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Abstract: In Gray and Wang (1991) the deterministic version of the generalized jackknife,
referred to as the G transform, was shown to be a powerful tool for obtaining simple
approximations functions for tail probabilities of most pdfs. These approximation functions are
highly accurate in the tails of the distribution and are all of the form Ax)R(x), where fis the pdf and
R is arational function. Gray and Wang were only able to give R(x) for G forn = 1,2,3 due to
the extensive algebra required. Even so these approximations yielded relative errors typically in
the 10~range. In this paper we review the generalized jackknife theory for this application and
make use the computer algebra programs Maple and Mathematica to obtain approximation
functions Ax)R(x) forn = 1,2---7 (up to n = 10 in the normal case). The resulting approximation
functions have relative errors typically in the 107!° range and in some cases 10~2° or better. Thus,
for most practical purposes one can consider these approximations as good as closed form
solutions in the tails of the distributions.
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Introduction

Gray and Wang (1991) introduced the G{™-transformation as a general method for obtaining
approximating functions for tail probabilities. The G™ approximation functions have the unusual
property that they actually improve in the tails. The need for approximation functions that are
highly accurate in the extreme tails arises in a number of areas of statistics. For example, in
clustering problems, it is often necessary to compute extremely small probabilities because of the
large number of ways, (2™! — 1), to separate n + 2 points into two groups. In reliability the need
for such probabilities can arise from the desire for a highly reliable component that depends on
other components 1n series; see Good (1986).

When viewed in the more general setting as introduced in Gray (1988), the G -transform is



actually a “generalized jackknife.” Moreover, in Gray and Wang (1991), it was demonstrated that
these “jackknife approximations™ are more accurate than other existing approximation functions.
Additionally, the approximations are all of the form fx)R(x), where fis the pdf and R is a rational
function. Unfortunately, the function R(x) is not easily obtained for large values of m or n due to
extensive algebra required. In Gray and Wang (1991), these functions were only given form = 1
and n < 3. Even so, they achieved relative errors that are typically in the range 1073,

In this paper, we review the necessary generalized jackknife theory for this application and
make use of the computer algebra program in Mathematica to obtain f{x)R(x) for values of n < 7
(up to 10 in the normal case). The resulting approximations with relative errors generally in the
range 107° and in some instances 10-2°,

Finally, in the appendix, we include tables giving the actual approximation functions forn < 6
(10 in the normal case). Additionally, we include the code that can be run in Mathematica to give
more extensive approximations. Such approximations are also available by writing the authors.

The Generalized Jackknife

Let8,, 8,, -, O be a collection of estimators and let c; be a set of constants
such that

@) E[’é,--c,o] = iayb;(O),j =1, 2 k+1
=]

where ¢, = 1, the constants a;; are given and the b,(8) are unknown functions
of 8. The k™ order generalized jackknife is defined as follows:

2) G, 02, -, 91‘—-1;11,/) — Hreni®pay)

A'/.“.]‘IC,LA(”?

where
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In (2), the generalized jackknife is defined as an extension of the original jackknife definition
given in Schucany, Gray and Owen (1971). The extension defined in (2) has been demonstrated
as having significant value in numerical approximation in Gray (1988). Ifa;b,(0) = 0fori > kin
equation (1), then taking the expected value of both sides of equation (2) reveals that
G@,, 8, -+, 81.1;ay) is an unbiased estimator for 8. If a,b,(6) # O fori > k, the generalized



jackknife is not unbiased, however, under general conditions it is of lower order bias.

The generalized jackknife is well-known as a method for reducing bias in estimators. Not as
well-known is the fact that the generalized jackknife can provide a way of reducing error in
numerical approximations; see Gray (1991). To elaborate, let 9, be an estimator which has its
probability mass concentrated at a single point. This kind of point estimator is more commonly
known as an approximation and £ [@, -0 ]=’6} — 0, so the bias in this case is the numerical error.
When the generalized jackknife is applied to a collection of approximations, it can be used as an
approach for reducing error on these numerical approximations. This method of using the
generalized jackknife as an approach to finding numerical approximations is discussed in Gray
(1988). In addition, Gray pointed out that such well known numerical methods as Simpson s rule,
trapezoidal rule, Romberg integration, Lagrange Interpolation, etc. can be viewed as generalized
jackknives.

