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Abstract 

When kernel regression is used to produce a smooth estimate of a curve over a finite interval, 
boundary problems detract from the global performance of the estimator. A new kernel is 
derived to reduce this boundary problem. A generalized jackknife combination of two unsatis- 
factory kernels produces the desired result. One motivation for adopting a jackknife combina- 
tion is that they are simple to construct and evaluate. Furthermore, as in other settings, the bias 
reduction property need not cause an inordinate increase in variability. The convergence rate 
with the new boundary kernel is the same as for the non-boundary. To illustrate the general 
approach, a new second-order boundary kernel, which is continuously linked to the Epanech- 
nikov (1969, Theory Probab. Appl. 14, 153-158) kernel, is produced. The asymptotic mean 
square efficiencies relative to smooth optimal kernels due to Gasser and Miiller (1984, Scand. J. 
Statist. 11, 171 185), Miiller (1991, Biometrika 78, 521-530) and Miiller and Wang (1994, 
Biometrics 50, 61 76) indicate that the new kernel is also competitive in this sense. © 1998 
Elsevier Science B.V. All rights reserved. 
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1. Introduction 

Consider  the nonparamet r ic  regression model,  

yi = m(ti) + ei, i = 1 , 2  . . . . .  n, 

where the ei are independent,  identically distributed r a n d o m  variables with zero 
mean and c o m m o n  variance a 2, m is an unknown regression function in CP[O, 1] for 
some integer p ~> 2 and the ti are the nonstochast ic  design points satisfying 

* Corresponding author. 

0378-3758/98/$19.00 © 1998 Elsevier Science B.V. All rights reserved 
PII S03 7 8 - 3 7 5 8 ( 9 7 ) 0 0 0 8 2 - 7  



290 C. Kyung-Joon, W.R. Schucany /Journal of Statistical Planning and Inference 66 (1998) 289-304 

0 <. tx < t2 < " ' "  < tn ~ 1. Without having to assume more about m than that it satisfies 
certain smoothness conditions, we may want to estimate re(t) at some fixed argument t. 

There are many interesting nonparametric estimators for m(t). Examples of these 
can be found in Eubank (1988) and Gasser and Mfiller (1979). For  simplicity consider 
the class of kernel estimators of re(t) defined by Priestley and Chao (1972) and 
examined by Miiller and Stadtmfiller (1987), 

rh( t ;h)--  i ~  K y,, (1.1) 

where the design points, t~, are equally spaced and h > 0 is the bandwidth or window 
width. The function K is called a kernel function. It is supported and symmetric on 
[ - l, l]. When it satisfies 

• +1 f l  J j = 0  j zJK(z) dz = 0 = 1, 2, - 1 (1.2) P a o m 

-1 k p # O  j = p ,  

it is called a kernel of order p. The various other classes of kernel estimators are not 
treated in this paper. Some discussion of parallel developments is in Section 6. 

If the bandwidth depends on t (or t~), the estimator is called a local-bandwidth 
kernel estimator, otherwise it is called a global-bandwidth kernel estimator. Next, 
suppose that for a specific point t, the value of h is fixed in (1.1). If some part of the 
support of the kernel, It - h, t + hi, is not contained in [0, l],  then t is said to be in 
the boundary. Gasser and Miiller (1979) identified the unsatisfactory behavior of (1.1) 
for points in the boundary. 

The goal of this paper is to find a kernel that is suitable for local estimation in 
boundary cases. In Section 2, we review the asymptotic optimality considerations 
which lead to balancing variance and bias squared. In Section 3, we describe a general 
combination that produces a boundary kernel with the desired characteristics. This is 
illustrated in Section 4, compared with other boundary kernels such as Gasser and 
Miiller (1979), Mfiller (1991) and Mfiller and Wang (1994) in Section 5, and some 
concluding remarks are made in the final section regarding local linear fitting as an 
alternative boundary adaptation. 

