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Abstract: In Gray and Wang (1991) the detemtinistic version of the generalized jackknife,

referred to as the G~") transfonn, was shown to be a powerful tool for obtaining simple

approximations functions for tail probabilities of most pdfs. These approximation functions are

highly accurate in the tails of the distribution and are all of the form.f{x )R(x), where f is the pdf and

R is a rational function. Gray and Wang were only able to give R(x) for G~I) for n = 1,2,3 due to

the extensive algebra required. Even so these approximations yielded relative errors typically in

the I 0-5 range. In this paper we review the generalized jackknife theory for this application and

make use the computer algebra programs Maple and Madtematica to obtain approximation

functions.f{x )R(x) for n = 1,2...7 (up to n = lOin dIe normal case). The resulting approximation

functions have relative errors typically in the 10-10 range and in some cases 10-20 or better. Thus,

for most practical purposes one can consider these approximations as good as closed form

solutions in the tails of the distributions.
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Introduction
Gray and Wang (1991) introduced the G~") -transfonnation as a general method for obtaining

approximating fimctions for tail probabilities. The G~") approximation functions have the Wlusual

property that they actually improve in the tails. The need for approximation fimctions that are

highly accurate in the extreme tails arises in a number of areas of statistics. For example, in

clustering problems, it is often necessmy to compute extremely small probabilities because of the

large number of ways, (2n+l -I), to separate n + 2 points into two groups. h1 reliability the need

for such probabilities can arise from the desire for a highly reliable component that depends on

other components in series~ see Good (1986).

Whell viewed in the more gelleral setting as introduced in Gray (1988), the G~m)-transform is



actually a "generalized jackknife." Moreover, in Gray and Wang (1991), it was demonstrated that

these ')ackknife approximations" are more accurate than other existing approximation functions.

Additionally, the approximations are all of the form j{x )R(x), where f is the pdf and R is a rational

function. Unfortunately, the function R(x) is not easily obtained for large values of m or n due to

extensive algebra required In Gray and Wang (1991), these functions were only given for m = 1

and n S 3. Even so, they achieved relative errors that are typically in the range 10-'.

In this paper, we review the necessary generalized jackknife theory for this application and

make use of the computer algebra program in Mathematica to obtain j{x )R(x) for values of n S 7

(up to lOin the normal case). The resulting approximations with relative errors generally in the

range 10-10 and in some instances 10-20.

Finally, in the appendix, we include tables giVing the actual approximation functions for n S 6

(10 in the normal case). Additionally, we include the code that can be run in Mathematica to give

more extensive approximations. Such approximations are also available by writing the authors.

The Generalized Jackknife
Let 91, 92, . ", 9k+l be a collection of estimators and let Cj be a set of constants

such d1at

(1) E[9j -c~
..,

= Latfbi(9),j = 1, 2,
1-1

1+1

where

%1 %2 Zfil

all Q12 Ql,k+lH1-tol (zJ;a,) =

ak,io+l
Qt.1 Qi,2 ..

In (2), the gmeralized jackknife is defined as an extension of the original jackknife definition

given in Schucany, Gray and Owm (1971). The extension defined in (2) has been demonstrated

as having significant value in numerical approximation in Gray (1988). If atjb;(O) = 0 for i > kin

equatioo (1). then taking the expected value of both sides ofequati on (2) reveals that

G(81. 82. "'. 8k+l;atj) is an unbiased estimator forO. Ifatjbl(O) * 0 fori > k. the generalized
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where c} = 1. the constants aij are given and the bi(O) are unknown functions

orB. The kth order generalized jackknife is defined as follows:



jackknife is not unbiased, however, under general conditions it is of lower order bias.

The generalized jackknife is well-known as a method for reducing bias in estimators. Not as

well-known is the fact that the generalized jackknife can provide a way of reducing error in

numerical approximations; see Gray (1991). To elaborate, let OJ be an estimator which has its

probability mass concentrated at a single point. This kind of point estimator is more commonly

known as an approximation and E[9j - eJ=Oj - e, so the bias in this case is the numerical error.

