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ABSTRACT
Environmental data are routinely collected at irregularly spaced monitoring stations and at
intermittent times, times which may differ by location. Dynamic temporal models of climatological
variates, models for contaminant migration, and models for numerous other environmental
processes require increasingly more complex stochastic structure than classical linear and
generalized linear models. In this paper a class of continuous-time, continuous-space statistical
models is introduced to accommodate many of these more complex environmental processes. The
models incorporate temporal and spatial variability in a cohesive manner by assuming that
temporal change follows a stochastic differential equation with possibly temporally and spatially
correlated errors. A wide range of ARIMA temporal models and geostatistical spatial models are
included in the class of models investigated. Techniques for identifying the structure of the
temporal and spatial components of this class of models are detailed. The model identification
techniques are based on transformations of data to remove large-scale structure, thereby

facilitating graphical identification of small-scale temporal and spatial structure.
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1. INTRODUCTION

Spatiotemporal data often are collected across a geographic region at multiple time points.
Such data may be collected in order to construct regional maps of an attribute of interest at
specified time points, to characterize changes in the attribute over time, or to predict values of the
attribute at future times across the region. A critical feature of many spatiotemporal applications
is that measurements of the attribute of interest are taken at irregular spatial locations and
irregular temporal intervals. Continuous-time, continuous-space models and corresponding
analytic methods are needed to adequately model these space-time processes. In this article, a new
class of spatiotemporal models which naturally includes space and time through the application of
stochastic differential equations is introduced and methods for model identification are discussed.

Rouhani and Myers (1990) and Rouhani et al. (1992) discuss some of the problems
associated with the analysis of space-time geohydrological data. The temporal and spatial
sampling scales differ, complicating the definition of common scales of variation and often leading
to a disparity in the amount of data available in the two domains. Because time series methods are
based on the notion of ordered data, spatial data do not easily conform to time series methods.
Conversely, adding time as a dimension to a spatial statistical analysis often does not take
advantage of the ordered structure of temporal data.

Bennet (1974), Cliff and Ord (1974), Martin and Oeppen (1975), Ali (1979), Pfeifer and
Deutsch (1980a, 1980b, 1981) and DeGooijer and Anderson (1985) all investigate spatiotemporal
models based upon the general form of a discrete-time ARIMA model. Rouhani and
Wackernagel (1990) and Rouhani et al. (1992) model time series at various sampling locations as
separate but correlated one-dimensional random processes. Bilonick (1985) and Rouhani and
Hall (1989) apply three-dimensional kriging to spatiotemporal data. Haas (1995) conducts three-

dimensional "moving-cylinder" spatiotemporal kriging. Oehlert (1993), using a similar idea, tiles



the region of interest with small rectangles, and within each tile fits a separate time-trend model.
Switzer (1989) and Loader and Switzer (1992) use repeat measurements in time to increase the
specificity among estimated spatial covariances. In the same spirit, but using different methods,
Guttorp, Sampson and Newman (1992) take advantage of repeat measurements in time to
estimate the covariance structure of a nonstationary spatial process.

Stein (1986), Haslett and Raftery (1989), Host, Omre and Switzer (1995), Solna and Switzer
(1996) and Huang and Cressie (1996) all propose spatiotemporal models which can be seen to fit
within a general linear model (GLM) framework. Not all of the models in these papers contain
deterministic components, and the stochastic components of the models, which reflect both spatial
and temporal variability, are defined and estimated somewhat differently by the various authors.
Given the GLM framework, however, once the spatiotemporal covariance matrix has been
specified, the subsequent prediction and estimation methods are equivalent to best linear unbiased
prediction and estimation (e.g., Christensen 1991). All these authors assume models with
separable covariance structures (e.g., Bogaert 1996, Rodriguez-Iturbe and Mejia 1974): the
spatiotemporal correlation function is the product of a spatial correlation function p and a
temporal correlation function p..

In an effort to take advantage of the ordered structure of the temporal domain without
oversimplifying or de-emphasizing the spatial aspects of the process, a class of models which is
based on stochastic differential equations in time is introduced in Section 2. These models do not
require constant sampling intervals in space or in time. Temporal and spatial model identification

procedures are discussed in Sections 3-6. Concluding remarks are made in Section 7.



