample size is fixed and only balanced designs are under consideration. For
the balanced case, the asymptotic formula for the expected length of the confidence intervals

for p is
E,[U(Q) - LQ)] = 2Zu2/V(p)

= 27 (J n(ﬂ?ﬁnb)—(bl)_ 3 (1—p)(1+p(b— 1))) . (20)

This simple equation is due to the fact that d = 2, Var(A*) = 0, and A = b for any balanced
one-way random effects model. The dependence of the expected length on p suggests that
there does not exist a single balanced design that has a uniformly minimum expected length
across the parameter space. In fact, we can minimize (20) with respect to b and find that
the optimal choice is

b_n(l—l—p)—l—l—p
np+2—p

(21)

which, as n goes to infinity, gives b = 1 + 1/p. This is the same optimal group size recom-
mended by Anderson and Crump (1967) for designs used to estimate o7 /03. This asymptotic
result suggests that when p is small, one should use a few large groups and when p is large,
one should use many small groups.

If p is unknown, or if one is unwilling specify its value, we recommend a group size
which has good performance over the entire parameter space. One approach is to find the
value of b that minimizes the average expected length over p. Brown, Cai, and DasGupta
(2001) use this method in an application concerning confidence intervals for proportions. A
second approach employs the minimax principle. In this case one selects the value of b that
minimizes the maximum asymptotic variance, where the maximum is taken over possible
values of p. The average expected length of a confidence interval for p using the asymptotic

formula is
[ EU(Q) - LQldp = 2Zusz [V ()dp

- 1 2(n—1)  b+2
= s (6 . mm) (22)
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This quantity is minimized when

_22n+1)
b= s (23)

If one considers the minimax approach, the maximum value of {/V(p) occurs when p =
(b —2)/2(b— 1), at which point the value of \/V(p) is

1 [2(n—1) b? (24)
4 n \n—bb-1)>"*
This is minimized with respect to b when
4dn
T ont3 (25)

Using either asymptotic criterion, the optimal design is to chose b = 4. In other words, four
observations per group provides more information about p, in an overall sense, than does
any other balanced design.

It is interesting to compare the overall recommendation of b = 4 with the “best possible”
b =1+ 1/p suggested by the asymptotic variance. We will make the comparison using a
ratio of square root of asymptotic variances (latter to former), with n going to infinity. The
ratio is

2/3\/p

1+3p°

(26)

As p goes to zero, this ratio goes to zero, which indicates that at least according to this
formula, the overall recommendation could do very poorly. This is not a surprise as the best
design according to this formula for very small p is two very large groups. For p > .083 the
ratio is greater than or equal to 0.8. Anotherwords for the vast majority of p we have that
the b = 4 recommendation is at least “80% efficient”, or that the confidence intervals which
result will be within 25% of the shortest possible for that p, when measured by expected
length. So for the vast majority of p, b = 4 is a good overall recommendation asymptotically.
As discussed at the end of Section 2.2, agreement between the asymptotic and exact results
are poor when p is small. Exact calculations actually suggest that a design having b = 4 is
a viable contender as p goes to zero.

Suppose the experimenter wants to use a balanced design with a group size other than

4. Asymptotically, how much will be lost? The comparison can be done in three ways. One
14



is to compare the average \/V(p) for the case b = 4 and the candidate value of b, by using a
ratio, and then take the limit as the sample size goes to infinity. Using this comparison we

find the ratio for a candidate b is
V3(b+2)
6vb—1 "

Of course, if b = 4 this ratio is one. A second comparison is to take the ratio of the
maximized W (maximized over p), and again take the limit as n goes to infinity. Using
this comparison we find the ratio for a candidate b is

33/2p2

2(b—1)3/2
Again, if b = 4 this ratio is one. The third and final comparison is to take the ratio of
V(p) for the cases b = 4 and a general b, and then maximize it with respect to p. This will

produce the least favorable comparison of a general b to b = 4. Again, we take the limit as
n goes to infinity. This maxmized ratio is

V3

Vb —1

for b < 4 and
V/3b
4/b —1

for b > 4. Table 5 compares b = 2,3,4,5,7 to b = 4 using these three criteria.