When the generalized jackknife is applied to a collection of approximations, it can be used as an

approach for reducing error on these numerical approximations. This method of using the

generalized jackknife as an approach to finding numerical approximations is discussed in Gray

(1988). In addition, Gray pointed out that such well known numerical methods as Simpson's rule,

trapezoidal rule, Romberg integration, Lagrange Interpolation, etc. can be viewed as generalized

jackknives.

Let f be a pM, and let

(4:

J{t) > 0 for t:$ Q, as well as t > Q. Now let e(x) = S-F(x) and
00

(5) Uk(X) = x1k~~
;-ox'

where Ik is an integer such that Ik ::5 k and ak,O * O. Suppose further that m is

the smallest possible integer such that the differential equation

Um(x)£(m) + Um-l(X)£(m-l) + + Ul(X)e' -e = 0,

is satisfied by E( x) for some set of Uk'S. The a k,i in (6) need not be known.

For example, suppose
, nm, respectively, the sum in (5)al.i = a2,i = ... = am,i = Ofori?: nl,n2,

nj-I nj-1
becomes Xli I:: 7- = I:: ak,ixlj-i, and the differential equation (6) becomes

PO ;..()
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&(x) = 0

Then

(7)

and

(8)

WI

,N -l;N = }:ni).
tel

(k = 0, 1,2, .

Cl = 1,Equations (7) and (8) defIne a system of equations of the same form as (1) with

and Cj = 0 for 2 ~ j ~ N + 1, and with the aj,/ corresponding to the b,(9).

Clearly, this system can be solved for S and, therefore, the generalized jackknife

defIned by equations (7) and (8) is exact~ that is, it gives an exact tail probability

when applied to the N+l functions Fk)(X) (k = 0, 1,2, ..., N) ife(x) satisfies (6)

Thus ife(x) satisfies (6) for x?: a, then for any x?: a
..,

(9) G[F(x),F(x),...,pOO(x)~a'J(x)] = S. = fJ(x)dx
a

ifilie aiJ are properly defined by (7) and (8). Now note iliat (9) holds for x ?: a.

But F(a) = 0, so we can take x = a and no integration is required in (9).

To be more specific, suppose that

F{x),...,F(">{x);aij(x» bym = 1, nl = n, and x = a. ThenN = n and denoting G(O,

G~m)(f(x);aij(x», we have
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G~l)Utx);aij(x» =

Qtj(X) = [rl-t+l.f{x)](;-l)

Now assume thatJ{x) satisfies (6) for some set of Uk(X) defined by (5) and

'j = 1 2 ...), " ,

Levin and Sidi (1981) showed that there exists a~,i such that

(13)

where
"...1

Uk (x) = 1:a~,xI.-t.
~

(14)

should converge "super fasf' to S. This is the case and it also is true for

m ~ 1. See Levin and Sidi (1981). Equation (13) leads us to define the generalized

jackknife tail probability function as follows:
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Definition 1: Let./{x) be a pdf, with infinite support and suppose that./{x) satisfies

dIe differential equation in (6) for some mand some collection of Uk(X). Then we

define the G~m)-transformation of..f{x) as dIe generalized jackknife approximation
~

of f./{t)dt corresponding to (13); dIat is,
x

G~.)[I(x);a,(x)] = 6(0, .l(x), . " f--l)(x);a.-(x)],(15)

where
Qtj(X) = (rl-i+JJ(x»(;-I), ; = 1, , mn + 1," n; j = I,

= (r%-l+ff+l.f(x}}(;-l), i = n + 1, ..., mn + 1," 211; j =

= (X'_I+(_l)t+lf-l)(X}}C;-l), ; = (m - l}n + I, m n "