2. A CLASS OF SPATIOTEMPORAL MODELS
Let Z(s,t) be a random variable that is observable at location s at time t, where s and t vary

over continuous index sets S C R¥(k=1,2,0or3)and T C R, respectively. The proposed
class of models, which is based on the assumption of an underlying d'"-order stochastic
differential equation in time, can be expressed as

Z(5,) = ralsi) + 8,{¥(5),t} + W(s, 1) + (s, 1), )
where p, is a nonstochastic function of explanatory variables, location, and time; gg is a
nonstochastic function of time and a stochastic function of independent spatial processes
Yi(s),..., Yi(s); Wg is a continuous-time, zero-mean, spatiotemporal ARIMA(p, d, q) error
process; and €, is a zero-mean spatiotemporal random field representing microscale variability and
measurement errors. The model component p,(s,t) + g,{Y(s), t} is assumed to be d times
differentiable with respect to time. The zero-mean, second-order stationary spatial processes Y;(s)

are mutually independent with

Cov[Yi(s),Y(s*g)] = {COVYi(IlgII) i=j

0 i # ]
Forq=0,p=0,1,andd =0, 1, 2, the Wg process has the following representations
ag(s,t) d=0
Wi = { [iac(su)du d=1

ftf)ftzaﬁ(s,u)dUdV d=2
with
= {60 p=0
36(5: = fot¢t'ubu(s,l‘l)du p=1

and zero-mean, second-order spatially correlated disturbances b,, having

Cov|bu(s,t),bu(s+g, t+h)] = {OCOVb(“g”) : ; g

The errors are white-noise with



g = 0, h = O
Cov(e,(s,t), & (stg, t+h)) = { oee gtherwise

Representations of Wg and ag(s,t) are readily expressed for other choices of p, d, and q but the
above ones illustrate the richness of the model possibilities and will be the focus of this paper.
Similarly, one could expand the model even further by adding & term like g, for spatial large-scale
structure with random temporal coefficients but that too is beyond the scope of this work.

Consistent with the approach taken in the spatial statistics literature (Journel and Huijbregts
1978, Cressie 1993), the spatiotemporal stochastic process (1) permits different scales of
variation. The large-scale variation includes the nonstochastic mean structure p, (s,t) and the
component g,{Y(s), t} which is nonstochastic with respect to time but may be a stochastic
function of location. The small-scale variation Wg (s, t) often represents smooth (L-continuous)
stochastic fluctuations about the large-scale structure. Small-scale variation generally represents
local or regional stochastic variation in space and short-term temporal variation. This type of
variation can include microscale spatial variation -~ varaiation at a scale smaller than the smallest
distance between locations -- in which case would contain a discontinuous jump at the origin, the
nugget effect. The error variation €, (s, t) represents measurement imprecision.

An alternative representation of the class of models given by (1) is in terms of the assumed
underlying stochastic differential equation (SDE). The underlying SDE with respect to time can

be written as:

7(d) (s,t) = f(s,t) + ac(s, t), @)
Ao, ’
where Z(4) (S,t) — d’:gt(;dvt) and f(S,t) _ [pa(s “):;p{)’(s) u}] ‘

Equation (2) is of the same form as the differential equations associated with stochastic
growth curve models in Seber and Wild (1989, Chapter 7) except that in model (2) a spatial index

has been included and in the stochastic growth curve context d is constrained to be 1. Model (1)



is the solution to the spatiotemporal SDE given by (2), plus a microscale variation term e, (s, t).
Often, growth is modeled in terms of the relative rate of change rather than in terms of the
magnitude of change. In such a case, the spatiotemporal SDE (2) can be written in terms of the

logs of the process as:
[og{ZMN'D = £(s,1) +a,(s,1).

Solna and Switzer's (1996) model can be expressed in terms of the class of models proposed
here by writing it as

Z(s,t) = p(s) + Y(s)t + by (s,t),

where p(s,t) = pu(s) and g,{Y(s), t} = Y(s)t, the latter being a linear time trend with location-
specific slopes generated by a spatial stochastic process. The small-scale component
Wg(s, t) = by(s,t), where b, (s,t) is assumed to be a separable spatiotemporal process, white
noise with respect to time for a fixed location and intrinsically stationary with respect to space for
a fixed time.

The Huang and Cressie (1996) and Haslett and Raftery (1989) models also can be seen to fall
within the class of models represented by (1). The Huang and Cressie model is

Z(s)tj) = aqa(s,ti1) + azals,tiz) +... + apals,tip) + b(s,t)),

where the by = (b(s1,t) b(sa,t) ... b(sp,t))" are independent, identically distributed
N(0,3) and Xy = Cov[b(s;,t),b(s;,t)] is the matrix of second-order spatial stationary
covariances, assumed constant over time. The Haslett and Raftery model is

Z(s,t) = p(s) + V(B)"'6(B)b(s,t),

where pu(s) is a location-specific mean, the V~4¢(B)~16(B)b(s,t) term is of the form of an

ARIMA(p,d q) model, and the by are independent, identically distributed N(0,X). The Haslett



and Raftery model generalizes the Huang and Cressie model from a spatially correlated
autoregressive model to a spatially correlated ARIMA spatiotemporal model with a possibly
nonstationary mean. Further, the Haslett and Raftery model allows for the possibility that d is a
fractional value, allowing for long-memory temporal processes to be accommodated (eg.,

Hosking 1981).