2. Nonboundary kernel regression estimators 

Let us examine the first moment of the kernel estimator (1.1) for the nonboundary 
case. Using a standard Taylor series argument (see Gasser and Miiller 1979), it can be 
shown that if m ~ CP[0, 1], then the expected value of th at a fixed t is 

E[rh(t; h)] = K(z) m(t) - zhm(1)(t) + m(2)(t) 
1 
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where mtJ)(t) is the j th derivative of m(t) and h is sufficiently small that h < t and 
h < 1 - t. Hence, as a result of (1.2) the asymptotic bias of rh(t; h) is 

E[rh(t; h)] - re(t) - ( ---1)p hPmtP)tDk o(hP). (2.1) p! ~ ' P +  

Next, the asymptotic variance of vh(t; h), by methods similar to those leading to 
(2.1), is 

= K2(z) dz + o ~-~ . (2.2) Var[vh(t;h)] ~ -1 

Therefore, the mean square error can be expressed as 

mse[rh(t; h)] = ~ Q + m(P)(t)kp + o + o(h2p), (2.3) 

where Q = S_+~ KZ(z) dz. Hence, the optimal bandwidth which minimizes the asymp- 
totic mse[rh(t; h)] is 

hopt = ~ ~rEQ ~l/(2p+l) (2.4) 
[2pn(kpm(P)(t)/P[) 2 J 

3. Boundary kernel regression estimators 

Nonparametric regression function estimators usually show a sharp increase in 
variance and bias when estimating m(') at points near the boundary of the support of 
the function (e.g., t < h). Gasser and Miiller (1979, 1984) identified the crucial nature of 
these effects. They proposed optimal boundary kernels but did not give any formulas. 
However, Gasser and Miiller (1979) and Mfiller (1988) suggested multiplying the 
truncated kernel at the boundary by a linear function. Rice (1984) proposed another 
approach using a generalized jackknife, also known as Richardson extrapolation 
which linearly combines the two bandwidths. Schuster (1985) introduced a reflection 
technique for density estimation. Eubank and Speckman (1991) have given a method 
for removing boundary effects using a 'bias reduction theorem'. The fundamental idea 
of their work is to use a biased estimator to improve another estimator in some sense. 
Miiller (1991) proposed an explicit construction for a boundary kernel which is the 
solution of a variational problem under asymmetric support. He tables many poly- 
nomials that are optimal in a specified sense. Moreover, Miiller (1993a) introduced 
a general method of constructing a boundary kernel which is the solution of a varia- 
tional problem involving a certain weight function. More recently, Miiller and Wang 
(1994) gave explicit formulas for a new class of polynomial boundary kernels and 
showed that these new boundary kernels have some advantages over the smooth 
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optimum boundary kernels in Miiller (1991), i.e., these new kernels have higher mse 
efficiency. Some of the methods discussed above are investigated further and com- 
pared with the proposed boundary kernel in Section 5. 

In the context of density estimation, Wand and Schucany (1990) and Berlinet (1993) 
worked with the Gaussian kernel which exhibits a first-order boundary effect because 
the Gaussian kernel has noncompact support. In fact, Berlinet (1993) proposed 
a framework for building kernels of increasing order apart from some specific 
methods based on moment relationships. 

Now, let us assume that conditions (1.2) hold for the class of kernels with p = 2. In 
this section, a new boundary kernel is derived by combining two kernels with inferior 
bias properties. The bias of the proposed boundary kernel estimator has the same 
convergence rate as in the interior. Therefore, the best rate of convergence for mean 
square error of this boundary kernel is the same as that of the non-boundary 
kernel. To do this, a combination of 'cut-and-normalize' and the generalized 
jackknife methods is used so that the bias is improved to O(h 2) throughout the 
boundary. 

A method of cut-and-normalize was first introduced by Gasser and Miiller (1979). 
Schucany and Sommers (1977) used a generalized jackknife method for the construc- 
tion of a higher-order kernel. Wand and Schucany (1990) adapted this to a class of 
kernels based on the Gaussian kernel. 