, ,

j = I, ..., mn + 1

It was demonstrated in Levin and Sidi (1981) that the foregoing assumprions cover a wide

class of integrands. In fact, it is difficult to think of a differ~tiable pdf that does not satisfy (or

approximately satisfy) (6) for some set of U k(X) and some m. For instance, in the simple case in

which all of the Uk(X) are constants, that is, Uk = Ck, then for any m there exists an mth order

homogeneous differential equation with coefficients C k whose solution is givm by some linear

combination of the elements of S = {efJ.x, k = 1,2, ..', m}, where.8k = ak + ibk, which would

imply that iff can be represented by a Fourier series the method should be effective. In fact, WIder

general differentiability conditions, it has been shown in Gray and Lewis (1971) that

wi'dl only non-positive power terms.
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Applications

In Gray and Wang (1991), the G~") -transformation was used to approximate tail probabilities

for the standard normal, Student t, Inverse Gaussian, Pearson Type N and, the ratio of a X2 and a

log nonnal. In Gray and Lewis (1971), the Gamma distribution was used to demonstrate the

power of another less general jackknife method called the B n-transformation in getting

approximations to tail probability. The B n-transformation only assumes that the pdf satisfies an

mth order constant coefficient homogeneous linear differential equation.

In this section we extend the results of Gray and Wang for the G~l)-transfonnation for larger

order transforms and introduce some new examples. Hereafter we will use Gn to mean G~l).

Example I: The Normal Distribution

The standard DOnna! pdfis./{x) = -!ii-e-t.iZ. Clearly, x-If(x) - ./{x) = 0, and

therefore,./{x) satisfies Equation 6 with m = I. Then

~

U.(x) = rl 1::: 7 = X'I ~ '. = -1, and al,; = 0, for i > O,since alO :#: 0.
j8O

Then. for example

~+ltr+lI)03 (X) =j(X) %6+1~+27x2+6'G. (x) = J{x)~,

~(,xI+21zA+1Mz2'" )G.(X) = J(X) (.zI+~+l~+lfk2+2A) , .I(zi+~+~+l~.+fOO)G, (x) = .f(X) %lo+3Sz'+~~+127~+1~+120

See the Appendix for a complete table of G1 through Glo

The relative errors in estimating the tail probabilities for various values of x are

listed in Table 1 for G1 (x) through G.(x).
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z true

2 1.1507(1)- -
...6 I 5.47993(2)

2 12.27501(2)

3 1.3499(3)

6 9.86588(10)

10 7.61985(24)

12 3.67097(51)

19.~
I 5.1(2) I -

,
11. S(2)

Table I Relative errors for the G ~ I ) -transforms of the 00Ima1

l!;«il) E(G7.) E(G3) E(6.) E(G,) E(G,) £{6,) £{G.)

1.7(1)* 2.3(2) 3.0(4) 1.6(3) 9.3(4) 3.9(4) 1.4(4) 4.0(5)

5.1(3) 1.0(3) 5.9(4) 1.8(4) 4.4(5) 7.0(6) 3.1(7)

17.5{4) 6.0{4) 1.7(4) 3.2{5) 3.7{6) 2.7(7) 3.5(7)

3.2(4) 8.2(5) 7.7(6) 2.7(7) 6.8{1) 2.1{1) 3.7{9)

2.4(5) 5.0(7) 3.4{10) 3.5(10) 1.3(11) 5.7{15) 3.1(14)
I L ,} 11.6(6) 5.1(9) 2.6(11) 4.3(13) 5.8(16) 6.0(17) 8.5(19)'

13.8(5) 11.6(7) 1.1(10) 3.6(13) 1.1(15) 2.0{11) 2.3{20) 9.9(21)- -
(8 1.1507(1)~ 1.1507xl0-1)

Example 2; The Gamma Distribution: .f(x) = ~;xII-.e'f"

Cleariy.!{x) satisfies (6) with m = 1; that is. (ax-I - t)-lf (x) - .f(x) = O. and

thusagain,m = 1 andU1(x) = (ax-l_t)-I. In order to identify the/l parameter

in equation (15) we find the Laurmt series ofU.(x) expanded about zero.