3. MODEL IDENTIFICATION

The issue of whether to include large-scale variation terms in geostatistical universal kriging
models has been debated by practitioners (e.g., Journel 1985, Journel & Rossi 1989). Cressie
(1993) stresses the lack of uniqueness in the specification of deterministic and stochastic
components of spatial statistical models. The specification often is decided based on how much of
the variability to attribute to large-scale effects so that the covariances appear to be spatially
stationary. Similarly, in the time series context decomposing the model into large-scale and small-
scale variation also is a challenging practical question, despite the existence of the Wold
decomposition theorem (e.g., Brockwell and Davis 1991, Section 5.7), since the form of the
decomposition often is not clear in practice.

In the spatiotemporal setting, specifying a decomposition becomes even more difficult
because of the ambiguity that is introduced with regard to scales of variability. For example,
some effects may be considered large-scale with respect to time but small-scale with respect to
space. Although data generally provide some direction with regard to an appropriate
decomposition, alternative models which describe the data equally well are common, as pointed
out by Cressie (1993) in a spatial context.

The class of models (1) emphasizes temporal components in order to permit the modeling of

dynamic environmental systems. The lack of uniqueness of spatiotemporal model specification and



the broad scope of this class of models introduce many complex issues regarding model
specification and parameter estimation. Because these issues are so broad, the scope of the
current investigation is limited to model specification and identification. In order to better focus
on some of the key model specification issues, attention is restricted to small-scale

ARIMA(p, d, 0) components W (s, t) withp = 0 or 1 and d = 0, 1, or 2. Even this restriction
will allow the nonuniqueness issues to be clearly illustrated.

One approach that has been found useful in the specification and parameter estimation of the
class of models represented by (1) consists of the following steps.

1. Characterize the large-scale spatial and temporal structure p,(s, t) +
g3{Y(s), t}of the model using exploratory data analysis.

2. Specify the temporal structure of Wg(s, t) through comparisons of theoretical and
empirical primary increment semivariograms.

3. Specify the spatial structure of W‘E’(s, t) through the choice of a generalized
covariance or semivariogram model.

4. Estimate the parameters associated with Wg(s, t) and e, (s, t) .

5. Specify the functional form and estimate the corresponding spatial and
temporal parameters of u,(s, t) + gg{Y(s), t}.

Two principles guided the formulation of these steps. First, the more extensive the scientific
information that is available about the behavior of the process, the richer should be the
specification of the large-scale components because they represent structural components of the
process. Second, since the emphasis in this work is on modeling dynamic environmental
processes, the temporal components of the model are allowed to capture as much of the

stochastic variability as possible prior to the specification and estimation of the spatial processes.



Thus the sequence of steps focuses on large-scale processes before specifying small-scale
processes, and it introduces temporal components and fitting prior to the specifying and fitting of
spatial processes. In the next two sections, the critical first three steps are discussed in more
detail. Estimation of parameters and prediction using the fitted model is discussed in a companion

paper, Hartfield and Gunst (2000).

4. CHARACTERIZING THE LARGE-SCALE STRUCTURE

As in any statistical analysis, exploratory data analysis (EDA) should precede formal
modeling. Multivariate graphical displays can assist in delineating temporal and spatial model
structures. Plots of z(s,t) versus time, without regard for location, averaged across location, and
separately by location may reveal a general temporal pattern, any consistent deviations from that
pattern, and whether the pattern changes systematically as one moves across the region. Two-
and three-dimensional plots of z(s,t) versus location coordinates without regard for time,
averaged across time, and separately by time can reveal general spatial patterns, variability in such
patterns across time and whether the spatial pattern changes systematically in time.

This information may suggest whether certain effects should be modeled as deterministic
or stochastic functions of space or time, the large-scale structure of model (1). For example, if
the observations are increasing at the same rate across time and across all locations, this may
suggest that a constant linear trend term should be included in the model; that is, u(s,t) may be
specified as pu(s,t) = a; + azt. On the other hand, if the observations appear to increase linearly
in time but at different rates for different locations, this may suggest that a linear trend term
should be included in the model, but with location-dependent coefficients Y (s) and Y, (s).

Figure 1 is a plot of smoothed annual temperature anomalies for 138 stations in the

contiguous United States from 1920 to 1980 (Gunst, Basu,and Brunell 1993). The actual



anomalies (differences in temperatures from a baseline) have been smoothed using a locally linear
loess smoother in order to better highlight the temporal trends. As a function of time, the gross
trends appear to be largely quadratic with location-dependent coefficients. It is not clear whether
the apparent trends are due to large-scale structural trends or to autocorrelation. The techniques
discussed in the next section will help clarify which model components are contributing to the
quadratic features apparent in Figure 1.