For  a fixed t and bandwidth h, define an index of how much of the window remains 
within the set of design points 

and 

q min{  } 

q 1} 
where q is a real number such that q e [0, 1]. For  q = t/h < 1, the support of the kernel 
estimator is less than t _+ h. The effective domain of the kernel is [ - 1, q) instead of 
[ -  1, 1] as for an interior point. Hence, the 'cut-and-normalize' modification omits 
that part of kernel lying between q and 1 and renormalizes the kernel between - 1 
and q. The result is a boundary kernel. Then, the specific linear combination of two 
different such boundary kernels, that is the required generalized jackknife estimator, 
gives a bias that has the same order as in the interior. 

3.1. Cut and normalize 

For simplicity, only the left boundary effects, i.e., q = t/h < 1, will be discussed here. 
The right boundary effects proceed in the same manner. Since Gasser and Mfiller 
(1979) investigated the cut-and-normalize method, we briefly explain the general 
approach described above. Let rh~ (t; h) is a kernel estimator with second-order kernel 
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Kl(z )  on [ - 1, 1]. I f t  is a fixed value in [0, h), then it is in the left boundary .  Thus, the 

expectat ion of ~hl(t; h) becomes 

Kl(z )  m ( t ) -  zhm~l)(t) + - ~ .  m~2)(t) d z + o ( h 2 ) ,  (3.1) E[rh~(t;h)]  = _ 

where q = t/h. Since t e [0, h), the symmetry  of the kernel is lost and ~q_ ~ K~(z) dz ~ 1 
and ~q-1 zK~(z )dz  ¢ O. Hence, no terms vanish and (3.1) cannot  be reduced further. 

Therefore,  a boundary  kernel modification of ~h~ (t; h) is 

rhlq(t;h) = i_~ Klq yi, 

where 

K~(z) 
Klq(Z) - fq- 1 KI(U) du '  - 1 ~< z ~< q, 

by 'cutting'. 
Further ,  this is 'normalized'  in the sense that  it is rescaled to integrate to 1.0. Then, 

the corresponding expectat ion is 

h2m(Z)(t) k(12q ) + o(h2), (3.2) E[rfixq(t; h)] = m(t) - hm°)(t)k]X)q + 2-------(--. 

where 

k~l~ = zKlq(z)  dz ¢ 0 and k~2q ) = z2Klq(Z) dz. 
-1  -1  

F r o m  (2.1), the dominant  part  of bias[rhxq(t; h)] for the nonbounda ry  is of order  h 2 
with p = 2. However ,  the dominant  part  of bias[rh(t; h)] in (3.2) is of order  h, so 
rfilq(t; h) is still subject to more  boundary  bias. 

The asymptot ic  variance of ~lq(t; h) can be obtained by the same method  as (2.2) for 
the nonboundary ,  i.e., 

var[rhlq(t; h)] = ~-~ _ 1 

Hence, the asymptot ic  mean square error  has the form 

O'2QI 
amse[rhlq(t; h)] - nh + [hm~i)(t)k(ll~q]2' 

where Q1 = ~q i K~q(z) dz. Therefore,  the best rate of convergence to be anticipated 
for the amse[rhl~(t; h)] is n -2/3. This can be compared  to n -4/5 that  would be 
obtained with p = 2 if there were no boundary  effect. Next,  to obtain the same local 
asymptot ic  behavior,  the generalized jackknife method  is applied to reduce the order  
of the bias. 
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3.2. Generalized jackknife  

To apply this method, first define another kernel estimator as 

n 1 n 1 h ( ~ )  rfi:(t;h) = ~ ,  K2 y,, 

where K2(z) is a second-order kernel function supported on [ - 1 ,  1] and not 
identically equal to K1 (z). Now define another boundary kernel estimator ~h2q(t; h) 
with a similarly renormalized kernel, K2q(z). Hence, similar to (3.2), 

h2m(2)(t) k(22q ) + o(h2). (3.3) E[tfi2q(t; h)] = m(t) - hm(1)(t)k~21~ + 

Then, obviously, (3.2) and (3.3) can be rewritten as 

E[rhlq(t; h)] = m(t) - hm(1)(t)k~l)q + O(h 2) 

E[rfi2q(t; h)] = re(t) - hm°)(t)k~E1)q + O(h2). 