UI (x) = ~ = -b[l + -f- + ~ + .]. Hence the parameter 11 = O.
1 1

Now, for example, a = 7 and b = 2; that is, a X2 distribution widtl4 degrees of

freedom In this case, the pdfbecomes}tx) = ~x6e=t , and}tx) is the solution

to some linear constant coefficient 7th order homogeneous differential equation.
(X)

Therefore, G~l)f.f(x);af(X)] . f(t)dt. See Gray, Atchison and McWilliams
x

(1971). For the given values of the parameters a and b,

G7(X) = 2e-xI2(X6 + 12X"s + 12Ox. + 96Qx3 + 5760x2 + 23040x + 46080)

as could have been obtained by repeated integration by parts. In fact, the Gamma

pdf./{x) is a solution of a homog~eous ODE with constant coeffici~ts for any

integer a ?: I, so that G~l)[/{x);aij(x)] will be exact for n = a.

However, if a is not an integer G" (/{x» is still highly accurate in the tails. As an

example we include a table of relative errors for parameter values a = t

and b = 2, and approximations G1 through G.
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Table 2 Relative errors for the G~l)-transfonns of the Gamma for a = t and

b = 2.

K=+
6

trIIe
-

E(Gl) E(G2) E(G3) E(G.) E(G,) E(G,) E(G,) E(G.)-
8.3265(2)* 7.4(2) 1.2(2) 2.9(3) 8.5(4) 2.8(4) 1.0(4) 4.0(5) 1.7(5)

1.4306(2) 2.8(2) 2.4(3) 3.3(4) 5.8(5) 1.2(') 3.0(6) 8.0(7) 2.4{7)
12 5.3200(4) 9.4(3) 3.4(4) 2.2(5) 2.0(6) 2.4(7) 3.3(8) 5.4(9) 9.8(10)

~ 5.7330(7) 2.6(3) 3.1(5) 7.7(7) 2.9(8) 1.5(9) 9.7(11) 7.6(12) 6.9(13)

35 3.2971(9) 1.4{3) 9.7(6) 1.4(7) 3.3(9) 1.1(10) 4.7(12) 2.5(13) 1.5(14)

50 1.5375(12) 7.2(4) 2.7(6) 2.2(8) 3.0(10) 5.9(12) 1.5(13) 5.0(25) 2.0{16)

75 1.7071(18) 3.3(4) 5.9(7) 2.4(9) 1.7(11) 1.8(13) 2.5(15) 4.5(17) 1.0(18)

120 6.3261(28) 1.3(4) 9.9{8) 1.7(10) 5.4(13) 2.5(15) 1.6(11) 1.3(19) 1.5(21)

(. 8.3265(2)~ 8. 3265 x 10-2)

The G~I)(/{X» for n e {1.2.

in the appendix.

. , 6} and parameters a and b \D1Specified are listed

Example 3: The Student t Distribution

The pdf of the t distribution with parameter k degrees of freedom is

./(.%) = ~lIL (1 z2) _.!:t!.

r( t )JIi: + T 2

The Student t pdf satisfies the differential equation (6) with m =
below:

. as can be s~

Hence U1(x) = Xl (--t;r - "(.!i);'), yielding /1 = I. Once again Definition I

gives us the medlOd for generating the Gn(x)-transforms for the Student t which
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are tabulated Corn E {1,2,3,} in the appendix. For example, if k = 3

Gz(f(x» = f(x)~
~7+~+~+7S6% G4(f(X» = f(x) 9o.K6+'76x4+1~+324

Table 3 Relative «fOIS for 1110 G ,,-tr81Sforms of the t distrIbution for various ~ of

freeOOmk.

k.l' TIW AlGi] AlG2] EtG)] AlG4] ~G5] AlG,] ~G7] AIG.]