Use of Jackknife in Approximating Tail Probabilities
Let fbe a pdf, and let

'3 F(x) = [yt

a

y

and assume that lm F(x) = S. Note that here F(x) is not a cdf, since in general

Af) > 0fort < a, as well as £ > a. Now lete(x) = § - F(x) and
) U(x) = ¥ Y 22

=0

where ; is an integer such that J; < k and axo # 0. Suppose further that m is
the smallest possible integer such that the differential equation

Un@®)E™ + Upa ()™ +  +Ui(x)e' —e =0,

is satisfied by £(x) for some set of Uy’s. The ay, in (6) need not be known.
For example, suppose

ay =ay; = =0y =0fori 2 ny,nz, -, nm, respectively, the sum in (5)

n, n

L
1

becomes x*

M

o _
x

1M

a;,x"*, and the differential equation (6) becomes



Am—1 Am-1—1 ni—1

U X e (x) + Y QXD (X) + o Y oy x" e (x) - g(x)=0
=0 =0 =0
Then

nm~1 -1
(7) F(x) = S+ Z 1’1,71_,.751'"771*”’_1\‘(_‘{‘) 4o Z az_rxllﬂf(x)

=0 =0

and

Nm—1 ni—-1

(8) .ﬂk) (\) = Z an:.r["A[”r{f{nPl}('r)}[’HU +oee Z all[xllﬂji(x)]{k_l)

=0 =0

m
(k=0,1,2,- ,N-1,N=3n).
=1

Equations (7) and (8) define a system of equations of the same formas (1) with ¢, =1,
andc; = 0for2 < j < N+1, and with the a;, corresponding to the 5,(6).

Clearly, this system can be solved for S and, therefore, the generalized jackknife

defined by equations (7) and (8) is exact; that is, it gives an exact tail probability

when applied to the N+1 functions F®(x) (k= 0, 1,2, -+, N) if e(x) satisfies (6).

Thus if (x) satisfies (6) for x > a, then forany x > a

©)  GIFx), F(x), -, FP@)ay(x)] = 8. = [ flx)dx

if the @, are properly defined by (7) and (8). Now note that (9) holds forx > a.
But F(a) = 0,s0 we can take x = a and no integration is required in (9).
To be more specific, suppose that

m = 1,n, = n,and x = a. Then N = n and denoting G(0, F(x), - F™M(x),ay(x)) by
G (fix); a;(x)), we have




0 fxy - SR
an(x) an(x) - aym®)
ani(x) ana(x) - Apps1 (X)
GP(fx);ay(x)) =
an(x) ap(x) - i (X)
A1 (x) an2(x) -+ Anpa(x)

ay(x) = AR

Thus, if (6) holds with a1, = @2; =...= 0 fori > nq,ny, ... ny,it follows that
(12) GO (fx);ay(x)) = [foadt.

Now assume that f{(x) satisfies (6) for some set of Ux(x) defined by (5) and

limUF D @y (x) =0 (=i, i+1, 3i= 1, 2, --).

Levin and Sidi (1981) showed that there exists a;; such that
@13) UL (x)e™ (x) + Uppy (e (x) + -+ + Ui (x)e' () —e(x) = O&™)
where

-1
(14) Uiw) = §a2,ix’*"-

From our observations in (12), it would, therefore, appear from (13) that G
should converge “super fast” to S. This is the case and it also is true for

m > 1. See Levin and Sidi (1981). Equation (13) leads us to define the generalized
jackknife tail probability function as follows:




Definition 1: Let f{x) be a pdf, with infinite support and suppose that f{x) satisfies
the differential equation in (6) for some m and some collection of Uy(x). Then we
define the G{™ -transformation of f(x) as the generalized jackknife approximation

of '[ At)dt corresponding to (13); that is,

(15) GS."')[Kx);ag(x)] = G[o’ j(x)r Ty f'"-l)(x);ay(x)].