The generalized jackknife principle formally expresses a solution of a related linear 
system of equations 

Klq(z )  K2q(z) 

K*(z )  = k(~)q k~'~ _- K ,q(z )  -- rK2q(z),  - 1 <~ z ~ q, 
1 1 1 - - r  
kil)q ktE')q 

where r = k~l)q/ktE1Jq # 1. Notice that K * ( z ) i s  a linear combination of Klq(z) and KEq(Z), 
see Gray and Schucany (1972). 

Finally, define the boundary kernel estimator, rfi*(t; h), whose kernel function is 
K*(z) as 

1 n 1 , f t - t i ~  
~*(t; h) = n i~, ~ Kq ~ - - ~ )  Yi. (3.4) 

Using (3.2) and (3.3), the leading terms cancel and expansions similar to those leading 
to (2.1) yield 

h2m(2)(t) 2, 
E[rfi*(t; h)] = m(t)  + ~ kq + o(h2), 

where k 2. = ~ x z2K*(z) dz. Hence, the dominant part of the asymptotic bias of the 
estimator, r~*(t; h), is of order h 2, the same order as in the interior. Similarly, the 
asymptotic variance of ~*(t; h) is 

var[mq(t; h)] - nh + o 
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where Q* = ~q-1 [K*(z)] 2 dz. Hence, the asymptotic mean square error of rh*(t; h) is 

mse[~*(t;  h)] - nh + h4 + o + o(h4). 

Therefore, comparing Eq. (2.3) for the nonboundary with p = 2, the asymptotic mean 
square error of m*(t; h) has the same optimal rate of convergence as in the interior, 
namely O(n-4/s). 

As we mentioned, Rice (1984) used this generalized jackknife principle to achieve 
the same order. From (3.1), even consistency is a problem. Thus, Rice (1984) defined 
a kernel function for asymptotic unbiasedness, namely K(z;q)= K(z)/ktq °), where 
k~bO=_ ~b_ 1 ziK(z) dz which, in fact, is normalization. Asymptotic unbiasedness is 
achieved, but the bias is still of lower order at the boundary. Thus, he used a generaliz- 
ed jackknife combination, also known as Richardson extrapolation, to eliminate this 
lower order bias term. He defined the new kernel estimator 

tfiR(t; h) = (1 - ~)t~q(t; h) + o:r~q(t; cth), 

where 

b(1)/#.(0) 
'~q /"q ' and ~q(t; h) 

~1) ~o) _ ( k q  /kq )} {(flkql#lkql~ ) tl) Co) 

is the kernel estimator with kernel K(z;q). Also, he recommended using fl = 2 - q. 
In fact, rhR(t;h) is the jackknife estimator with kernel function KR(z;q)= 
(1 -- e ) K ( z )  - ( ~ / f l ) K ( z / ~ ) .  

4. A Boundary kernel of order two matching the Epanechnikov kernel 

In this section, the p = 2 case is demonstrated with two specific kernels. First, let 
Kl(z)  be the second-order uniform kernel, Kl(z)  = 1, Izl ~< 1 and K2(z) be the (also 
second-order) Epanechnikov kernel, K 2 ( z  ) = 3 (1 - z2) ,  ]z I ~ 1. Then, cut and n o r -  

m a l i z e  yields 

Kl(z )  1 
Klq(Z) = ~q- 1 K l ( u ) d u  1 + q 

and 

K2(z) 3 
K2q(z) - Sq - a Kz(u) du - (3q -- qa + 2) (1 - -  z2) ,  - - l ~ z ~ q  

for the boundary kernels, respectively. Then, from (3.2) and (3.3), 

1 1 z E[rhlq(t; h)] -- re(t) - ~ (q - 1)hm(1)(t ) + ~ (q -- q + 1)hZmt2)(t ) + o(h2). 
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and 

E[th2q(t; h)] = re(t) 
3 (q - 1) 2 

4 (q -- 2) 
- -  hmtl)( t)  -~ 

1 (3q 5 - 5 q  3 - 2) 2 2 
10 ~ -- ]-)2-~ -- ~ h m ~ )(t) + o(h2). 

