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SUMMARY
Some studies of the bootstrap have assessed the effect of smoothing the estimated
distribution that is resampled, a process usually known as the smoothed bootstrap.
Generally, the smoothed distribution for resampling is a kernel estimate and is often
rescaled to retain certain characteristics of the empirical distribution. Typically the
impact of such smoothing has been measured in terms of the mean squared error of
bootstrap point estimates. The reports of these investigations have not been encouraging
about the efficacy of smoothing. In this paper the effect of resampling a kernel
smoothed distribution is evaluated through expansions for the coverage of bootstrap
percentile confidence intervals. It is shown that, under the smooth function model,
proper bandwidth selection can accomplish a first-order correction for the one-sided
percentile method. With the objective of reducing coverage error, the appropriate

~1/4 rather than the familiar n=1/5 for kernel density

bandwidth converges at a rate of n
estimation. Additionally, the bandwidth depends on moments of the smooth function
model and not on derivatives of the underlying density of the data. The relationship of
the method to both the accelerated bias correction and bootstrap-t methods provides

some insight into the connections among three quite distinct approximate confidence

intervals.

KEY WORDS: Bandwidth; Edgeworth expansion, Smooth function model; Accelerated
bias correction; Bootstrap-t

* Alan M. Polansky is Assistant Professor of Statistics at Northern Illinois University, DeKalb, Illinois,
60115-2854. William R. Schucany is Professor of Statistical Science at Southern Methodist University,
Dallas, Texas, 75275-0332. This research was completed while the first author was a graduate student
at Southern Methodist University. The authors wish to thank Rudy Guerra, Suojin Wang, and Alastair
Young for helpful comments and suggestions.



1. INTRODUCTION

Let X = {Xy,...,X,} be a set of independent and identically distributed random
variables from a distribution F with density f and scalar parameter § = 6(F). The
problem of primary interest here is the construction of confidence intervals for 8 based
on 6 =06(F)="06(X), where F is some estimate of F based on X. Forming such
intervals requires knowledge of the sampling distribution of 6, denoted here by
H,(6,F).

The bootstrap, a method developed by Efron (1979), estimates H,, (4, F) by the
sampling distribution of 6 when the X; are independent and identically distributed
random variables from F' Thus, in the bootstrap methodology,

H,=H.0,F). (1)

In general (1) will not have an explicit closed form. In such cases, H, can be
approximated by simulation.

Some of the early bootstrap theory dealt with the selection of F. With the most
common choice for ', the empirical distribution, F n, the method is usually referred to as
the standard or nonparametric bootstrap. When more is known about F'| other
alternatives have been suggested. Efron (1979) suggests that when a parametric form Fj
is known, one should use F' = F5, known as the parametric bootstrap. When symmetry
can be assumed, Efron (1979) also explores the use of a symmetric version of F.

When no parametric assumptions can be made one might think it advantageous to
choose F to be smooth or continuous. A natural choice in the nonparametric setting is

to estimate F based on a kernel estimate of f,

Fan@ =@h) D Kl(z-X:)/hl, s €R, k>0,

=1



where the kernel function, K, is commonly an absolutely continuous symmetric density
with mean 0 and variance 1. The corresponding distribution is denoted by F nh. For the
remainder of this paper K is the standard normal density because of its special set of
cumulants. The parameter & is called the bandwidth or smoothing parameter and
controls the smoothness of the resulting estimate. A complete review of kernel
smoothing is given by Wand and Jones (1995). In the bootstrap setting, the pertinent
problem is to choose h so that the resulting bootstrap estimates are optimal in some
sense.

Evidence of substantial improvement in mean squared error due to resampling
from ?n,h has not been overwhelming. A review of the relevant ideas is given in De
Angelis and Young (1992). Optimal choices for h based on mean squared error (MSE)
are discussed by Silverman and Young (1987), Hall, DiCiccio, and Romano (1989) and
Wang (1989). An example of smoothing the bootstrap with a criterion other than mean
squared error has been considered by Banks (1988).

In this paper we use confidence interval coverage rather than MSE as the
criterion for bandwidth selection. As far as we know, this is a new approach.
Specifically, we derive a bandwidth that yields a first-order reduction of the coverage
error of the standard percentile method confidence limit. The percentile method based
on the smoothed bootstrap with this bandwidth becomes asymptotically as accurate as
either the bootstrap-t or the accelerated bias correction (BC,) methods.

Section 2 presents the model under which the results are obtained. Section 3
derives the bandwidth that produces the first-order correction of the percentile method.
Section 4 shows some connections of this smoothed bootstrap method with the
bootstrap-t and BC, methods. Section 5 reports some small-sample simulations.