where
ag(x) = GhMRXNV, i=1, o, mj=1, ., mn+],

= @)Y, i=n+l, -, 2m j= -, mn+],

= (xl -l o)) D = (m-1)n+1, -, mn;

j=1, -, mn+1

It was demonstrated in Levin and Sidi (1981) that the foregoing assumptions cover a wide
class of integrands. In fact, it is difficult to think of a differentiable pdf that does not satisfy (or
approximately satisfy) (6) for some set of U,(x) and some m. For instance, in the simple case in
which all of the Ui(x) are constants, that is, Uy = ci, then for any m there exists an m” order
homogeneous differential equation with coefficients ¢, whose solution is given by some linear
combination of the elements of S = {e#*, k = 1, 2, ---, m}, where B¢ = a; + ib, which would
imply that if f can be represented by a Fourier series the method should be effective. In fact, under
general differentiability conditions, it has been shown in Gray and Lewis (1971) that

lig}(i‘l""“‘ (f(x),as(x)) = _l.,f'(l)d(

Of course. GV is much more general than G\, Notice that if we take U, (x) = 22 then f
g 1 00 .
- . - . [, flx) . .
satisfies (6) with m = 1. Thus if x~*! == has a convergent Laurent series expansion about zero
o) g P

with only non-positive power terms,
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expect rapid convergence of € Ffix .¢))to f)dr for large  and of the bemng
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!
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Applications

In Gray and Wang (1991), the G{™-transformation was used to approximate tail probabilities
for the standard normal, Student t, Inverse Gaussian, Pearson Type IV and, the ratio of a y2 and a
log normal. In Gray and Lewis (1971), the Gamma distribution was used to demonstrate the
power of another less general jackknife method called the B,-transformation in getting
approximations to tail probability. The B,-transformation only assumes that the pdf satisfies an
m? order constant coefficient homogeneous linear differential equation.

In this section we extend the results of Gray and Wang for the G."-transformation for larger
order transforms and introduce some new examples. Hereafter we will use G, to mean G¢".

Example 1: The Normal Distribution

The standard normal pdf is fx) = 7;?-e-%*’. Clearly, x™'f'(x) - f{x) = 0, and
therefore, f{x) satisfies Equation 6 withm = 1. Then

Uix) =xh 3, =2 =x = 4, = -1, and ay,; = 0, for i > 0,since a0 * 0.
0

Then, for example
GiE) =fD)r W) =0 G = AR,
x(x*+21x4+104x3496 ) x{x%+34x%+333x4+1000x2 +600)

Ga(x) = fx) (P+220+1237+16853+24) ° Gs(x) = A0 sm et sizrsctaizn0aisn
See the Appendix for a complete table of G, through G,

The relative errors in estimating the tail probabilities for various values of x are
listed in Table 1 for G, (x) through Gs(x).



Table 1 Relative errors for the G{!’-transforms of the normal

E(Gs)

E(G1)

E(Gs)

Lo i " (G2) | EGs) | E(Ga) | EGs)
1| 3(2)| 3.0(4) | 1.6(3) | 9.3(4)

3.9(4)

1.4(4)

4.0(5)

. 13) | 1.0G3) | 5.94) | 1.8@3)

4.4(5)

7.0(6)

3.1(7)

3.7(6)

2.7(7)

3.5(7)

}_ } ] ~5(4)| 6.04) | 1.7(4) | 3.2(5)
2(4) | 8.2(5) | 7.7(6) | 2.7(7)

6.8(8)

2.1(8)

3.79)

45)| s5.0(7) |3.400)[3.5010)

1.3(11)

5.7(15)

3.1(14)

., |-.66)] 5.19) [2.601)[4.3013)

5.8(16)

6.0(17)

8.5(19) |

1 3.85) |1.6(7) [1.1(10) | 3.6(13) [ 1.1(15)

2.0(18)

2.3(20)

9.9(21) |

(* 1.1507(1) means 1.1507x10™)

Example 2: The Gamma Distribution: fx) = ,.(a‘)b. x*+led

Clearly A(x) satisfies (6) with m = 1; that is, (@' — 4)7'f'(x) —Ax) = 0, and

thus again, m = 1 and U, (x) = (ax™' — ). Inorder to identify the /; parameter
in equation (15) we find the Laurent senies of U, (x) expanded about zero.