Table 5: Asymptotic comparison of balanced design with group size b to balanced design
with group size 4

group size b ratio of average v/V  ratio of max vV max of ratio of v/V

2 1.16 1.30 1.73
3 1.02 1.03 1.22
4 1 1 1

5 1.01 1.02 1.08
7 1.06 1.08 1.24

An example of how to interpret a table entry is as follows; for b = 2 and the max ratio
crtierion the table entry of 1.73 means that asymptotically using b = 2 can give intervals
whose expected length is as much as 73% wider than the intervals from the “best” b of 4.

We can see from the table that asymptotically a group size of 5 is an excellent alternative to
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groups of size 4. Groups of size 3 or 7 are less suitable, although exact calculations suggest
that groups of size 3 are suitable in small designs, as we will see later. Asymptotically, it
makes little difference whether you use groups of size 4 or 5.

Of course, it will not be possible to choose a balanced design with 4 observations per
group if the total sample size n is not divisible by 4. Consider the case in which the sample
size is 105. Possible balanced designs include those having b = 3, 5, 7, 15, 21, and 35. We
would like to determine which of these competing balanced designs is best for estimating p.
Figure 2 displays the optimal values of b for balanced designs based on minimizing (22) for
sample sizes ranging from 100 to 200. Sample sizes that are prime numbers are not included.
For n = 105, the balanced design having b = 5 provides more information about p than does
any other balanced design. Designs based on sample sizes that are divisible by 3, 4 or 5 are
better than designs of slightly larger size that are not divisible by 3, 4, or 5. Identical results
are obtained if one were to use the asymptotic minimax expected length criterion.

Figure 2 suggests that in some cases an investigator should redesign an experiment to
obtain optimal results. For example, suppose total sample sizes of 114 or 115 are under
consideration. The best balanced designs for these sample sizes have b = 3 and b = 5,
respectively. As previously mentioned, balanced designs having group sizes of 3 and 5 offer
respectable results. If the investigator, however, simply reduced the sample size to 112 with
b = 4, he would obtain a better design using fewer expermimental units. This is also the
case using the asymptotic minimax expected length as a criterion.

In general, one may consider reducing the sample size in order to compare a balanced
design with b = 4 to the original balanced design which is slightly large in size. Consider
the case in which the reduced design with b = 4 is compared to a balanced design with
b = 5 where the sample size is reduced by 3 to get divisibility by 4. For example, n = 115
is reduced to n = 112 so that b = 4 may be used. Reducing the sample size by 3 is the
largest possible reduction in order to obtain b = 4. The reduced and original designs may be
compared using the average expected length or the maximum expected length asymptotic
criteria. For average m, substituting b =5, n = n and b = 4, n = n — 3 into (22) shows
that the reduced design outperforms the original design when n > 102. Using the same
approach for the maximum value of m given in (24), the reduced design outperforms

the original design when n > 73.
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(Note that

n—4 6 n—1 7
Vs eV e 7

After some algebra we can show this occurs when
n® —107n” + 559n — 1029 > 0.

which is true for n > 102.)

(We have that the reduced design is better when

(n —1)54 - 44(n — 4)
$nn—5) " 3B(n—-3)(n-17)

This occurs when

491n® — 38169n> + 195445n — 354375 > 0,

or when n > 73.)

Using asymptotic results to measure the quality of designs is appropriate only when
sample sizes are large. To compare designs when sample sizes are small, we now turn our
attention to exact calculations presented in Section 2.1. Figure 3 displays the optimal values
of b for balanced designs based on minimizing (9) for sample sizes ranging from 10 to 100.
Sample sizes that are prime numbers are not included. Similar results are obtained if one
were to use the minimum maximum expected length criterion.