Hence, as in Section 3 we use the leading terms of these two bias expansions.  After 
some algebra,  the bounda ry  kernel, K*(z ) ,  simplifies to 

1 3(1 - z 2) 

1 + q (3q - q3 + 2)  

1 3 (q - 1) z 

- ~ ( q - 1 )  4 ( q - 2 )  (q2 + 1) 6z z 
K * ( z )  - - 3 (q + 1) ~ (q + 1 ) a ,  - -  1 ~< z ~< q, 

1 1 

1 3 (q - 1) 2 
- ~ (q - 1) 4 (q - 2) 

(4.1) 

for 0 ~< q ~< 1. Figs. l(a) and (b) show the ' cu t -and-normal ized '  bounda ry  kernels when 
q = 0.6. Fig. l(c) shows the bounda ry  kernel that  is the generalized jackknife combina-  
t ion of Figs. l(a) and (b). It  should be noticed that  K * ( z )  is a second-order  bounda ry  

kernel that  has the desirable p roper ty  that  it depends cont inuously  upon  q. Fur ther-  
more,  it clearly converges to the Epanechn ikov  kernel as q ~ 1. This is an at tract ive 

feature that  K * ( z )  converges to the opt imal  kernel of order  2, as the bounda ry  
p rob lem recedes. Fur thermore ,  (4.1) has a simple form and achieves the best a t ta inable  
rate. The  remaining question is whether  the cons tant  is unacceptably  large. The  

calculations repor ted  in the next section confirm that  it does not  have serious 
problems in this regard. 

1.o 

0.5 

o 

-0.5 
-1.o 
(a) 

1.0 t 

o.5t 

ot 

1.0 

0.5 

0 

-0.5 
-1.0 -0.5 
(c) 

/ 
-0.5 t 

-0.5 0 0.5 -1.0 -0.5 0 0.5 0 0.5 
z Co) z z 

(a) Cut-and-Normalized Kernel from Uniform Kernel 
(b) Cut-and-Normalized Kernel from Epanechnikov Kernel 
(c) Jackknife Boundary Kernel from Both Kernels 

Fig. 1. Proposed boundary kernel when q = 0.6. 
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5. Efficiency comparison 

As we discussed in Section 3, there are a few other boundary kernels. In this section, 
we compare these to the proposed boundary kernel. 

First, Gasser and M/filler (1979) and M/filler (1988) proposed multiplying the 
truncated kernel at the boundary by a linear function. That is, consider 

KGM(Z; q) = (a + bz) 3 (1 - ze), (5.1) 

where a and b depend on q such that ~q_ 1 KGM (Z; q) dz = 1 and ~q_ ~ ZKGM(Z; q) dz  = O. 

Then, the explicit solutions of this for uniform and Epanechnikov kernels can be 
obtained. See the Appendix for details for p = 2. 

Second, a boundary kernel of second-order with a certain smoothness characteristic 
is derived by M/filler (1991). It also agrees with the Epanechnikov kernel in the 
interior. From Table 1 of Mfiller (1991) and Miiller (1993b), 

6,+z> q ,10>} 
1 + 5 + 1 0 ~ z ( 1  " (5.2) 

Also, Miiller (1993a) introduced a method which is the solution of a variational 
problem involving a certain weight function. If we restrict our attention to compact 
support with a second-order boundary kernel, we can get the same boundary kernel 
as (5.2) by using Theorem 4.1 and the procedure for finding boundary kernels in 
Section 5 of Miiller (1993a). 

Other boundary kernels are introduced by M/filler and Wang (1994). In fact, they 
showed that these new boundary kernels have smaller asymptotic variance than 
M/filler's (1991) so that these new boundary kernels have greater efficiency in terms of 
asymptotic rose. For second order, their boundary kernel is given by 

12 (z+  1) [z(1 2q)+ (3qz - 2q + 1)] (5.3) 
KMw(Z;q) -- (1 + q)--------~ -- 2 

and this explicit formula can be found in Mtiller (1993b) and M/filler and Wang (1994). 