Ur@) = =2+ = -3[1+2 + &2 4+ .| Hence the parameter /; = 0.

1-abx~!

Now, for example, a = 7 and b = 2; that is, a 72 distribution with 14 degrees of
freedom. In this case, the pdf becomes fix) = w+—x%¢ 7, and f{x) is the solution

92,160

to some linear constant coefficient 7% order homogeneous differential equation.

Therefore, G3"[fix);a4(x)] = [f(1)dt. See Gray, Atchison and McWilliams

(1971). For the given values of the parameters a and b,

G(x) = 2e72(x + 12x° + 120x* + 960x> + 5760x2 + 23040x + 46080)
as could have been obtained by repeated integration by parts. In fact, the Gamma

pdf fA(x) is a solution of a homogeneous ODE with constant coefficients for any

integer a > 1, so that Gﬁ.”[f(x);ay(x)] will be exact forn = a.

However, if a is not an integer G,(f{(x)) is still highly accurate in the tails. As an

example we include a table of relative errors for parameter values a =

and b = 2, and approximations G, through Gg.

1



Table 2 Relative errors for the G -transforms of the Gamma for a = —%— and

b=2

E(Gy)

E(G,)

E(G;)

EG.)

E(Gs)

E(Gs)

E(G, )__

E(Gs)

8.3265(2)*

7.42)

1.2Q2)

2.93)

8.5(4)

2.8(4)

1.0(4)

4.0(5)

1.7(5)

1.4306(2)

2.82)

2.43)

3.3(4)

5.8(5)

1.2(5)

3.0(6)

8.0(7)

2.4(7)

5.3200(4)

9.4(3)

3.4(4)

2.2(5)

2.0(6)

2.4

3.3(8)

5.4(9)

9.8(10)

25 | 5.7330(7)

2.6(3)

3.1(5)

1.7C7)

2.98)

1.5(9)

9.7(11)

7.6(12)

35 | 3.297109)

1.43)

9.7(6)

1.4(7)

3.309)

1.1(10)

4.7(12)

2.5(13)

6.9(13)
1.5(14)

50 | 1.5375(12)

7.2(4)

2.7(6)

2.2(8)

3.0(10)

5.9(12)

1.5(13)

5.0(25)

2.0(16)

75 [1.707118)

3.3(4)

5.9(7)

2.409)

1.7(11)

1.8(13)

2.5(15)

4.5017)

1.0(18)

120 | 6.3261(28)

1.3(4)

9.9(8)

1.7(10)

5.4(13)

2.5(15)

1.6(17)

1.3(19)

1.5(21)

(* 8.3265(2) means 8.3265 x 10-2)

The GV (fix)) forn € {1,2, -,6)} and parameters a and b unspecified are listed

in the appendix.

Example 3: The Student t Distribution

The pdf of the t distribution with parameter k degrees of freedom is

&)

=2 )
=

=t
£)72

The Student t pdf satisfies the differential equation (6) withm = | as can be seen

below:

x (i - o ) @) - fw) = 0

Hence U;(x) = x!

1

k+1

(k+:y3 )’ yielding /; = 1. Once again Definition 1

gives us the method for generating the G, (x)-transforms for the Student t which

10
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n=1,...,8 The approximation is given for anyA and y in the Appendix for

n<S$

For example, by the Appendix, fory = A = 1
Gi(f(®) =fx) 72

x243x-1"

G3(f(x)) =f(x)

G2(f(x)) =f(x)

+36x%+110x4 200+
84213410254+ 7523 —42x249x-1

2x4+14x3-2x2
1102413536241 °

Table 4 Relative errors for the G ,-transforms of the inverse Gaussisn, A = u = 1.

