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Abstract 1

The inference on the variance of the cumulative hazard function estimate and its asymptotic vari-
ance are discussed. Three kinds of estimates are analyzed. In the finite sample case, the mean and variance
for the variance estimate under the Koziol-Green model are derived.

1. Introduction

Consider the study described by means of the following right random censoring model. Let T and C
be the survival time and censoring time, respectively. Random variables 71,7%,...,7T, and C1,C,...,Cy
represent n independent copies (independent and identially distributed, within each group, or i.i.d.) of
T and C, respectively. They can be thought of as samples drawn from the populations of T—values and
C—values, with the cumulative distribution functions (CDF’s), F and G, respectively. The observable
data are not pairs (7,C) themselves, but their transforms, (Y3, D1),(Y2,D2),...,(Yn, Dy), where Y; =
min(7T;,C;) and D; = 1(T; < C;). The Kaplan-Meier estimate (KME) of a survival function, S(t) =
1-F(t), is

Scu= T1 (1-—g) 0.)
KM = e T— .
it ¥y <t n—1+1

where §; is the D-value associated with Y{;), that is, §; = D;, when Y{;j = Y;. See Kaplan and Meier (1958).
Similarly, the KME of the cumulative hazard function (CHF), A(t) = —log 5(¢) is

N 1
M= ¥ —dlog (1 - —) . (0.2)
i Yo <t n—itl

By the Greenwood’s formula, see Miller (1981), the variance estimate of (1) is

2 6i
Skm(®) - Y (n—i+1)(n—-1)

i Y(i)st

Then, the variance estimate of (2) is

Vi(t) = Z -i+ 1)(n —1) 0.3)

Y Y()<t

Here, we call it the KM variance estimate of estimated CHF (KMVE).

This paper is focused on the variance estimate for the estimated CHF. In Section 2 we discuss an
alternative variance estimate, similar to the Nelson-Aalen estimate for a survival function. In Section
3 we derive the asymptotic variance by the influence curve method. In Section 4 a Bayes variance es-
timate is discussed, and also the minimax type of estimate is obtained. At last, in Section 5 the exact
mean and variance are found for the special case of a Koziol-Green model and those estimates are compared.
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2. Kaplan-Meier and Nelson-Aalen Variance Estimates

First, look at the KME. At the time Y(;), the estimated probability of individual Yj;), if not censored,

facing death is .

n—t14+1°

pi =

The instant hazard of Y(;) facing is
A = —log(1 ~ py).

By using the 6-method and binomial distribution,

1 . Pi
— .V i =~ - n
a=pp V=0 ~ G Ina—a

1
(m—d)(n—i+1)

Var(;) =

If Y(;) is censored, then p; = 0. So, we assume its instant hazard is zero and then variance is also zero.
Hence, the variance of CHF estimate is

Py 6
Var(A1(2)) = — -
(A1(2)) . %st(n—z—{—l)(n—l)
that is (3).
Nelson and Aalen used the approximation,
1 1
log(1 - n—z’+1)~_n—i+ 1’
under which (2) becomes
5
WOERDY -
i Y(,-)gtn—z_*_l

So, the Nelson-Aalen estimate (NAE) of a survival function S(t) is

sw= TI (exp(—;_lz—,_i_i))& .

1 }’(,‘)St
At the time Y{;), the probability of individual ¥{;) facing death is

1

n—i+1)

pi =1 —exp(—
and its instant hazard is 1
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Similarly,

2 1 1
X)) & ——M— —_) -1
Var(A;) it 1 (exP(n—z+1) )

- 1
(n—1i+1)2°
So, we define the variance estimate
A é;
Va(t) = —_ (0.4)
i:%St(n—z+1)2

We call it the NA variance estimate of estimated CHF (NAVE). which is a little smaller than the Kaplan-
Meier type.