[ Insert Figure 1]

Figure 2 is consists of smoothed contour plots of anomalies versus latitude and longitude for
9 of the 61 years, 1960-1969. These plots are representative of the plots across the entire time
span. The gross spatial gradients appear to be quadratic, with time-dependent parameters. The
diversity of quadratic features suggests that each year is distinctively different from the prior and
subsequent ones and that the features may not have a smooth representation across time.

[ Insert Figure 2 ]

A model that incorporates the large-scale features <I>bserved in Figures 1 and 2 is (1) with
Ha(s,t) = x,ap and g,{Y(s), t} = Y ()t + Yo(s)t2. In the definition of the mean U, x, designates
the vector (1, lat(s), long(s), lat(s)*long(s), lat(s)2, long(s)?) of components of a quadratic
function of latitude and longitude. In this article, the means Ua(s,t) are assumed to have fixed
regression coefficients for a given year. It is possible to model the spatial gradient coefficients o
in a hierarchical framework (e.g., Royle and Berliner 1999) or as a stationary temporal random
process. To do so would require proper accounting for nonperiodic but regularly occurring events
like El Nifio - Southern Oscillation (ENSO) events and nonregular events like volcanic eruptions,
both of which affect temperature change. Neither of these options will be pursued in this work but

they are natural extensions of it.
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It is well known that estimation of the parameters of the mean structure prior to modeling the
stochastic components of the model can lead to biased estimators of the spatial random field
parameters (e.g., Cressie 1987). Gunst (1995) documents the substantial bias that can occur when
spatial covariances are estimated from nonfiltered time series. Similar concerns in the estimation
of linear models led to a number of alternatives to least squares and maximum likelihood
approaches; a notable alternative being restricted (residual) maximum likelihood (e.g., Searle,
Casella, McCulloch 1992). In the geostatistical literature intrinsic random function kriging
(Matheron 1973) is a widely cited alternative. In its simplest form, intrinsic random function
kriging is equivalent to modeling increments (contrasts) of the data. In the next two sections, this
approach is shown to greatly aid the identification of the temporal and spatial small-scale

components of (1).

S. SPECIFYING THE TEMPORAL STRUCTURE OF Wg

In this section attention is concentrated on the use of primary temporal increments for
filtering polynomial time trends such as those noted in Figure 1. This type of filtering aids in the
specification of the degree of time trends in the large-scale component of model (1), aids in the
specification of reasonable choices for p and d in the small-scale component of the model, and
helps distinguish whether variability is due to the large-scale or to the small-scale components. In
the next section, this type of temporal filtering is shown to greatly aid in the proper specification
of spatial covariance functions.

Although the functional form of t in u, (s,t) and g,{Y(s), t} in model (1) can be much more
general, for ease of exposition in this article the large-scale temporal component in model (1) is

2 2
restricted to a polynomial: p,(s,t) = Y a(s)t” and g,{Y(s),t} = S Y,(s)t", where some of the
=0 r=0
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a:(s) and the Y(s) terms may be identically zero. The postulated temporal trend observed in
Figure 1 is included in this class of large-scale structures. In the context of filtering spatial data to
determine its stochastic structure, Cressie (1987) proposes the use of primary spatial increments
to filter polynomial gradients. Cressie (1988) uses temporal increments in a similar fashion to
identify the degree of nonstationarity in a time series. The latter application provides a method for
filtering temporal data in such a way that polynomial large-scale variation and nonstationary
small-scale effects are eliminated.

To calculate primary temporal increments, define time lags hi = [t —ti| ,ti,t € T.
Partition the time lags into bins B; through By, where By = {h; : (b — 7) < hj < (b +7)}
and 7 is the tolerance around the nominal lag by. The nominal lag corresponding to bin B; is b,
and the remaining nominal lags ordinarily are multiples of b;. For a fixed location s, time t, and
separation distance h, define primary temporal increments of order zero, one and two (higher-
order filters are similarly defined) as:

Po(s,t,h) = Z(s,t+h) — Z(s,t)
Py (s,t,h) = by Z(s,t+hy +h) — (h+hy)Z(s,t + h;) + hZ(s,t) 3)
= h {Z(s,t+h;+h) — Z(s,t + hy)} — h{Z(s,t + h;) — Z(s,1)}
Py (s,t,h) = hy (hy+hy){hoZ(s,t+hy +hy+h) — (h+hy)Z(s,t+hy +hy) + hZ(s,t + hy )}
— h(h+ho){ hiZ(s,t+hy +he) — (hy+hy)Z(s,t+hy ) + hoZ(s,t) }
= hy (hy+ho ) [ho{Z(s,t+hy +hy+th) — Z(s,t+h; +hy)}
— h{Z(s,t+hy+hy) — Z(s,t + hy)}]
— h(h+hy)[hy {Z(s,t+hy+hy) — Z(s,t+hy)} — ho{Z(s,t+h;) — Z(s,1)}],
respectively, where hy,hy € B;. These reduce to Cressie's (1988) primary increments for equally

spaced data in time and h; = hy = 1. In the large-scale temporal structure, Py(s,t,h) filters a

constant mean, Py (s,t,h) filters a constant mean and a linear trend, and P, (s,t,h) filters a constant
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mean and linear and quadratic trends. Not only do these primary temporal increments filter the
large-scale polynomial temporal effects, u(s,t) + g,{y(s), t}, but they also accommodate certain
forms of nonstationarity among the small-scale temporal effects, Wg (s,t). As demonstrated
below, plots of estimated semivariograms of primary temporal increments can reveal information
about both W¢(s, ) and the form of 4 (s,t) + g,{y(s), t} with respect to time.

Define the temporal semivariogram §(t,h) as:

5(th) = %E[{Wg (5, t)eo(5,0)} — {Wi(s,t + h)ve, (s, t + h)}]°. @)

Table 1 shows §(t,h) for the six combinations of p and d considered in this work. In Table 1,
opy = Covp(0) and A = — log(¢), where ¢ is the autoregressive parameter when p = 1. As the
table indicates, for models with stationary small-scale variation, §(t,h) follows the form of a white
noise or an exponential semivariogram model corresponding to the uncorrelated (p = 0) or
autoregressive (p = 1) cases, respectively. Notice that §(t,h) has an asymptote in both instances.
For a stochastic walk, §(t,h) is linear for large h. For a stochastic slope, 8(t,h) depends not only
on the separation distance h, but also on t, and is cubic with respect to h. For the case d = 2 and
p = 1, the expression for §(t,h) is an approximation, but the impact of this approximation on the
subsequent work has been found to be negligible.

[ Insert Table 1 ]

Although 6(t,h) contains key information about the temporal structure of Wg (s,t), if the
large-scale structure of model (1) is not constant, §(t,h) cannot be estimated directly. The
expected values of squared primary temporal increments are shown below to be functions of
6(t,h). Hence, the information about the temporal structure of W‘E’ (s, t) can be assessed through
averages of squared primary temporal increments.

Define the following variance functions of the primary increments:

13



_ Var[Py(s,t,h)]

—V Po(s,t,h
Var[Pz(s,t,h)]
msth) = 2 '
1hah(hy+hy ) (hy+h)* (h; +he+h)
Observe that -y, is a temporal semivariogram and that +; and +, can be considered temporal
increment semivariograms. Estimators of these temporal increment semivariograms are
- 1 {Po(s,ti,h) }?
Fo(s,bx) = 7> —
0 |N0 (S,bk) l No(s,by) 2
N 1 {Py (s,t;,h) }2
sby) = ——m— —_— 6
T80 = [E0T] e, i h 1 h) ©
1 {Py(s,t;,h)}?

~ Na(s,be) | NG 2hihah(hy+he)(ho+h)? (hy +ho+h) 7

where Py (s,t;,h), Py (s,t;,h), P2(s,t;,h) are primary increments calculated as in (3),
No(s,bi)={(ti,ti+h) : h € B}, Ny(s,b)={(ti, ti £ hy, t £ hy £ h) : by € By, h € By}, and
No(s,be)={(ti, ti £ hy, ti £ hy £ hy, ti £ hy £ hy £ h): h;,hy € By, h € By}. The +inNj and
N; indicate that increments are calculated both prior to ( — ) and following ( + ) t;.

Using the nominal separation distance b; for the first bin in %, and nominal distances b, and

2b, for the first two bins in 7,, the expectations of the individual terms being averaged in (6) are:

2
Elio(sch)] = 3|5 a0 +1 - 6)] + 15 o3 @0 e + s(em)
r=1 =1
EF (s.th)] = "5 {a3(s) + 03, ()} + |22 4 Hlesphl _ sefbrt}| -
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E[72(s.6h)] = gk [ B | -+ (@by+h) {081} (o) { 22}
¥ by { 6jgt+b}|]+h2,h1} — b, {6jgt+tzl);ghb,+h21}
+or {4}

where 0% (s) = Var[Y.(s)].