15{

e

E(Gy)

E(G2)

E(G3)

E(Gq)

E(Gs)

E(Gs)

E(Gr)

E(Gs)

)y’

1.7(1)

7.1Q2)

2.8(2)

1.3(2)

6.2(3)

3.2(3)

1.73)

9.4(4)

2 b

1; Q)Z(l)

1.5(1)

4.8Q2)

1.7¢2)

6.63)

2.303)

1.33)

6.3(4)

3.2(4)

3

4.6812(2)

1.1Q1)

2.5(2)

7.0(3)

2.23)

7.9(4)

3.0(4)

1.2(4)

5.4(5)

4.5

1.4301(2)

1.42)

1.2@2)

2.53)

6.0(4)

1.7(4)

5.3(5)

1.8(5)

6.4(6)

6

4.8499(3)

5.3(2)

6.53)

1.1(3)

2.1(4)

4.905)

1.3(5)

3.6(6)

1.1(6)

10

9.4392(4)

2.82)

1.93)

1.9(4)

2.4(5)

3.7(6)

6.6(7)

1.3(7)

2.9(8)

16

9.4392(6)

1.4Q2)

5.1(4)

2.9(5)

2.3(6)

2.3(7)

2.6(8)

3.509)

5.3(10)

32

1.2201(9)

4.43)

5.7(5)

* 1.8923(1) means 1.8923 x 10!

Example 5: The F distribution

(136 [426)

The pdf of the F distribution is
RGO ONPRY I .
£ = worny (3) G0 ®

1.509)

9.6(11)

6.2(12)

which satisfies the first order pdf (—2x—2E——)f'(x) — Ax) = 0. Hence
Ui () = —2x—22——-, which can be rewritten in a Laurent series of the form

a10x + ayy +£P—+'",SOI| = ].

Since U;(x) has the parameter /) = 1, G,[f{x);a;(x)] has the form of equation
(20), from which we can generate the G{'’-transformation of fx). Table 6 shows
the relative error forn = 1,2,---8 anda = 3,5 = 4. The approximation is given
in the appendix for alla and b whenn = 1,2, ---5.

4.6(13) |

12



When a=3b=4
Gi(f(x) = fx) &4

G2(f(x)) = f(x)Zesger-ie

Table 5 Relative errors for the G,-transforms of the F distribution:

x True | E(G1) | E(G2) | E(G3) | E(G4) | E(Gs) | E(Gs) | E(G1) | E(Gs)

4.191.000296(1) | 1.2(2) | 6.2(3) [ 1.3(4) | 7.0¢6) | 5.4(7) | 5.2(8) | 5.7(9) |7.0(10)

6.59| 5.00169(2) |6.33)(2.33)[3.3(5)| 1.2¢6) | 6.2(8) | 4.1(9) |3.110) [ 2.6(21)

9.98 | 2.49965(2) [3.7(3)[9.7(4)[9.2(6) | 2.3(7) | 8.2¢9) |3.7020) |2.0011) | 1.2(12)

16.7| 9.99383(3) [2.03)|3.3(4) | 1.9(6) | 2.93) [ 6.6(10) | 1.9(11) | 6.1(13) | 2.2(14)

Other Methods

There are, of course, other methods for obtaining approximation functions for tail probabilities.
However, the only ones to date that are effective are of the form f(x)R(x) where R(x) is a rational
function and fis the pdf. Besides the G(™ — transform, the only general method that is competitive
with G is the method of continued fractions. However, the only result available from that
approach currently is for f(x) a normal (0,1) pdf. In that particular case, G¢’ and the continued
fraction results are very similar in form and accuracy. Other results in the normal case of this
rational function have been given by Hawkes (1982) and Lew (1981). Their 8th order

approximations are comparable in complexity and accuracy with G4(f(x)). Their methods do not
extend to other distributions.

A Mathematica Program for Generating The G — transform

The simple Mathematica program listed below was used to generate each of the G’ —
transforms in this paper. There are only three parameters needed: the pdf f[x], the order of the
transform n, and the parameter /; from equation (5) with & = 1. These are defined on the first line
of the program.

The output consists of the rational expression R[x] followed by the G/’ — transform
G{x] = fix]R[x]. Both R[x] and G{x] are then defined functions and can be evaluated at any value
of x.