3. Asymptotic Variance

As we know, the asymptotic variance of KME for CHF is
t dF(z)
v = [
®= ) T-F@P0-C@)
see Breslow and Crowley (1974). Our interest is how to estimate it. When F and G are not continuous,

integration above should be specified. Like re-expressing the KME, see Peterson (1977), here, we express
V(t) as follows.

(0.5)

1 g0 4= _ [ 45D
Y, ST = o (1—5(x))?
1 1
¥ 2 (3(1)(s+)+ 50)(st)  SM(s—) + 5(0)(3—)> (0.6)

5<t : jumps of S(l)(s)
if M and $(® have no common jump points, where S(l)(t) and S(O)(t) are sub-survival functions,
sW@) = p(Y;>t,Di=1)
SOy = p(¥; >t,D; = 0)

and first term is the integral over the intervals on which §()(z) is continuous. Hence, in the finite sample
case, the variance estimate should be

¥(8,50,1)

where .SA',(LI) and 5',(10) are empirical sub-survival function of S(!) and $(©, those are

SM(y) = %Zl(Y,—>t,D;=1)

=1

5O = 1% >4, =0)

i=1



From the calculation, we obtain

N N 1 1
W00 = ¥ (7
i:Y(,‘)St, §i=1 n—t n—i+t 1
>
iVt (n=d(n-1i+1)’

that is the KMVE as (3). Hence, it is a consistent estimate of asymptotic variance, i.e.
n¥(SM, 510,1) — V(2)

as n goes to infinity.

Next, assume that F and G are continuous, hence S®) and $(® are continuous, and then derive the
influence curves for the above asymptotic variance, which is an analog of deriving the asymptotic variance
V(t) as (5), see Reid (1981). Set

SM(t, ¢, z) SM(t) + - (1 — Dg(2)),
S(O)(t,ﬁ, y) = S(O)(t) + 6+ (1= Dy(2)),

where 0 < ¢, § < 1,z # y and D,(t) = 1(z < t). The influence curves can be defined as the derivatives
with respect to € and § at € = 0 and § = 0, respectively. i.e.

i XSV, 6, 2), SO(),1) — ¥ (5W, 59, 1)

e—0 €

1C,(SM, 5O ¢,2) =

W)(g). 50 wrc) )
IC2(S(1),S(0)’t,y) — %ln})‘ll(s (t)95 (t’é’ygst) ‘I’(S 3 ,t).

Briefly they are denoted as ICi(z) and IC3(y). So,

: dsM)(s)
Jo (SD(s) + ¢+ (1= Da(t)) + SO(s))?

¥(5D(t,¢,2),5),1)

1 1
+D4(t) (5(1)(x) +50(z)  SO(z)+ e+ S(O)(w))
Hence, 1)
3 TAL ds 1 (3) Da:(t)
IC:i(2) = 2/0 (SMW(s) + SO)(s))3 " (SW(z) + §O)(z))2”

Similarly,

. dsW(s)
o (SD(s)+6-(1— Dy(2)) + SO(s))2"

U(sM(2),5O(¢,6,y),t) =



Since S(1)(t) has no jumps and the second term in (6) vanishes, we obtain:

dSM(s)
(5M(s) + §O(s))*

yAt
ICy(y) = 2/0

Due to the identity,
P(Yz <s1,D;=1Y; < 89, D; :O): 0,

we have that E(IC;(z)IC(y)) = 0. Ignoring the higher order of the infinitesimal terms, the asymptotic
variance can be found,

AsVar(V(t) = lim n-E(®(5M,80,1) - (51,50, 1))

= E(ICy(z) — p1 + ICa2(y) — p2)’?
= E(ICi(2))” + E(IC2(y))* — (1 + p2)’

where g, = E(ICy(z)) and pp = E(IC(y)). Integration by parts yields,

oo pTAt ds(l)(s)
mtin = 2[00 g sy 460+ SO0
” Ds(1) dsM(z)

“Jo ($O(z) + 5O)(z))2

D.(t)

S0+ SO s (z)