Table 1 
ARE for KGM(Z; q), Ku(Z; q), KMw(Z; q) with respect to K*(z) 

q AREGM AREM AREuw 

0.0 1.227 0.765 1.237 
0.1 1.519 0.788 1.699 
0.2 3.119 0.815 3.316 
0.3 1.132 0.847 0.900 
0.4 0.366 0.881 0.329 
0.5 0.769 0.914 0.727 
0.6 0.902 0.945 0.879 
0.7 0.963 0.969 0.954 
0.8 0.990 0.987 0.987 
0.9 0.998 0.997 0.998 
1.0 1.000 1.000 1.000 
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The asymptotic relative efficiency (ARE) of two different estimators does not depend 
on a 2 or mt2)(t). To see this, note that substituting the optimal bandwidth from (2.4) with 
p = 2 into the asymptotic mean square error (amse) yields for each fixed value of q 

62Q 1 
amse[rh(t; hopt)] = n--~opt + 4 h°4p' [mt2)(t)k212 

5 [aZQ]4/5 [kzmt2)(t)]2/5 n_4/5. 
4 

Hence, in comparing two kernels by the ratio of their respective amse, the only factors 
that do not cancel are Q4/5(k2)2/5. It has been argued that the sample size interpreta- 
tion of ARE requires one to use [arose] 5/4, so that each is proportional to 1/n. 
Therefore, the relevant ratio involves Q Ik211/2 for each boundary kernel. For K* (z) in 
(4.1), direct evaluation of the relevant integrals yields 

Q, _ _ 36(1 + qS) _ 60(1 + q2)(1 -k- q3) ..1_ 45(1 + q)(1 + q2)2 
5(1 q-- q)6 

and after some simplification 

k 2 . -  _ q E + 3 q _ l  
5 

Table 1 reports the ARE of (5.1)-(5.3) relative to the boundary kernel derived here 
(4.1) for eleven equally spaced values of q. 

For example, AREM is evaluated by 

AREM = I amse of new boundary k e r n e l  ~5/4 
amse ~-~X,I-fiil~rr ( ] 9 ~  b-~und~-ry k-ernel / 

Q*lk2*ll/2 
QMIkMI1/2 ' 

where 

QM = [KM(z;q)]2 dz and kM = z2Ku(z;q) dz. 
1 1 

(See the Appendix for explicit formulas.) 
Fig. 2 shows overlay plots of 'efficacy' = (amse) 5/4 for each of the four boundary 

kernel. It can be seen that KM(z; q) and K*(z) have generally the same large sample 
behavior. Likewise, K~M(z; q) and KMw(Z; q) have similar large sample behavior. For 
KM(z; q) and K*(z), the efficacies have minima for q near 0.4 and increase slowly to the 
same value as q goes to 1.0. However, that the performance of K*(q) is better in this 
specific sense when q values are close to 0.0, is visible here. Whereas, the efficacies of 
KcM(z; q) and KMw(Z; q) have minima for q near 0.2 and increase slowly to the same 
value as q goes to 1.0. In fact, the performance of KMw(Z; q) is better in this specific 
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with respect to K*(.), ( - ) ARE of KMw(';q) with respect to K*(-). 

sense than K~M(Z; q). Also KGM(Z; q) and KMw(z; q) have the better performance when 
q values are between 0.0 and 0.3, whereas KM(Z; q) and K*(z) are better when q values 

are between 0.3 and 1.0. 
Fig. 3 is a plot  of the ARE  as a function of  q. Since the range of  values is large for 

certain values of q, the logar i thm of A R E  is plotted in Fig. 4. This more  clearly 
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displays the character of the comparisons than the limited number of values in 
Table 1. The new kernel, K*(z), has uniformly smaller amse than KM(z; q) for every 
q e [0, 1). This is no contradiction of the optimality found by Mtiller (1991), because 
(4.1) does not satisfy the 'smoothness' constraints. The relative efficiency of KM(z; q) is 
down to 95% at q = 0.6, 85% at q = 0.3, and achieves its minimum of 76.5% at the 
extreme boundary. This advantage to K*(z) has its price, namely, it is discountinuous at 
each end of its support. Mfiller (1991) observes that this may 'lead to relatively 
unsmooth curve estimates'. Also, we can see the same close agreement of K~u(z; q) and 
KMw(Z; q). Clearly, either of these are far more efficient than K*(z) when q is near 0.2. 