Consider the case in which the sample size is 48. Possible balanced designs include those
having b = 2, 3, 4, 6, 8, 16, and 24. We would like to determine which of these competing
balanced designs is best for estimating p. From Figure 3, the balanced design having b = 3
provides more information about p than does any other balanced design. For medium sample
sizes, balanced designs having b = 3 are superior to those having b = 4. For small sample
sizes, b = 2 is the optimal choice of group size. Note that balanced designs having b = 5 are
inferior to the slightly smaller balanced designs having b = 3 or 4.

The actual choice of b = 2, 3, or 4 depends on what is meant by small,medium, and large
sample sizes as well as the criterion used to measure the quality of the design. Figure 4
displays the optimal balanced design using the exact calculations of the minimum expected
length and minimax expected length. For those samples in which group sizes of 2, 3, and 4

17



are possible, small samples are defined as n < 12. In this case, use b = 2 for those balanced
designs in which group sizes of 2 or 3 are options. Medium sample sizes are defined as
12 <n <144 or 12 < n < 60, depending on the criterion used to judge the design. In this
case use b = 3 for those balanced designs in which group sizes of 3 or 4 are options. For
large sample sizes, the best balanced design has b = 4. When the objective of the study is
to estimate p based on confidence intervals, balanced designs having b = 5 do not provide
additional information about the parameter. We recommend the investigator simply select

a slightly smaller sample size that is divisible by 3 or 4.

3.3 Fixed n: Determine Best Design

In this Section we consider balanced as well as unbalanced designs. For instance, instead of
throwing away information in order to obtain a good balanced design, we consider one-way
random effects designs where the groups may have an unequal number of measurements. For
a fixed value n, we seek the best overall design for estimating p. It is not always the case that
the best design is a balanced design. Results using both asymptotic and exact calculations
are presented.

For a fixed sample size, there does not exist one design that is uniformly better than
another design since the asymptotic variance of p given by (14) depends on the value of p.

The average expected length of a confidence interval using asymptotic theory is

/1 B, [U(Q) ~ LQ)dp = 2Zus / Vv (@)dp
0 :2Za/2\/(n_a2 1 [(2?4+B)\/WB\/5< B)

)(a—1)A
- 3%4 ((A+B+0)°? — 37

(HF) e () e

where A, B, and C' are given in Section 2.2.

4A 13

Theoretical results based on the asymptotic approach are hard to come by. A search of
all possible designs numerically (for a given n) using (28) reveals a consistent pattern for
n > 36. The best designs follow a pattern when n is written as 4k — r, where r is either 0,

1, 2, or 3. These designs consists of k — r groups of size 4, and r groups of size 3. The same
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pattern appears if one uses the asymptotic minimum maximum expected length criterion.
For example, 114 = 4(29) — 2, so we should have 29 — 2 = 27 groups of size 4, and 2 groups
of size 3. A heuristic way to state this rule is to select a design with as many groups of size 4
as possible, with the proviso that any remaining groups must be of size 3. Note that n = 114
could be distributed as 28 groups of size 4 and one group of size 2, which would maximize
the number of groups of size 4, but this design violates the rule that remaining groups be of
size 3. The unbalanced design of 27 groups of size 4 and 2 groups of size 3 outperforms the
best balanced design, which is 38 groups of size 3.

For large n, these unbalanced designs also outperform the reduced balanced designs hav-
ing b = 4. In practice, however, the quality and simplicity of the balanced design may
persuade the user to forgo the small gain in performance offered by the unbalanced design.
This is apparent if one compares the reduced balanced design to the mathematically best
design, which is unattainable, being a balanced design based on n measurements with a
fractional number of observations per group. Using the average expected asymptotic confi-
dence interval width given in (22), the worst scenario for the reduced design occurs when n
is reduced by 3. In this case the comparison is between the reduced balanced design having
n =n — 3,b = 4 and the mathematically best design having n = n,b = 2(2n +1)/(n + 5).
Using (22), the ratio of the former to the latter is

\l (n i(g)(nlz(g) (fl %) (29)

This is monotonic in n and for n > 40 is less than 1.05. This means that for n > 40, the

reduced balanced design having b = 4 will be within a few percent of the best possible design
when performance is measured by the average expected asymptotic confidence interval width.