= 2 [7(sW(@) + 5O(2))

o D,(t)
_/0 (S(l)(x)+S(°)(w))2dsu)(x)
= =V(1).
Similarly,

Do(t)
(§W(z) + 5O (z))*

(™ dsM(s) i 1 0
_4/0 (/0 (SM(s) + S(O)(s))B) -d(S( ) 4 s ))(:1:)

= D(2) At ds™(s)
), G R o TsowE e

Among those terms, again by the integration by parts,

[ D) e ds(s)
Second Term = 8 -/0 50() 5 50(2)2 (/0 500 1 S(O)(.s))3) -dSW(z).

E(ICy(2))* + E(IC2(y))* = - A dsW(z)




So,

E(ICy(2))? + B(ICx(y))*

o D.(t)
0o D:c(t) TAL dS(l)(s)
+4/0 (SMW(z) + S(O)(w))z/o (S (s) + SO(5)) - dSM(s)

t 1
= Jo BO@ + 0@y

) ZAL dS(l)(s) o Ds(t)
) (/ (S(l)(s>+5<°>(s))3)"(x G soE 50)

_ ¢ 1 t V(t) - V(z) ' .
- [ (S(l)(z)+S(O)(x))2dV(x)+4/0 (S(l)(z)—l-S(O)(w)) dv(z).

Finally, the asymptotic variance of V;(¢) can be written as

As.Var(V(t dV(z)

¢ 1
) = /o(S(l)(x)+S(°)(z))2

t( V() -V(z)
+4/0 (S(l)(x) + S(O)(x)) -V (z) = V3(2). (0.7)

Since

v

[ @ -ve)-ave

Vi)
T2

/ot (S(K((i));‘;gzx)) HdV(z)

v

As.Var(V (1)) > /0 t 5O (x): <O (m))de(x) + V().

This shows the asymptotic variance of the variance estimate increases much faster than V(t). Since

Jim V(A(1) = Va(®) =0,

this implies that the KMVE and NAVE have the similar asymptotic behavior.



4. Bayes Approach

Now, consider the Bayesian procedure. We choose the Dirichlet distribution as the prior with
parameter « and the quadratic loss function, i.e.

L(F,F) = /0 e (F@v) - )" aw (1)

where W is a nonnegative nondecreasing weight function on R = (0,+00). Then, the Bayes estimate is the
posterior mean. According to Ferguson (1973), the Bayes CDF estimate and survival function estimate
are

a(t) + TSIy Dx,(1)

Falte) = a(+0)+n
Sa(t,a) = altoo) ag()++ooz):%l1£1 — Dx.(t))

respectively. Here a(t) is a nonnegative increasing function on R with the finite total mass, a(R) = a(+o0)
and a(0) = 0. As a(R) goes to zero, the Bayes estimates transfer into empirical estimates, for a CDF or
survival function. Compared to the non-Bayes CDF estimate, Fn(t, «) is not unbiased, but it has a smaller
variance. However, they have the same limiting distribution. For the censoring case, consider the KME of
survival function S(t) given by (1). Set Ny(t) = #(Y; > t) and Ny-(t) = #(Y; > t). Then the KME can

be written as s
A Ny(t) Ny-(Yy))
Skm(t) = (——-——————— .
n i:):’!:')[gt Ny (Y)

The Bayes estimate is

Skm(t,a)

o(R) —o(t) + Ny(t) 1 (a(n) — a(Yy) + Ny-(Y(i))) 1o

a(R)+n ¥ <t a(R) - a(Yy)) + Ny (Yy))

aR) = o) + Ny(t) 17 (a(R) —a(Yy)+n—i+t 1) 1-5

a(R)+n ¥ <t a(R)—a(t)+n—1

where we assume «(t) is continuous. See Susarla and van Ryzin (1976). Similarly, for the variance estimate,
bi
i=Y(z.'):5t Ny-(Yi)) Ny (Y(y))
1 1 1-4;
Ny(t) n iVt Ny-(Y(3)) Ny (Y(y)