6. Conclusions 

The general method examined here has some merits. Even though it would be 
tedious to calculate the resulting determinants, it can be extended to higher-order 
boundary kernels, although this is not recommended. For the specific case ofp  = 2 as 
the point of estimations enters the interior, the proposed kernel becomes the optimal 
Epanechnikov (1969) kernel. The bias of the new boundary kernel estimator has the 
same convergence rate as in the interior. Therefore, it has the same rate of mean 
square convergence as that of the nonboundary case. The new simple boundary kernel 
estimator depends continuously upon q and converges to the Epanechnikov kernel 
estimator as q ~ 1. 

For a fixed value of t in the boundary, it is natural to seek the optimal bandwidth 
h(t). However, local bandwidth selection is not as straightforward as it is in the 
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interior, since a different kernel is involved for each value of q = t/h(t). See Miiller 
(1991), Section 4. The practical difficulties of adaptive bandwidth selection should be 
essentially the same for the boundary kernels introduced here. Finite sample simula- 
tions would be necessary to determine which of the kernels would be better able to 
tolerate the under- and over-smoothing that occurs with data-based bandwidth 
choice. 

We have used a general method to produce a specific boundary kernel, that has 
a smaller arose than Miiller's (1991) 'smooth optimum' boundary kernels. Despite this 
favorable large sample relative efficiency, not matching the 'endpoint continuity' 
characteristic of the Epanechnikov may be a disadvantage with small samples. Our 
simulation experience with K*(z) in the boundary has not been disappointing with 
regard to curve estimates with too much wiggliness. However, we have made no small 
sample comparisons with other boundary kernels. Perhaps, these are less relevant in 
practice in that locally weighted polynomial regression adapts to the boundary 
automatically. See Hastie and Loader (1993) and the discussion for detailed illustra- 
tions of this important feature. 
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Appendix 

(1) Explicit solutions and QcM and kcM for the Gasser and Miiller (1979) and 
Mtiller (1988) boundary kernel (5.1) require that we solve 

fq  1 3 3 3  1 3 1 KGM(Z; q) dz = ~ a -- ~ b + ~ aq + -~ bq 2 - -~ aq 3 - bq 4 = 1 

and 

3 1 3  1 
-1ZK~M(z;q)dz = - ~ a  +-(6b +-~aq 2 +-~bq 3 - aq 4 -  bq 5 =0.  

In order to find a and b, let 

+ _ 4 q _ ~ q 3  a +  - ~ + ~ q -  q4 b = l ,  
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Then, using Cramer's rule, 

( 1  1 3 ) / ( ( ~  3 1 ) ( 1  lq3 3 q S  ) a =  -~6 + -~ q -- 3 q 5 + .~ q _ ~ q3 ..~ + ~ 

-- ( - -~6+g3q  2 - - 3 0 4 ) 2 ) ,  

b = -  ( -~+833q2 _ 3  q 4 ) / ( ( ~ + ~ q 3  _~q3)l  (~0 + ~ q l  3 _ ~60 qS) 

Thus, 

and 

f 
q 

---- [KGM(Z; q)]2 dz Q 
GM - 1 

3 9 b2 9 _2b2)+~_~ _ 2 a 2 + b 2  ) 9 a2 ab + + (a 2 
- ; i 5  

+ ~--~a2q+ ~---~abq 2 + ~ ( - 2 a  z + b Z ) q 3 - ~ a b q 4 +  ~---o(a 2 -  2bZ)q 5 

3 9 b2q7 + ~ abq 6 + 

q 

kGM = Z2 KGM(2; q) d z  
- 1  

1 , , 3 
= 1--6a- ~ b  + ~ a q  3 + bq 4 -  aq 5 - ~bq 6. 