One may also compare these designs using the maximum value of W given in (24).
In this case, the comparison is between the reduced balanced design having n =n—3,b =4
and the mathematically best design having n = n,b = 4n/(n + 3). Using (24), the ratio of

the former to latter is
(n—1)%2y/n—4
n/n—3vn—17"

This is also monotonic in n and for n > 37 is less than 1.05, indicating that the reduced

(30)

balanced design having b = 4 does not give up an appreciable amount of information when

estimating p.
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A final way to compare the reduced design to the unattainable theoretical best is to take

the ratio of v/V and maximize with respect to p. If we do this we obtain

This is also monotonic in n and for n > 56 is less than 1.05. All three of these comparisons
show that although the best asymptotic unbalanced design is fairly simple to construct, a
practitioner will lose little if he or she reduces the sample size to obtain a balanced design
with b = 4.

As was the case using the asymptotic approach, theoretical results based on exact calcu-
lations are not easy to produce. A search of all possible designs numerically (for a given n)
using (9) reveals a set of patterns depending on the sample size. The following rule of thumb
selects a design which is usually the best possible (although not always, see the example
discussed in the next paragraph). The rule is to select a design as follows: If n < 18, use as
many groups of size 2 as possible, with the proviso that any remaining groups must be of
size 3; if 18 < m < 36, use as many groups of size 3 as possible, with the proviso that any
remaining groups must be of size 2; if 36 < n < 108, use as many groups of size 3 as possible,
with the proviso that any remaining groups must be of size 4; and if n > 108, use as many
groups of size 4 as possible, with the proviso that any remaining groups must be of size 3.
Similar results are obtained using the exact minimax expected length calculations. When
using the minimax criterion, the cutoff value for recommending using as many groups of size
4 as possible, with the proviso that any remaining groups must be of size 3, is reduced from
108 to 64.

The general strategy used to select designs is based on the result that groups should be
primarily of sizes 2, 3, or 4 depending on the sample size. This rule selects designs that
are very good but not necessarily the single best design. For example, while the rule selects
6 groups of size 3 for n = 18, both the minimum average and minimax expected length
calculations select a design having 3 groups of size 2 and 4 groups of size 3. The ratio of
the minimum average expected length of the first design to the second is 1.006. Similarly,
the ratio of the minimax expected length of the first design to the second is 1.003. The rule
simply provides an easy way to select quality designs in order to estimate p.

For intermediate sample sizes, the design selected using the asymptotic approach is dif-
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ferent from the design selected using the exact approach. The asymptotic approach sets out
to create group sizes of 4 whereas the priority of the exact approach is to create groups of size
3. To compare designs recommended by the two approaches, consider the percent relative
difference of the average expected length (or minimax expected length) of the two designs.
Specifically,

1

i E, U(Q) — L(Q)] dp}Design2 - {} E, [U(Q) — L(Q)] dP}Designl
1002 0

1 (31)

{bf Ep [U(Q) - L(Q)] dp}Designl
where E, [U(Q) — L(Q)] is computed using (9), Design 2 is the best design using the asymp-
totic method and Design 1 is the best design using the exact method. Figure 5 displays the
value of (31) for 90% confidence intervals as a function of sample size for n > 36. Figure
5 suggests that the performance of the design selected using the asymptotic approach is
similar to the peformance of the design selected using the exact approach. That is, designs
predominantly made up of groups of size 4 with remaining groups of size 3 are similiar in
quality to designs predominantly made up of groups of size 3 with remaining groups of size
4. Specifically, the asymptotic design is within 2% of the best exact one for n > 40 and
within 1% of the best exact one for n > 75.