V() =




The Bayes estimate is,

~ _ a(R)+n 1
Valt) = n(a(R) —a(t) + Ny(t)) n
T («(R) +n)? 1-§;
Y <t n? ((R) — a(Yiy) + Ny-(Yy)))(a(R) — a(Y(5) + Ny (Y(;)))

a(t) + (n = Ny (1))
n(a(R) - a(t) + Ny (1))

_®) +n)? > 1-4;
n? (a(R) — a(¥) + n — i + D(a(R) — a(¥g) + n— 1)

t':Y(,')St

Last, consider the minimax approach. For a quadratic loss function, if the Bayesian estimate has a
constant risk, then it is minimax. Recall the Bayes empirical CDF estimate is

o(t) + 3, Dx,(1)
a(+00) +n

Fo(t,a) =
Let ® be a class of estimate of F(t),
®={¢:4(t)=a+) b Dx,(t)}
i=1

We try to find ¢o(t) € ® such that the risk function, which is defined as the mean of loss, is a constant.
From Prakasa Rao (1983) or Phadia (1973), it holds if and only if

_ 1 b= 1
gD v
So, \/_
1
Equivalently,

o(t) = XX, a(R) = v,

that is a classical result of Bayes theory. This is the minimax CDF estimate. Similarly, the minimax
survival function estimate is )

“2(ﬁ+1) f+1 Sin(1).
The minimax modification of the KM estimate is
S’* (t) = ‘/ﬁ/2+NY(t) H \/ﬁ/2+ NY_(Y(i)) =0
KM Vr+n Va/2+ Ny (Y(i)

_ 1+2/m 0 ( V24 n—i )5‘
- 2(1+\/_)1y)<t V24 n—-i+1

i:¥(;) <t




The corresponding version of the variance estimate is

. _ /m/2+n— Ny(t)
Vs(t) = Bt Nr ()

(x/_+ 1> > — &
Yt (Vn/2 + Ny-(Y())(vV/n/2 + Ny(Y(;)))

Vvn/2+n—Ny(t) (Vn+1)? n — Ny(t)
WA NY@) | n (e )/el2 + Ny @)
(\/_+ 1) Z 6;
”,()<t(\/_/2+n—z+1)(\/_/2+n-—z)

Approximately, it can be written,

; (f +1)° Z
Va(t 0.8
0 = S L AR TR 0
Here, we call it the minimax variance estimate of estimated CHF (MMVE). As the same augument of
Section 3, V3(t) has the same asymptotic behavior as Vi(t) and V,(?).

5. Mean and Variance for the Koziol-Green Model

Generally speaking, it is very complicated to find the mean and variance of those variance estimates
above. But, for the Koziol-Green model, these mean and variance depend on the values of CDF at observed
time t and rate of censoring only. So, they are much easier to compute and tabulate.

Koziol and Green (1976) introduced a model, by assuming that the observed Y; and indicator of
censoring D; are independent, or equivalently two CHF's are proportional. Let H(t) be the CDF of Y;, and
p be the probability of the uncensored rate. Then n — Ny(t) follows the binomial distribution with the
success rate H(t), and D; is Bernoulli distributed with the parameter p. Let E; and E; be the expectations
with respect to above two distributions respectively. In this case, the survival function S(t) = (1 — H(t))?,
and the asymptotic variance is

H(t)  1-57(t)
1-H@) P78
Since Y; and D; are independent, the double integral can be replaced by the repeated integral. See Chen,
Hollander and Langberg (1982). For any v > 0, the moment of order vy for A;(¢) can be calculated as

follows:
1 Y
2, ~bilog (“m))

l:},(')st

V(t) =

(0.9)

EA(t) = E(



- (E1 ("-g(t)_éilog(hﬁj))w)
(z_: (2; ~dilog (1_ ;+1))7'(Z)H"(t)(l—ﬂ(t))""").