An example for the G’ — transform of the standard normal

13



Num = Table[0, {i,1,n+1},{j,1,n+1}];

Num[[1,1]] = O,

Forlj = 2,j <= n+1,j ++,Num([1,j]] = D[fix], {x,j — 2}]]

For[i =2,i<=n+1,n++,

For{j = 1,j <= n+1,j++,Num[[i,j]] = DIx"L -i+2) * fix], {xJ - 1}111
Den = Table[0,{i,1,n+1},{j,1,n+1}],

Den[[1,1]] = 1;

Forlj = 2,j <= n+ 1,j++,Den|[1,j]] = 0]

Forli=2i<=n+1n++

For{j = 1,j <= n+1,j++,Den[[i,j}] = DIxL -i+2) * fix], {x.j - 1}111

o DefN
Rix_J= S‘““’“”[ﬂx] e ]

Glx_) = fix] * Rix]

The exact form of G{) can be found in the appendix. Evaluations in Mathematica yielded
G[1.645] = 0.0499849, G[1.96] = 0.0249979, and G[2.326] = 0.0100093.

Concluding Remarks
In this paper we have presented the theory of the Gi-transformation and the general
methodology for finding easily evaluated functions that accurately approximate tail probabilities.
Unlike most approximation functions which are distribution specific, the G -transformation is
very general in application and can be applied to nearly any distribution that is differentiable. The
examples presented in this paper are an extension of the results in Gray and Wang (1991) and were
made possible using a computer algebra system that was not available in 1991. The examples
1
presented should provide the reader with ample numerical evidence that when %—:—f(g—)) has a
convergent Laurent expansion about zero with only non-positive power terms G converges quite

rapidly to I A)dt. In fact, the approximation given here should be sufficiently accurate for virtually

any application requiring highly accurate tail probabilities.
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In our examples, we have used m = 1 and determined /; for each distribution, however G$" is
robust and in most cases accurate approximations can be obtained by simply letting /; = 1 for any
relevant distribution and then increasing the order n until the desired approximation is reached. An
example of this feature is presented for the ratio of a 2 and a lognormal in Gray and Wang (1991).

Finally, it should be mentioned that values of m > 1 are also of interest. For example, Gray

and Wang (1993) have used G to obtain tail probabilities approximation functions for the
standard non-central distributions.
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APPENDIX

j: flt)dt = G [f(x)] :%:—%f(x)

Normal Distribution: f{x) = Ji_ﬂ 5 —w<x<®
Coefficients of the x* term
Term® | Ny | Dy [N2 [D2 N3 |D3s [ Ng |Dg | Ns |Ds
x° 1 2 6 | |24 120
x! 1 4 18 9 600
x2 1 5 27 168 1200
x 1 1 104 1000
x4 1 12 123 1275
x° 1 21 333
x® 1 2 365
x? 1 34
x* 1 35
1

x!0 1

* An empty cell means that the coefficient of that term is zero.

() = -2+ + 18
Example: G{V[Ax)] = fx] x5 +12x* +27x2 + 6



Ni(x)

|7 fdt = Gylfo] =358 1x)
Normal Distribution: f{x) = —f;?e‘% -~ <xX<®
Cocfficients of the x* term
[Tem* | 3¢ | Ds | N7 | D7 | 1 Ds No Do Nio Dio
x? 720 5040 40320 362880 3628800
x| 4320 35280 122560 12635920 36288000
2 | | om0 88200 887040 9797760 117936000
< [10200]  [in720 1317120 16692480 226800000
x4 13950 | 163170 2046240 27488160 394632000
< | 4938 73206 | | 114848 | | 17654112 292299840
x| 5655 RT463 1387680 | | 22861440 393271200
x! | 807 1695 341760 6855840 139410720
<t 855 | | 18480 383145 7901145 165082050
x? 50 1655 46615 171212215 31123230
i 51 1722 49476 . 1323189 34364925
i 1 69 3033 110136 3636045
%12 BE 70 12 115038 3854025
2 L | 91 5124 232890
e I 9 1 538 240750
& | 1 116 8338
_x“ _.‘._‘ ' 1| 117 8280
X 1 144
e ﬂ B 1 145
14 1
i 1