If the large-scale temporal structure is a polynomial of order zero, then E[,(s,t,h)] = &(t,h),
which Table 1 indicates is constant or asymptotes if the process is stationary (d = 0), exhibits a
positive linear trend if the process is a stochastic walk (d = 1), or exhibits a positive quadratic or
cubic trend if the process is a stochastic slope (d = 2). On the other hand, if the large-scale
temporal structure is a polynomial of order one or two with coefficients of sufficiently large
magnitude, the first equation in (7) indicates that E[,(s,t,h)] is at least a quadratic function with
respect to h, regardless of whether the coefficients are deterministic or spatially stochastic, and
regardless of the structure of the small-scale variation. Similar considerations can lead to
characterizations of the expected behavior of the first and second primary increments using the
expressions in (7) and Table 1.

Valuable supplementary statistics to the primary increments are the linvariogram and the

quadvariogram (Cressie 1987):

h—-1
L(s,br) =1 >-7,(s,b;) h=23, ...
=1
6 =2 (h-1-))A(sb)
Qls,bw) =15 20 1) h=3,4,... )
=1

If linear trends dominate the large-scale structure of the model, the linvariogram and the first
primary increments will asymptote to the same value provided d = 0 or 1. If d = 2, the

linvariogram and the first primary increment will diverge for large lags h. The quadvariogram and

15



the second primary increments asymptote to the same value for any of the models discussed in this
paper. An examination of the behavior of the semivariogram, the first primary increments and
linvariogram, and the second primary increments and quadvariogram thus can greatly aid in the
identification of the temporal components of model (1).

Figure 3 contains graphs of the order 0, 1, and 2 primary increment averages for the first 30
lags of the temperature anomaly data. In this figure, the increment averages for each station at
each lag are averaged across stations. One-year bin widths were used in the calculations.
Smoothing of the order 0 primary increments indicate either a linearly or an exponentially
increasing trend. The linear trend fits the overall plot well but does not conform well to the
curvature apparent in the first few lags. The exponential trend captures the curvature in the first
few lags and the overall trend but does not closely fit the last few plotted values. Note that any
trend, including both a linear or an exponential trend, in the order 0 increments indicates either
that the large-scale temporal trend is not constant across time or that the small-scale temporal
variability is not white noise.

[ Insert Figure 3 ]

The order 1 increment averages and the linvariogram values in Figure 3 asymptote to the
same value, suggesting that the large-scale structure is at most linear (Cressie 1988). This also
suggests, along with the trend in the average order 0 increment values, that the small-scale
structure could be an AR(1), an ARIMA (0,1,0), or an ARIMA (1,1,0) process. From Table 1,
these three small-scale processes are the only ones consistent with the order 0 increment plot. In
addition, these three processes would all be filtered by the order 1 increments.

Figure 4 provides another perspective on the specification of the nonstationary temporal
structure using smoothed temporal increments. Figure 1 is reproduced in Figure 4 to allow

comparisons with the smoothed increment values. All the increment plots remove most of the
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quadratic features of the smoothed anomalies; however, there is still prominent curvature in the
order 0 increments graphed in Figure 4. Plots of the smoothed order 1 and order 2 increments are
flat except for the first few lags. This apparent curvature is due to spatial effects, as is shown in
the next section. For most of the lags, the smoothed order 1 increments are relatively constant
when compared to the large curvature in Figure 1. This suggests, as did Figure 3, that the
quadratic features observed in the smoothed anomalies are due to the small-scale component of
model (1) and not to large-scale quadratic temporal trends.

[ Insert Figure 4 ]

The theoretical temporal semivariogram functions and the expectations in equation (7) can
further help distinguish the small-scale structure. Note that equation (7) indicates that linear or
quadratic large-scale structure should be evident by quadratic curvature in the order 0 increment
plot. The lack of such curvature further suggests that the quadratic features in the anomaly plot
are due to small-scale structure.

Figure 5 shows typical theoretical increment semivariograms for several reasonable choices of
small-scale components for the temperature anomaly data. Figures 5(a) and 5(b) show the
theoretical order O increment plot for AR(1) and ARIMA(O, 1,0) small-scale components. Neither
of these curves conclusively captures the shape of the order 0 plot in Figure 3. Figures 5 (c) and
(d) depict first-order increment semivariograms and linvariograms for models with AR(1)
components. Note that Figure 5(c), a model with no large-scale trend and a small-scale AR(1)
component, is similar to the corresponding plot in Figure 3. Adding a quadratic trend component
(recall that any linear component is filtered by the first-order increments) causes the first-order
increment semivariogram and the linvariogram to be rotated from a horizontal asymptote. The
two actually diverge if additional lags are plotted. This further confirms that the curvature in

Figure 1 is not due to a quadratic large-scale component. Figures 5 (e) and (f) demonstrate that an
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ARIMA(0,1,0) without a quadratic large-scale component behaves similarly to the plot in Figure
3. An ARIMA (1,1,0) does not.
[ Insert Figure 5 ]