We now return to the example presented in Vangel (1992) and consider unbalanced
designs which outperform the balanced design having a = 5 and b = 5. Figure 6 displays the
expected length of the 90% confidence intervals for p where a/2 = 0.05 for selected designs.
The values of b; are listed next to each expected length curve. Straddling designs having
group sizes of 2 and 3 or 3 and 4 uniformily outperform the balanced design. It is interesting
to note that the design (3, 3, 3, 3, 3, 3, 3, 4) uniformly outperforms the design (3, 3, 3, 4,
4, 4, 4). Although the design (2, 2, 3, 3, 3, 3, 3, 3, 3) does not uniformily outperform the
other unbalanced designs, it has the smallest average expected length as well as the minimax
expected length. Using (31) to compare designs, the percent relative difference of the average
expected length for design (3, 3, 3, 4, 4, 4, 4) compared to design (2, 2, 3, 3, 3, 3, 3, 3, 3)
is 2.12%. Likewise, the percent relative difference of the average expected length for design
(3, 3,3, 3, 3, 3, 3, 4) compared to design (2, 2, 3, 3, 3, 3, 3, 3, 3) is 0.44%. Note that the
actual design used, the (5,5,5,5,5) design, is 9.40% worse than the best possible design based

on average expected length.
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4 Conclusions and Discussion

We have presented rules for determining optimal designs based on expected length of con-
fidence intervals for the intraclass correlation coefficient p. For simplicity, we base our
recommendations primarily on theoretical results obtained from the asymptotic normal ap-
proximation to the ANOVA estimator of p. We have also performed extensive numerical
exact calculations of expected lengths for various sample sizes to bolster these conclusions.
We find that if both the number of observations (n) and the number of groups (a) are
fixed then one should choose a balanced design, or the design closest to balanced. These
recommendations are consistent with those of Anderson and Crump (1967) who considered
estimation of the variance components themselves, or their ratio. If only the total sample
size is fixed, then the optimal allocation of experimental units in a one-way random effects
model depends on p. In the absence of knowledge of p, we suggest two methods of removing
p from the decision; averaging the expected length over p, and minimizing the expected
length over p. Using asymptotic results, both methods suggest a group size of 4, or slightly
less than 4, if n < 100.

In general, n will not be divisible by 4, so a balanced design with groups of size 4 is not
possible. In these cases, we can with little penalty discard experimental units to get the
desired balanced design, or alternatively pick an unbalanced design consisting of groups of
size 3 and groups of size 4 as outlined in Section 3.3.

Roughly speaking, the exact small-sample calculations we have done agree with the
asymptotic recommendations for n > 100. For smaller n, the best designs typically have
slightly fewer observations per group than the asymptotic formula suggests. For instance,
the best balanced designs have group sizes of 2, 3, or 4 depending on the sample size. How-
ever, for intermediate to large sample samples, say n > 36, even here one will typically not
go seriously wrong following the asymptotic recommendation of group sizes of 4 whenever
possible.

For a given sample size, the recommendations in this article are easy for the practitioner
to implement and appear to work well for all values of p. Not addressed are issues related to
different costs associated with sampling and subsampling. In addition, we have not computed

the sample size required to obtain a prespecified value of expected length. This subject is
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important when planning a study and selecting a sample size that yields quality information

about p. These are topics that need to be explored in the future.

APPENDIX
EIGENVALUES FOR UNBALANCED DESIGN HAVING TWO DISTINCT GROUP SIZES

We begin with the fact that if a group of size z is repeated ¢ times, the corresponding
eigenvalue is = having replication c— 1. Similarly, if a group of size y (z < y) is repeated a —c
times, the corresponding eigenvalue is y having replication @ — ¢ — 1. Recall that A; = 0,

ri =n—a, and cx + (a — ¢)y = n. Then

S rm o= (n—a)+(c—1)+(a—c— 1)+ remaining r,,’s (32)
= n—1 (33)

which implies there is one additional eigenvalue having a replication of one. Call this eigen-

value z. From (12), it follows that

(c=lzx+(a—c—1y+z = cx+(a—c)y—Z;Lb’2 (34)

and thus
be = n(x+y—2). (35)

However,
Z v = cx®+ (a—c)y’. (36)

Equating (35) and (36) yields z = azy/n. Note that z < z < .