3 10.214' 1.0000(3). 1.'(2) 3.8(3) 3.7(S) S.6(6) 2.4(7) 2.2(8) 2.2(9) 1.1(10)

3 22.2037 1.0000(4) 3.3(3) 8.1(4) 1.7(6) 2.8(7) 2.4(9) 2.8(10) S.I(12) 4.6(13)

4 7.1731 1.0000(3) 3.3(2) 6.6(3) 1.2(4) 1.4(') 1.3(6) 6.1(8) 2.0(8) 3.4(10)

4 13.0336 1.0000(4) 9.9(3) 2.0(3) 1.1(') 1.'(6) 4.1(8) 3.8(9) 2.3(10) 1.4(11)

5 5.8934 1. <XX>O(3) S.0(2) 8.S(3) 2.2(4) 1.8(5) 2.8(6) 1.2(8) 4.8(8) 4.5(9)

S 9.677S 1. <XX>O(4) 1.8(2) 3.1(3) 3.1(5) 3.4(6) 1.7(7) 1.1(8) 1.5(9) 3.1(11)

8 4.S007 1.0000(3) 9.1(2) 1.1(2) 4.3(4) I.S(S) S.3(6) 4.1(7) '.3(8) 2.0(8)

8 6.4420 1.0000(4) 4.4(2) S.2(3) 9.9(5) 6.1(6) 7.4(7) 1.2(9) 8.1(9) 7.4(10)

11 4.0147 1.0000(3) 0.1(0) 1.2(2) S.3(4) 6.4(6) '.4(6) 6. '(7) 8.2(9) 2.0(8)

11 S.4527 1.0(xx)(4) 6.3(2) 6.1(3) 1.4(4) S.S(6) 1.0(6) 3.9(8) 8.4(9) 1.6(9)

20 3. SS18 1.0000(3) 0.2(0) 1.3(2) 6.3(4) 6. S(6) 4.2(6) 7.2(7) S.0(8) 7.6(9)

20 4.S38S 1.0000(4) 9.4(2) 7.0(3) 1.9(4) 2.S(6) 1.0(6) 8.3(8) 1.6(9) 1.'(9)

* 1.0000(3)* means 1.0000 x ]0-3

Example 4: The Inverse Gaussian Distribution

The inverse Gaussian pdfis./{x) = f5:" e ~, which satisfies the first order

:-2"3P~~Jl2 )f(X) - ./{x) = o. The coefficient differential equation

,4 p4...oL
--2~ Jl2 JJ

UI(X)= -2- +6- + ... l l2% - .a,.r2

from which we can see 1hat /1 = O. Since UI (x) has the parameter /1 = 0, then

G ft £I( x); a ij (x)] hM the fonn of equatioo (19), from which we can generate the

G~I)-transformation. Table 4 shows the relative errors for Jl = ). = 1 and
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II = 1,..., 8. The approximation is given for any A and Jl in dIe Appendix for

n~5
For example, by the Appendix. for J.l = A = 1

G1(f(x» = l(x);;1:/;:" Gz(f(x» = I(x) .z4+~~~~~~1'

G (/;(x» - /; ( ) ~+~'+110%4_.,+2.z23 V' - J ,x .z'+2Ix'+1~4+75.z'-4~+9.z-1

Table 4 Relative emxs for the G ft-u.-lif{jIu~ of ~ inverse G81ssi8l. A ~ Il - 1.

x 1hIe E(G1) E(G2) E(G3) E(G.) E(G,) E(G,) E(G,) E(G.)-
1.' 1.8923(1)* 1.7(1) 7.1(2) 2.8(2) 1.3(2) 6.2(3) 3.2(3) 1.7(3) 9.4(4)

~

2 1.14'2(1) 1.'(1) 4.1(2) 1.7(2) 6.6(3) 2.1(3) 1.3(3) 6.3(4) 3.2(4)

3 4.6812(2) 1.1(1) 2.5(2) 7.0(3) 2.2(3) 7.9(4) 3.0(4) 1.2(4) 5.4(5)

4.5 1. 4301{2) 7.4(2) 1.2(2) 2.5(3) 6.0(4) 1.7(4) 5.3(5) 1.8(5) 6.4(6)

6 4.8499(3) 5.3{2) 6.5(3) 1.1.(3) 2.1(4) 4.9(5) 1.3(5) 3.6(6) 1.1(6)