In particular, the first and second moments are:

E(A(1)) = ni: log ( ) p- (Z) HIU(t)(1 - H(t)*™?,

n-q

n—1

B(A() = Z(pu-p)z:log (75) + (os

q=1

=)
(’;) HO(t) (1 - H(t)™™,

respectively. To consider the mean and variance of the variance estimates above, we have to multiply those
by the sample size n and n? respectively. Set the exact variance of CHF estimate above as:

Vo(t) = (B(AZ®) - (B(Ax(2))") -» (0.10)
Similarly, for the KMVE Vl(t), the first and second moments are:
BAW) = ¥ mlts ( )H%t) (1~ H(H)"™

p(1 - p) o a Y
Z(Z(n+1—i)2(n—i)2+p ("("—‘1)) )

E(V(1)

(;‘) HO(t) (1~ H(D)"™?

Hence, it makes sense to introduce the rescaled (asymptotic) mean and variance as

AM(Vi(8)) = E(%i(2)-n (0.11)
AV(Vi() = (EB(A(1)? = (B(W(1))?) - n?. (0.12)

Also, for the NAVE,

E(Va(t)) = Z (Z it 1)2) (Z)Hq(t)(l — H@)™™,

g=1
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E(VE(t) = Z (Z p(lz—+p1))4 (Z (n—z+1)2) ) X

and for the MMVE Vj(1),

E(Va(t)) = Z(f/2+n—q)(f/2+n)
p(Z) He(t)(1 - H(t))"" - _(‘/ﬁ: 1)2,
EVZ) = SO p(1—p)
’ 2 (Jnf2+n—i+ 12(/n/2+n— i)

g=1 =1

+ 2 ( q )2} X
P\l n =92+ n—q+1)
n n 4
(1) o - mye-e LD

Similarly, we define rescaled means and variances for Va(t) and Va(t) as in (11) and (12). Then calculate
the exact variance (10), asymptotic variance (9) and the means and variances of those three estimates,
which are tabulated below.
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TABLE I.

Variance and Asymptotic Variance of CHF Estimate (2) for Koziol-Green Model.

CDF 0.1 0.3 0.5 0.7
p=0.25 | n=20,V 0.1427 1.0364 3.6281 1.8883
n=100, V 0.1332 0.8305 4.7584 37.5694
n=500, V 0.1315 0.7986 3.8938 51.2521
n=o00, AV 0.1310 0.7912 3.7500 30.6143
p=0.5 | n=20,V 0.1255 0.5939 1.9811 7.1222
n=100, V 0.1188 0.5328 1.5775 5.9962
n=500, V 0.1176 0.5228 1.5145 5.2004
n=00, AV 0.1173 0.5204 1.5000 5.0556
p=0.75 | n=20,V 0.1204 0.5049 1.3761 4.0981
n=100, V 0.1145 0.4653 1.1768 3.2013
n=>500, V 0.1134 0.4584 1.1470 3.0240
n=o00, AV 0.1131 0.4567 1.1399 2.9845
TABLE II.
Mean and Variance of KMVE for Koziol-Green Model.
CDF 0.1 0.3 0.5 0.7
p=0.25 n=20, mean 0.1422 1.0274 2.4274 0.6843
n=100, mean 0.1331 0.8269 4.6249 11.1228
n=500, mean 0.1314 0.7979 3.8782 39.6736
p=0.5 n=20, mean 0.1251 0.5844 1.9341 4.7732
n=100, mean 0.1188 0.5314 1.5647 5.8007
n=500, mean 0.1176 0.5225 1.5122 5.1730
p=0.75 n=20, mean 0.1201 0.4983 1.3269 3.9453
n=100, mean 0.1144 0.4642 1.1698 3.1486
n=>500, mean 0.1134 0.4582 1.1457 3.0148
p=0.25 | n=20, variance 0.0154 1.7006 12.5355 5.7689
n=100, variance 0.0025 0.0988 22.0388 331.6009
n=>500, variance 0.0005 0.01643 1.2121 2165.8523
p=0.5 | n=20, variance 0.0097 0.1461 3.4166 21.7371
n=100, variance 0.0015 0.0185 0.2144 11.7610
n=500, variance 0.0003 0.0035 0.3590 0.9732
p=0.75 | n=20, variance 0.0084 0.0753 0.7464 11.1144
n=100, variance 0.0015 0.0115 0.0715 0.8504
n=>500, variance 0.0003 0.0022 0.0130 0.1331
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Mean and Variance of NAVE for Koziol-Green Model.