From this analysis of the temporal increments, it seems reasonable to model the temporal
component of the temperature anomaly data as an AR(1) or an ARIMA (0,1,0) process.
Additional evaluations of the individual series for all 138 stations indicates that 96 are selected to
be white noise or AR(1) series using an AIC criterion. Differenced series are not white noise: only
6 are identified as white noise or AR(1) series using the AIC criterion. Hence, the AR(1) will be
used for the small-scale temporal structure. It is again important to emphasize that this analysis
does not uniquely determine that the only possible small-scale temporal component is an AR(1);
nevertheless, it clearly demonstrates that an AR(1) is a reasonable choice. While not claiming to
definitively model temperature change, other studies have also used AR(1) models as a reasonable

temporal error structure for individual stations; e.g., Wigley and Jones (1981).

6. SPECIFYING THE SPATIAL STRUCTURE OF W¢

One approach to the estimation of the small-scale spatial structure is to repeat the primary
increment approach for fixed times on the spatial data values. This is the intrinsic random function
(IRF) kriging approach. However, the primary temporal increments have already filtered any
large-scale temporal structure and are readily available for further use. One adaptation makes their
use even more effective.

In the previous section, no accommodation was made for the large-scale spatial structure of
model (1). In Section 3, it was suggested that quadratic gradients characterized the large-scale

spatial structure. It is well-known that such large-scale gradients bias parameter estimates for the
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small-scale spatial structure (Cressie 1987). This is clearly evident in spatial semivariogram plots.
Figure 6 displays spatial semivariogram plots, averaged across the 61 years, for bins of 100 km.
The positive bias caused by the spatial gradients causes the semivariogram to increase in an
approximate linear fashion. When spatial gradients are removed by averaging semivariograms for
each year of the least squares residuals from quadratic fits in latitude and longitude, the
semivariogram plot reaches a sill at approximately 750 km. Hence, the residual semivariogram
indicates that a well-defined generalized spatial covariance function (Cressie 1987, Kitanidis
1993) exists for the temperature anomalies.

[ Insert Figure 6 ]

To further clarify the small-scale temporal structure in the temperature anomalies, Figures 3
and 4 were reconstructed from the spatial residuals for each year. Figures 7 and 8 display the
results. The main qualitative difference between Figures 3 and 7 is that the order 0 plot in Figure 7
more clearly indicates an AR(1) small-scale error component than does the order 0 plot in Figure
3. The order O plot is much smoother and closer to an exponential shape than a linear one.
Although the scale of the residual axis in Figure 8 is reduced by a factor of 4 over that of the
anomaly axis in Figure 4, the residual anomalies from the quadratic spatial fits still exhibit
curvature in time; however, the order 1 smoothed temporal increment plot is relatively constant.
In addition, the order 1 smoothed increment plot in Figure 7 does not have the initial curvature
apparent in the first few lags of the corresponding plot in Figure 3. Both Figures 7 and 8 confirm
the conclusions drawn from Figures 3 and 4 but they do so with greater clarity. It is
recommended, therefore, that temporal increment plots be made from spatial increments
(residuals).

[ Insert Figures 7 and 8 ]
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Once the temporal structure of the model has been identified, it is known what order of
primary increments will filter the temporal effects due to po(s,t) + gs{Y(s), t}. The spatial
structure of Wg (s,t) then can be determined by estimated spatial semivariograms of the selected
primary temporal increments. Spatial semivariograms -y, (g) = var{Py (s+g,t,h) - Py (s,t,h)}/2 of
primary temporal increments of the chosen order k are a muitiple of the spatial semivariogram

values among the W (s, t) terms. To clarify this point, let

1 2
Py(sitgt,h) — Pe(s;,t,h)}°, 9
20,0 [Mx (8)] h;(g){ k(sitgt,h) — Py(si,t,h)} ©)

T (8) =

where ny is the scale factor in the denominator of v, (s,t,h) in (5), cf.c, is the squared norm of the
coeflicient vector for the primary temporal increments of order k (see below),
Mo (g)={(sisitg.tt+h) : g —n < |lg]| < g +mh € B},
M; (g)={(si,sitg.t,t+h,t+hy+h) : g — 7 < ||g|| < g+ m; h;, he B}, and
Ma(g)={(si,sitg,t,t+hy t+hy +hy,t+h +hy+h) : g — < ||g]| < g + n; hy, hy, h € By }, g is the
nominal spatial separation distance, and 7 is the bin tolerance. Write the kth primary temporal
increment as Py (s,t,h) = c; z(s), where z(s) = {(z(s,t,), z(s,t2), ..., z(s,t,)}’. For example, the
general forms of the coefficient vector ¢, for equally spaced temporal data withh; =h, =h=1
are co=(0'1-10"Y,¢;=(0'1-210, and c; =(0' -2 6 -6 2 0')'. If the spatial semivariogram
of the small-scale process Wg (s, t) is written as 7,(g) = var{Wg (s+g,t) - Wg (s,t)}/2, then
E{7,(8)/ci ¢, } = Tee + Yw(8)q, (t,h), where q,(t,h) is a function of the temporal expressions in
Table 1.