Implications of the results, as well as some questions of the practicality of data-based



bandwidths, are discussed in Section 6. The proofs of the results are relegated to the
Appendix.
2. AMODEL FOR ERROR EXPANSIONS

The results here are based on the Edgeworth expansion theory used extensively
by Hall (1988). To use this theory the parameter of interest, 8, its estimate, and the
underlying distribution of the data must follow what is called the smooth function model.
See Hall (1992, Section 2.4) for a complete discussion of this model. The model
requires the data to be a sequence of independent and identically distributed random
vectors Y7, Ys,...,Y, of dimension d, from a sufficiently smooth distribution Fy with
mean g. It is assumed that 6 = g(u) for a smooth function g and 4 = g(Y), where

Y =n13° 7Y Itis further assumed that for a smooth function v,

o? = Var[nV/?8] = v*(p).

This paper addresses the univariate case so that each random vector Y; is
assumed to be a function of a univariate random variable X;, from a distribution F.

Specifically, Y; is assumed to have the form
Y =Y (X) = W (X, ¥a(XD)),

for i=1,...,n. The functions v, are assumed to be polynomials of degree ¢;, for
i=1,...,d See Hall (1992, page 66) for a discussion of the validity of this
restriction of the smooth function model. It is the sample X,..., X, to which the

kernel smoothing will be applied.

Suppose X™ ~ E,|X and X "N F anlX. Let E™ be the appropriate bootstrap
expectation conditional on X and define & = E*[Y(X"), ¥ = E*[Y(X )], 5° = v*()
and &% 2 =+*(f ). Supposing that h = O(n"/), it can be shown that the standard

errors are related by



T =3+ Mhi+ O,(n7h, (2)

where A, is a sequence of constants which may depend on the moments of F,,. If A,
depends continuously on the first k& moments of X and E[|X|*] < oo, then A, will be
consistent for its population analog which is denoted by A. We will further assume here
that A, and & converge at a sufficiently fast rate, namely that A\, = A + Op(n‘l/ %) and
Gd=0+ Op(n‘l/ 2). Note that Equation (2) shows how ), relates the estimated
standard error of 8 = g(R) to the estimated standard error of b = g(Z ). Under these
additional assumptions, the smooth function model still holds for many univariate ”
statistics such as means and variances.

Letf = 6(F,.») and 6= 9(F,). For many functionals § there may be a con-
siderable difference between 8 and & . We define a recentering factor, &, =0-9.
The methodology here will require this factor to be added to the endpoints of bootstrap
confidence intervals. Note that in some linear cases, e.g. when § = E[X], £, = 0and no
recentering is required. This restriction keeps any added bias introduced by ? from
entering the smoothed bootstrap confidence intervals. However, the key to the results in

the next section is that ordinary kernel smoothing adds A2 to Var[X].

3. ASYMPTOTICALLY OPTIMAL BANDWIDTHS
Hall (1988) makes a detailed study of asymptotic expansions of coverage
probabilities for various methods of constructing one-sided and two-sided bootstrap
confidence intervals. In this paper we restrict attention to one-sided intervals, where the
results illustrate the issues without additional complications. Furthermore, two-sided
equal-tail intervals are already second-order correct. Our two-sided results also increase

accuracy, see Polansky (1995). Let mppy(a), mpr(e), mpe(e), denote the actual



coverage of the percentile, bootstrap-t, and BC, methods respectively. Hall (1988)

shows that

moym(e) = a = n"Pwg(2)(py(2a) + 41 (2a)) + O(n7Y), 3)
mer(a) = a+0(n7"),

and

gc(a) = a+0(n™),

as n — oo. The constant w is 1 if the confidence limit is an upper limit, and is — 1
otherwise. The function ¢ is the standard normal density and z, its o™ percentile, so
that ®(2,) = a. The functions p; and g; are the polynomials from the first-order term in
the Edgeworth expansions for (6 — 8) /o and (§ — ) /5, respectively. The coefficients
of these polynomials depend on the moments of F. See Hall (1992) for more
information about these polynomials. It is clear from the above expansions that the
percentile method is asymptotically less accurate than the bootstrap-t and BC, methods.
In the terminology of Efron (1987), the percentile method is said to be first-order correct
while the bootstrap-t and BC, methods are second-order correct.

The goal of this paper is to show that a bandwidth exists so that a smooth
bootstrap performs a first-order correction on the percentile method, making it second-
order correct. Such an effect is the exception to the rule in Hall, DiCiccio and Romano
(1989) that smoothing the bootstrap usually only has a second-order effect on
performance. However, a more elaborate smoothing methodology by Wang (1995) has
first-order improvements in MSE.

The following theorem establishes an asymptotic expansion for the coverage of
the percentile method based upon the smoothed F nh With b = O(n~Y%).  The

confidence limit is denoted byfa pu(h, a)and the associated coverage by T py(h, @).



The proof, which relies heavily upon the techniques in Hall (1992), is outlined in the
Appendix.