10 9.4392(4) 2.I{2) 1.9(3) 1.9(4) 2.4(S) 3.7(6) 6.6(7) 1.3(7) 2.9(1)

16 9.4392(6) 1.4(2) 5.1(4) 2.9(5) 2.3(6) 2.3(7) 2.6(1) 3.5(9) 5.3(10)

132 1.2201(9) 4.4(3) 5.7(5) 1.3(6) 4.2(8) 1.8(9) 9.6(11) 6.2(12) 4.6(13) I
~ ~ -

* 1.8923(1) means 1.8923)( 10-1

Example 5: The F distribution

The pdf of the F distribution is

r(.,..) (.L) f !~Ax) = r(f)r(t) b (I+(t)%).

which s~es the first order pdf ( -2% -a~~+axb )f (x) - J{x) = O. Hence

U 1 (x) = -2% -ab+~2a¥'toarb ' which can be rewritten in a Laursrt series of the form

aloX+all+~+...,soll = 1.

Since U1 (x) has the parameter /1 = I, G,,[ltx);alj(x)] has the form of equation

(20), from which we can generate the G~l)-transformation of/(x). Table 6 shows
the relative error for n = 1,2,...8 and a = 3, b = 4. The approximation is given

in the appendix for all a and b when n = 1,2, ...5.
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When a=3b=4.

G1(f(X) =f(x)~
G2(f(X» = f(x) z:~~~~

Table 5 Re1ative errors for 1he G"-u-rUi~ offle F distributiG1:

z TrIIe E(G1) E(G2) E(G) E(G.) E(Gs) E(G,) E(G,) E(G.)

4.19 1.000296(1) 1.2(2) 6.2(3) 1.3(4) 7.0(6) S.4(7) S.2(8) S.7(9) 7.0(10)
6.S9 S.OOI69(2) 6.3(3) 2.3(3) 3.3(5) 1.2(6) 6.2(1) ..1(9) 3.1(10) 2.6(11)

9.98 2. 4996S(2) 3.7(3) 9.7(4) 9.2(6) 2.3(7) 1.2(9) 3.7(10) 20(11) 1.2(12)

16.7 9.99383(3) 2.0(3) 3.3(4) 1.9(6) 29(8) 6.6(10) 1.9(11) 6.1(13) 2.2(14)

Other Methods

There are, of course, other methods for obtaining approximation fimctions for tail probabilities.

However, the only ones to date that are effective are of the form f(x )R(x) where R(x) is a rational

fimction andfis the pdf. Besides the G~") - transform, the only general method that is competitive

with G~m) is the method of continued fractioos. However, the only result available from that

approach currently is for f(x) a normal (0,1) pdf. In that particular case, G~l) and the continued

fraction results are very similar in form and accuracy. Other results in the normal case of this

rational function have been given by Hawkes (1982) and Lew (1981). Their 8th order

approximations are comparable in complexity and accuracy with G.(f(x». Their methods do not

extend to other distributions.

A Mathemati~ Program for Generating The G~ 1) - transfonn

The simple Mathematica program listed below was used to generate each of the G~I) -

transforms in this paper. There are only three parameters needed: the pdfAx]. the order of the
transfoInl n. and the parameter II from equation (5) with k = 1. These are defined on the first line

of the program
The output consists of the rational expression R[x] followed by the G~I) - transfoInl

G[x] = Ax]R[x]. BothR[x] and G[x] are then defined functions and can be evaluated at any value

ofx.