The importance of this result is that the shape of the spatial semivariogram can be discerned
from a plot of the spatial semivariogram values of the temporal increments. As a function of the

nominal spatial separation distance g, the expected values of the estimators (9) are products of a
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constant term in time and the spatial semivariogram -y,,(g). Hence, a plot of 7, (g) versus g will
reveal the covariance structure of the b,,(s,t) terms through the shape of the semivariogram,
allowing for the specification of a parametric semivariogram or covariance model for b,(s,t).

Figure 9 displays the semivariograms of the original anomalies and the gradient-removed
residuals alongside the comparable plots for the first-order temporal increments and the gradient-
removed increments. For this data set, both sets of graphs exhibit similar shapes, although the
order 1 temporal increment plots are smoother and noticeably smaller in magnitude because of the
removal of temporal variation from the increments. Increment plots often shown greater
smoothness in simulations. The shape of the gradient-removed semivariogram plots in Figure 9
suggests that a spherical semivariogram model would appropriately characterize the spatial
dependence.

[ Insert Figure 9 ]

7. CONCLUDING REMARKS

This work presents a general class of spatiotemporal models which are applicable to a wide
range of environmental studies for which data are collected across a geographic region at multiple
points in time. The primary focus of the models and model identification techniques formulated in
this paper are on characterizing changes in time across the region of interest. Systematic steps for
model identification are presented which can be applied to any of the specific models within the
general class of models. The information gained from these steps can be scientifically informative.
For example, knowing that the rate of change is well-modeled as a stochastic walk process may
provide evidence in support of a scientific theory about a growth process or migratory behavior
across a region or may suggest an alternative reality than was originally postulated about the sites

of interest . Knowing that the value of the process is systematically different as one moves across
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the region or that the process is changing at different rates in different areas of the region may
provide support for decisions that are to be made or actions that are to be taken in different areas
of the region.

The methods proposed here allow the data themselves to suggest an appropriate model
but these methods are not so rigid that scientific information about the process of interest cannot
be incorporated. Setting the models in the context of stochastic differential equations helps to
draw the connection between the statistical modeling approach and a more deterministic
approach, which often involves describing growth or migration in terms of a (deterministic)
differential equation. If scientific information is available about the differential equation that
should describe the process, it may be possible to incorporate that information into the large-scale
temporal component of the model. More generally, when information about the way in which the
process or the rate of change differs spatially across the region is available, that also may be
incorporated into the large-scale temporal component of the model.

Finally, in addition to providing statistical justifications for the proposed models and
identification methods, the procedures proposed in this paper can be reasonably implemented in
practice. Proposed model identification techniques are primarily graphic, with theoretical
justifications for why these graphics should direct investigators to meaningful modeling decisions.
The use of graphics also allows scientific judgment to be incorporated into the model

identification procedure.
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Table 1. Expressions for §(t,h) for Six Small-Scale Variation Structures

Small-Scale Process Parameters
Stationary

Obb + Tee d=0p=
(] — M) + g, d=0p=

Stochastic Walk
Zh + g d
2 {Ah - (1-e")} + oo, d

Stochastic Slope

gg‘l(hga-i-th2)+aee d=2p=

a{R(T ) -1 d=2p=1
+(1-e™)} 4o
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Figure 1.
Figure 2.

Figure 3.

Figure 4.
Figure 5.
Figure 6.
Figure 7.

Figure 8,
Figure 9.

FIGURE CAPTIONS

Smoothed Annual Temperature Anomalies

Smoothed Annual Temperature Anomalies, by Year

Temporal Primary Increments Averaged Across Years, No Spatial Gradient
Removal

Smoohted Annual Temperature Anomalies and Primary Increments

Effects of Model Assumptions on Increment Semivariograms

Average Spatial Semivariograms

Temporal Primary Incremetns Averaged Across years, Spatial Gradients
Removed

Smoothed Residual Primary Increments

Anomaly and First-Order Temporal Increment Spatial Semivariograms
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Figure 1. Smoothed Annual Temperature Anomalies
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Figure 2. Smoothed Annual Temperature Anomalies, by Year
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Figure 3. Temporal Primary Increments Averaged Across Years
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Figure 4. Smoothed Annual Temperature Anomalies and Primary Increments
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Figure 5. Effects of Model Assumptions on Increment Semivariograms
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Figure 6. Average Spatial Semivariograms.
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