* An cmpty cell means that the coefficient of that term is zero

Example: Gg)[ﬂx)] = fix] 12

x!! 4+ 50x° + 807x7 + 4938x> + 10200x> + 4320x

+51x1% + 855x® + 5655x° + 13950x* + 9720x2 + 720
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I

Studentt fx) = ri%)

r(4) ¥

Ni(x)

[7 roat = G f0] =222 f(x)
X

"~ Dix)

Coefficients of the x* term.

(22)7¥

term [N; Dy N2 (D2 [N [ ’N4 Dy ‘
0 ] S 1263
S Y H K \ 5k? } izsk-" |
2| T T ’\ k2 Tzkz(n’k}il)'
xjA‘H L “ Dlk | k(k;;)!. [ Ka3k=+47) R
xL “ | || :k(ka) - #21;27(7“ 1y |
x> “ I k=2 | | (k218K = 25) ‘ |
x6 1 I 17 | k(k+2)(ki~§w)j}
< T (ks 2)(k+3)
Tem'|Ns ps ]
x° 60k*
! | 180k* o B
Xz o N | 15K3 (19K - 3
; x3 K3(143k + 329) 1 B
x* Tskf’(liﬁw 13)7 |
x> 777};2'(54{;124@; 247) ' \
x5 | Sk2(k+ 2)(5k + 1'1')7 |
x7 k(333K 24124k + 122) - ‘
x| ' (ks 2) k< 3)(k+4)
| x? (k+2)(k + 3)(k +4) | ‘
barie G - ey LD KETI o
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Student #  f(x) = Fl(-;_?il)_'x(ltﬁ)#

|7 f0dt = Gyl0] =F1x)

Coefficients of the x* term

}’l'eHP’H»NI gl ”EZ’Dv 4Nz JLN4 - ID4 - 7J
x? k | 3k~ | 12k3

K Ik T de | sk ] ‘281\’3 1
lx?w | L T | 6k2 M ESCESN
X3 ] 1 |k | kk+7)| k2 (13k+47) ‘
T “ foe ]
xt L [ kk+2) - 2k?2 (Tk+11)
\\57 TE \ B I | k2 1 Ekz—lsk-zs) |
‘\67 [ T T k(k 2)(|\+z)‘
| 7 ! \ T

R I N N N N M‘*’)“‘ 3 ]

LTumi’7N5 7 \1)5 j
x° {60}(4 |
' x! 180k*

[xz B 15k (19}\»2) |
| x3 K3 1431\ 329

E ST N

=

131\’(111\ 13) |
.h jkz(z‘uzman\ 747) |

-

I

xe *5}\ 5k (k + 2)(5k+]1) \
’x7;‘l\(k +zzku1241\+wz°)L -
Bad ‘ k(k +2)(k + 3)(k + 4)

D"ﬁ (1\725(1:3)(1\ 4T % ‘

5
oGP = M 1t




r .0
I Student? Ax)= -ré%;_;( 1) 7% (continued)
j‘ fo)dt = G,[fx)] = ;’;((‘; )

Coefficients of the x* term.
| Term* | N Ds N
| ' 360k°
| x! 1320k°

x? 180k4(1h3k -3) o
x| 12k*(203 + 131k)
|t ‘ 45k (43k%+36k + 1)
X5 | 3K (143k2+996k + 781)

6 15k3 (101 . 108k§31k2) h

x7 k2 (21581; + 1833 + 723k2+38k?) |
X A 3k%(k+2)(k+3)(13k + 37) |
x° K(k +3) (k3 +49Kk 24218k + 242) ‘
x10 ' 7 ‘k(k+2)(k+3)‘(k+4)(k+5)