An example for the G~l) - transform of the standard normal
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L=-}-n=S-Kx, vl:-
X2

= -1-e-T.I /fi; ,

Num = Table[O, {i, I,n + I}, {i, I,n + I}];

Num[[l, I]] = 0;
Forfj = 2J <= n + I,j + +,Num[[IJ]] = D[,1x], {x,j - 2}]]

For[i = 2,i <= n + I,n ++,
Forfj = IJ <= n + IJ + +,Num[[iJ]] = D[x"'{L - i + 2) * J[x], {xJ - I}]]]

Den = Table[O, {i, I,n + I}, {i, I,n + I} ];

Den[[I, I]] = I;

For{; = 2J <= n + IJ + +,Den[[IJ]] = 0]

For[i = 2,i <= n + I,n + +,
Forfj = I,j <= n + I,j + +,Den[[i,j}] = D[x"(L - i + 2) * J[x], {xJ -I}]]]

R[ ] - S. lify[ Det[Num ]x- - Imp Ax] * Det[Den]

= Ax] * R[x]G[.%_]

The exact form of G~l) can be found in the appendix. Evaluations in Mathematica yielded

G[I.645] = 0.0499849, G[I. 96] = 0.0249979, and G[2.326] = 0.0100093.

Concluding Remarks
In this paper we have presented the theory of the G~m)-transformation and the general

methodology for finding easily evaluated functions that accurately approximate tail probabilities.

Unlike most approximation functions which are distribution specific, the G~m)-transformation is

very general in application and can be applied to nearly any distribution that is differentiable. The

examples presented in this paper are an extension of the results in Gray and Wang (1991) and were

made possible using a computer algebra system that was not available in 1991. The examples

presented should provide the reader with ample numerical evidence that when ~ has a

convergent Laurent expansion about zero with only non-positive power terms G~) converges quite
00

rapidly to f./(t)dt. In fact, the approximation given here should be sufficiently accurate for virtually
or

any application requiring highly accurate tail probabilities.

14



In our examples, we have used m = 1 and determined /1 for each distribution, however G~I) is

robust and in most cases accurate approximations can be obtained by simply letting /1 = 1 for any

relevant distribution and thm increasing the order n \D1til the desired approximation is reached. An

example of this feature is presented for the ratio of a Z2 and a lognormal in Gray and Wang (1991).

Finally, it should be mentioned that values ofm > 1 are also ofinterest. For example, Gray

and Wang (1993) have used G~;~ to obtain tail probabilities approximation functions for the

standard non-cmtral distributions.
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APPENDIX

-~<%<~

Coefficients of the xl tenn

, Tsm- ~ Nt ~ Dt N2 I D2 ~ N3 'D, N. D4 ~ N, D,

12C

~

1 2 16 ~24

1 18 964 600

1 s 27 168 1200

1 l' 104 1<XX>

1 12 123 127S

21 333

22 365

1 34

1 35

I

1. An empy cell ~ that the coefficient of that teID1 is zero.

x' + IIx3 + I8xG~l)[/(X)] = Ax] x6 + Ilx4 + 27x2 + 6Example:
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-«><x«<>

Coefficients of the xk teI:m

G(I)[/{X)] - '-X ] XII + SQx9 + 807x7 + 493&x' + 10200x3 + 4320x
6 -JI; Xl2 + SlxlO + 8SSx' + S6SSX6 + 139S0x4 + 9720X2 + 720Example

17



r(¥-)./{x) = r(t)~ ¥)-AJl.n Student t

G~l)[f(X)] =JtX] (k+2~ +i(k+7~ +S1lx
1(k + 2)x4 + Q2X2 + 31lExample:

18



~x) = r(-AfL) (~ ) -1fL

r(t)1i';E k
n Student t

(k+2)%' +i(k+Z~ + Sk2x
G~l)(/{X)] =JtX] i(k+2)%4+6I2r+3k2Example:

19



¥ ) -~ (continued)n Student t

Coefficients of the Xk tem1.

20

r(..tsL) (
./{x)= r(t)5':i:



m

-br + 2bZ(a - 4)il- b3(r - 6a + 11)x
a~l)[/(x)] = Ax] -r + 3b(a - 3)il- 2bZ(a -2)(a - 3)x+b3(a -1)(a -2)(a - 3)Example:

21



In~ Gaussian Distributioo: .f(x) = J~~;~:~~~f~IV

Example

2p2u4 + 14p.x3_2p~2G~l)[.f{X)] = Ax] 12X. + 1~2x3-J&2(2l2_15p2)x2-6A1&.X + ).2p2

21
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