TABLE III.

CDF 0.1 0.3 0.5 0.7
p=0.25 n=20, mean 0.1329 0.8441 1.6314 0.4330
n=100, mean 0.1314 0.8045 4.0555 7.4706
n=>500, mean 0.1311 0.7938 3.8088 32.1314
p=0.5 n=20, mean 0.1180 0.5359 1.6026 3.3145
n=100, mean 0.1174 0.5232 1.5237 5.3557
n=500, mean 0.1173 0.5210 1.5045 5.1082
p=0.75 n=20, mean 0.1136 0.4644 1.1911 3.1198
n=100, mean 0.1132 0.4581 1.1488 3.0481
n=500, mean 0.1131 0.4570 1.1416 2.9965
p=0.25 | n=20, variance 0.0131 0.7279 4.1114 1.9517
n=100, variance 0.0024 0.0909 10.5353 112.9980
n=500, variance 0.0005 0.0162 1.1375 822.4976
p=0.5 | n=20, variance 0.0085 0.1111 1.4947 7.4112
n=100, variance 0.0016 0.0178 0.1970 7.4747
n=500, variance 0.0003 0.0034 0.0354 0.9304
p=0.75 | n=20, variance 0.0075 0.0625 0.4787 4.3072
n=100, variance 0.0015 0.0111 0.0678 0.7570
n=500, variance 0.0003 0.0022 0.0129 0.1305
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TABLE IV.
Mean and Variance of MMVE for Koziol-Green Model.

CDF 0.1 0.3 0.5 0.7

p=0.25 n=20, mean 0.1609 0.8066 1.1860 0.2904
n=100, mean 0.1423 0.7784 2.5240 2.4754

n=500, mean 0.1357 0.7783 3.0024 8.6391

p=0.5 n=20, mean 0.1466 0.6186 1.5505 2.5177
n=100, mean 0.1288 0.5540 1.4845 3.9377

n=500, mean 0.1221 0.5334 1.4801 4.3877

p=0.75 n=20, mean 0.1421 0.5578 1.3138 2.8251
n=100, mean 0.1246 0.4943 1.1917 2.8512

n=500, mean 0.1180 0.4721 1.1574 2.8909

p=0.25 | n=20, variance 0.0182 0.3746 1.4397 0.7134
n=100, variance 0.0028 0.0696 1.2597 6.9892

n=>500, variance 0.0005 0.0143 0.4540 8.1137

p=0.5 | n=20, variance 0.0128 0.1211 0.7603 2.7477
n=100, variance 0.0020 0.0187 0.1482 1.5594

n=>500, variance 0.0004 0.0035 0.0309 0.4820

p=0.75 | n=20, variance 0.0115 0.0802 0.3995 1.7764
n=100, variance 0.0018 0.0123 0.0644 0.4623

n=>500, variance 0.0003 0.0023 0.0125 0.1042

6. Conclusions

From the analysis above, three kinds of the variance estimate are found. They have the same asymp-
totic behavior. For a finite sample, the special case of the Koziol-Green model is studied. By the rough
comparisons, the KMVE is closer to the exact variance (10), but the MMVE has a smaller variance and
NAVE is closer to the asymptotic variance (9). For the high values of CDF, since the variance and asymp-
totic variance increase very fast, they are less meaningful and then are omitted here.
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