PROOF of THEOREM 1

Let Vpar(p) and Viyygs(p) denote the asymptotic variances for the balanced design and
any unbalanced design, respectively. Also, b = n/a is the number of observations per group
in the balanced design. Then
2(1—p)*

(n—a)(a—1)
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where

(n—a)Var(A*) + (n—1)A=1)" (n—1)(b—1)

A = 2 — 2 (38)
B = 2(n—1)<zz_21—bb_21> (39)
C = (n—1) (%-%) (40)

and Var(A*) and A refer to quantities in the unbalanced design. We only need show that
Ap®> + Bp+C > 0 for all pin [0,1) in order to satisfy the theorem. Note that A < b. This
was shown by Anderson and Crump (1967) and follows from the fact that

b-R = ST (41)

using (11) and (12). b — A is related to the variance of the group sizes, which is always
positive for unbalanced designs. From A < b it follows that C' > 0 and that B + 2C > 0.
Furthermore, A+ B+ C = (n — a)Var(A”‘)/Z2 > 0. These facts are sufficient to obtain our
result since Ap?+ Bp+C = (A+B+C)p*+ (B+2C)(p—p*)+C(1—p)* > 0 for pin [0,1).
It follows that Vynp(p) — Vear(p) > 0. Hence the balanced design is uniformly better than

any unbalanced design using the asymptotic variance.

PROOF of THEOREM 2

If V1(p) and V3(p) denote the asymptotic variances for any two designs, then

-l = ot g 4 By ) (12)
where
4 (- a)Varl(A*)Z—|;2(n ~D@AL -1 (n- a)Varz(A*)Z—zz(n —1)(A, — 1)2(43)
B — 2(n-1) (lelg L 5%2; 1) (14)
C = (m-1) (é—é) (45)

where Var;(A*), A; and Vary(A*), Ay refer to quantities associated with designs 1 and 2,

respectively. Anderson and Crump (1967) showed that the straddling design maximizes A,
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so if the straddling design is design 2, we have that A, > A;. It follows that C' > 0 and
B +2C > 0. Furthermore,

(46)

ALBAC = (n—a) <Var1(A*) - varz(m)>_

A Ay
If A+ B+ C > 0, then the quadratic Ap*> + Bp+ C > 0 for all p in [0,1) and hence the

result follows. Now

Var(A* m TmAZ
arz(z ) - (Z;—Tl)zz_l (47)

SO Var(A*)/Z2 is minimum when >, rmAfn/Zz is minimum. A small amount of algebra
shows that 3, rmAfn/Z2 is proportional to

322 - 27133 + n25'2
(n2 - 52)2
where Sy = 3, b7 and S3 = 3, b?. Anderson and Crump (1967) in a three page proof showed

(48)

that the staddling design minimizes this quantity, and hence applying this result we have
that A+ B + C' > 0. Thus, in the absence of a balanced design, the straddling design is

uniformly best in terms of asymptotic variance.
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Figure 1: Comparing Balanced and Unbalanced Designs when n = 25, a =4

28



o 2 il . _
g — ‘ Balanced Designs - Asymptotic Results
[o0]
(\! —
o

z

-

(o))

c o

QO N

- o

©

L

O

Q

Q

X

M|

Q

g 3

¢ o

<

S

>

£

=

p
N
(\! —]
o
o
(\! —
o

[ \ [ \ [ \ [ \ [ \ I
100 110 120 130 140 150 160 170 180 190 200

Sample Size

Figure 2: Optimal Group Sizes for Balanced Designs - Asymptotic Results
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Figure 3: Optimal Group Sizes for Balanced Designs - Exact Results
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Optimal Class Sizes for Balanced Designs

(Sample size is a multiple of 12)
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Figure 4: Optimal Group Sizes when b = 2, 3, or 4
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% Relative Difference in Average Expected Lengths

25

2.0

15

1.0

0.5

0.0

Comparing Designs using Asymptotic and Exact Methods

\ \ \ \ \ \ \
40 50 60 70 80 90 100

Sample Size

Figure 5: Comparing Designs using Asymptotic and Exact Methods
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Expected Length of 90% Confidence Intervals (Exact)
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Figure 6: Comparing Balanced and Unbalanced Designs when n = 25
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