A k) 3)(k+4)(k+5)

|

* An empty cell means that the coefficient of that term 1s zero.
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M  Gamma Distribution: fx) = F(;)b” a-lgF I: fldt = G[fx)] = \'(‘) f( <)
Coefficients of the m."‘r term.
[Tem® [Ny [ Dy N E E\{_q_: Ds |
’?‘ T—b{a-l] | b%a—1)(a-2) - hiia—mu—z;{n-zu
! b |1 —-hzta-—ljj—:!b(n—m ~b?(a®~6a + 11) -1bz{a—l}{u—3}l
x* b L 2b%(a—4) 3b(a —3)
|w.3 | l =h -1
N 5
%0 b*a—-1)a-2)a-3)a—-4) |
| x! ~b*(a - 5)(a?-5a + 10) | —4b%(a— 2)(a - 3)a-4)
x2 b3 (3258 — 25a) | 6b*(a—3)a—4) |
x> _3b2(a—5) [ —4b{a—4) |
x4 b |1
ol _ P I
hs{u—!}{a 2)(a =3)(a - 4)(a-5)
b5l3532 1503 +a%+274 - 2258) | ~5b*(a - 2)(a - 3)(a—4)(a— 5) !
2h“{u 6}{2&1—153+3?] 10b* (2~ 3)(a—4)(a~5) |
-3b3 (- 21u+za=’-+591 ~10b3(a — 4)(a - 5)
b?{n 6) Sbla - 5) ]
_"h et |
"Ne  IDs |
| b°(a - 1)(a 7><a - %)(a - 4)(a - axa _6)

)* 1\

t\ b>(-98a3 +3d +737»d 437()8 2548a)

| me - T)(5a%4% + 144)

F ;
ﬂ 263 (208 - 63a + 5.12)

}x-‘ H ~Sb*(a - 7)
S -

R

b®(a - 7)(a4 14a 4774 «196a+2>2) 6b°(a —

o

|

2)d-3)(a- a—5)(a46)

15b4(a- Na-4@-5)a-6)
—20b%(a-4)(a-5)(a-6)

15b%(a — 5)(a - 6)
\—6b(u46) \

[ 1

—

* An empty cell means that the coeflicient of that term is zero.

Example: G§[f(x)] =

-bx® +2b%(a - 4)x? - b3*(@* -6a+11)x

=fx] x> +3b(a -

-3 -2b%(a-2)@a-3)+b*(a-1)a-2)a-3)
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[7 f0dt = 6, [10] =)

IV Inverse Gaussian Distribution: fx) = —2i,—e &

Coeficients of the x* term

Tem' |[N; |D; |[N2 |D; N3 D3

¢ | s a2y 238

K{_j_ " Eia — lmag

2 242 ]a —2u*% | —u2(23-15p7) | 20522 1 —3141“{-:-.%15;11]-

?_ﬂ ] 1pt | 100 ~20u52 1 |5-p_“-{-2:~. -?y."‘-]

| e |22 e IA(AZ+35u2) |

x> | - 15;;“:. 21232

x| e L

) T Y R S
<0 14 8 | 35,10

<! — e Nt
ESl -—2u'3."' ]—15.295{-1;1-,1?} = 2;;‘”:-:‘ ’—513p3{—12+3up_11| -
@ | 260%2 60 (-7 [T | soutaZ(-210%)

x| eme-350%) 1.:‘(315;1“ _1400 2030 %) | 8uBa2 (42p%-2%) —5:-.p‘5{1a 21002219450 )
| -2u8a6n2-s6142 :u'usa:m.; 1547 422) 1680 MAZHI50E) | 10SkO(2n 0600 2u2+99u* )
55 —6}4:“[?.2—95;.:2) R e Iﬂlipl} ' 2}16{61'1—33{!12}:2%555#"} 5;.;.4(3:-.4 37832 2-.-34&.5;1 )
xT | eeuta2 [3ens? ULOMA230?) | sopR2nZaT?)
[ P It T st | sut (%1987

E’-f__ B T - 104p*23 :551*;? -
(0 = | - _'2"2?,_4 2

* Anempty cell means that the coefficient of that term is zero.

Example.
2u2x* + 14ptx3-2p 2
A2x* + 10020 -u2 (A 2-15p2 )x2—6p *x + A2p?

GP[f0)] = fix]
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