(2) The values of QM and kM for the Miiller (1991) boundary kernel (5.2) are 

f 
q 

= [KM(Z; q)]2 dz 
QM - 1 

_ 36 ~'.100(-- 1 + q)2 
(1 n t- q ) 6  ( 7(1 + q)4 

100( -- 1 + q)2q7 40(4 -- l lq + l lq  2 -- 4q 3) 
+ 

7(1 + q)4 3(1 + q)4 

40q6(4 -- l lq + l lq  2 -- 4q 3) 4(3q -- 4q 2 + 3q3) 2 
+ + 

3(1 + q)4 (1 -t- q)4 

4q(3q -- 4q 2 + 3q3) 2 8(47 -- 187q + 282q 2 -- 187q 3 + 47q 4) + + 
(1 + q)4 5(1 + q)4 
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and 

8q5(47 -- 187q + 282q 2 -- 187q 3 + 47q 4) 
+ 

5(1 + q)4 

2 (24- -  153q + 323q 2 -- 323q a + 153q 4 -  24q 5) 

(1 + q)4 

2q4(24--  153q + 323q z -- 323q 3 + 153q 4 -- 24q 5) 
+ 

(1 + q)4 

1 2 ( - - 3 q +  16q 2 - 3 1 q  3 + 3 1 q  4 - 1 6 q  5 + 3 q  6) 
(1 -q- q)4 

1 2 q 2 ( -  3q + 16q 2 -- 31q 3 + 31q 4 -- 16q 5 + 3q 6) 
+ 

(1 q- q)4 

4(9 -- 120q + 364q 2 -- 514q 3 + 364q 4 -- 120q 5 + 9q 6) 
+ 

+ 

3(1 + q)4 

4q3(9 - 120q + 364q 2 - 514q 3 + 364q 4 - 120q 5 + 9q6)'~ 

3(1 + q)4 

X 
q 

kM = Z2KM(Z; q) dz 
- 1  

6 f - - 5 ( - - 1  + q )  - - 5 ( - 1  + q ) q 6  

- (1  + q)3 )- 3 - - O + q - ~  -~ 3(1 + q)2 

4( - 4 + 7q - 4q 2) 4qS(--  4 + 7q - 4q 2) 3( - 1 + 4q - 4q 2 + q3) 
-+ + -- 

5(1 + q)2 5(1 + q)2 2(1 + q)2 

3q4( -- 1 + 4q -- 4q 2 + q3) 2(3q -- 4q z + 3q 3) 

2(1 + q)Z 3(1 + q)2 

2qa(3q -- 4q 2 + 3q3)~ 
-t 3(1 + q)2 j~ • 

(3) The values of QMw and kMw for the Miiller and Wang (1994) boundary  kernel 
(5.3) are 

= [KMw(Z; q)]2 dz Q 
M W  - 1 

-- 108(1 -- 2 q ) ( -  1 + q)2 108(1 -- 2 q ) ( -  1 + q)2q4 1 4 4 ( -  1 + 2q) 2 
- _~ -~ 

(1 + q)8 (1 + q)8 5(1 + q)8 

144q5(-- 1 + 2q) 2 108(-- 1 + q ) E ( 1 - - 2 q + 3 q  2) 

5(1 + q)8 (1 + q)8 
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and 

1 0 8 ( -  1 + q)Zq2(1 - 2q + 3q 2) 36(1 - 2q + 3q2) 2 
+ -~ 

(1 + q)8 (1 + q)8 

36q(1 --  2q + 3q2) 2 12(13 --  52q + 82q 2 -- 60q 3 + 9q 4) 
+ + 

(1 + q)8 (1 + q)8 

+ 
12q3(13 -- 52q + 82q 2 -- 60q 3 + 9q 4) 

(1 + q)8 

f 
q 

kMw = Z2KMw(Z; q) dz 
- 1  

12(1-2q) 9 ( - l + q ) Z  9 ( - l + q ) 2 q 4  12(1-2q)q 5 

5(1 + q)4 2(1 + q)4 + 2(1 + q)4 q- 5(1 -k- q)4 

2 ( 1 - 2 q + 3 q  2) 2 q 3 ( 1 - 2 q + 3 q  2) 
+ -~ 

(1 + q)4 (1 + q)4 
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