Our motive for the normal kernel, K, is that it affects only the second cumulant
of the effective convolution with . In other words, by this device the asymptotics for
F,, differ from those for F, by replacing Var[X*] with Var[X "] = Var[X"] + A2
The result is that we may capitalize upon this very selective control over one ingredient

in the error expansion to produce a strategic cancellation of the leading term of

’ﬂ'pM(a).

Theorem 1. Suppose X,...,X, follow the restricted smooth function model with
A0 and E|Y|' < co for an unspecified number ! > 3 and that g has at least 5
continuous and bounded derivatives. Then, if A = O(n~!/4), the coverage of a one-

sided 100a% smoothed percentile method confidence limit has the asymptotic expansion

% pu(h, @) = a =172 (za)(pr (2a) + 61 (20)) ©
+ R z,d(zo)Ac™t +0O(n7).
With expansion (4) it is simple to derive an expression for A that will eliminate

the O(n~'/?) term from % py(h, @). The desired bandwidth is

he = 07V w0 (py(20) + 41 (2a))/ (A2a)] 2, (5)

where it is assumed that wA™!(p, (z4) + q;(24)) > 0. We return to this condition later.
Then it is immediate that for this choice of A, the coverage of the smoothed percentile
method is

¥ pyu(he, @) = a+0(n™h).

So, for example, a smoothed bootstrap upper confidence limit would be d py(he, @) +
&,., where &, 1s the recentering factor. Thus, smoothing with bandwidth A, performs a

first order correction of the percentile method making it second-order correct. Note that
7



he = O(n~/*). This is consistent with the observation of De Angelis and Young (1992,
Section 2), that appropriate bandwidths for the smoothed bootstrap are usually of
smaller order than for density estimation.

Example. Consider the fundamental application to the mean functional, § = Ep[X].
Hall (1988) shows that this setup follows the smooth function model with d = 2,
Y(X:) = (X, X2), ) =YD and 2(Y)=Y® - Y’ where Y is the 4t
element of the vector Y. Now ¢? = Var[X;] so that & 2=5%+h% By a Taylor
expansion argument, when E||Y|| < oo and h = O(n"1/4), it follows that

T =6+h/(26)+0,(n7).

Hence A\, = 1/(2%) and for this model A = 1/(20) > 0.
Hall (1988) shows that in this case

D (za) + a; (za) = 7(23 + 2)/(6(73)’

where v = E[X — 0]3. Hence, the bandwidth (5) becomes

he = 0"V [wry(22 +2)/(3020)] 7, 6)

provided v > 0. Note that k. depends only on the variance and skewness of F'. If F'is
symmetric, h. =0, and no smoothing is required. This is consistent with the
observations of Hall (1988) on this same example. Note that it is relatively easy to
construct a plug in estimate for h. in this case. Let 3° = n 15" (X —3?)2 and
7 =n"13% (X; — X)®, then one can estimate h, with

o~

he = n YA WA(2E +2)/(3624)] 7, %)

provided ¥ > 0. Some properties of he are investigated in Section 5.

The condition wA ™ (p,(z4) + ¢;(2)) > O implies that this type of correction by

standard kernel smoothing is not always possible. The correction relies on an adjustment
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of the variance of F', achieved by kernel smoothing. For example, to remove some of
the bias from the percentile method, may require the resampled F' to have a larger
variance than F',. By using a kernel estimate f‘n,h, we increase the variance by R%. This
corresponds to the situation where wA ™' (p;(24) + q;(2,)) > 0. In some situations a
reduction in variance may be necessary, or WA (p;(2zq) + ¢;(24)) < 0. It is not
possible to achieve such a reduction by kernel smoothing alone. Such a reduction is
possible, if one rescales the original data to have smaller variance. Kernel density
estimation can then reinflate the variance to the desired amount. One such method is
discussed by Polansky (1995). The effect of this procedure is to change the sign of A.
This method is similar to the rescaling method of Wang (19995), although we are not
presently interested in the optimal selection of the rescaling parameter. Note that if
P1(2a) + q1(2) = 0, then h, = 0, which corresponds to no smoothing. In this case,
from (3), the percentile method is already second-order correct and no adjustment is

necessary.

4. CONNECTIONS WITH OTHER METHODS
The correction made by the smoothed bootstrap of Section 3 provides an
adjustment that resuits in asymptotic coverage which is second-order accurate, the same
order of accuracy as the BC, and bootstrap-t methods. This section establishes
connections between the smoothed bootstrap with bandwidth k. and these two methods.
The proofs of the two corollaries are in the Appendix.
To have a data-driven bandwidth to consider, but not to recommend, there is the

obvious plug-in estimate of A,

o~

he = 074 wo By (20) + 41 (2a))/ Mnza)] Y2, (3)



where we assume that wA, "} (P;(24) +31(22)) > 0. Here, P, and G, are the sample
versions of p; and g;: the moments of F are replaced by the moments of F',,. Similarly,
we treat A, as the sample version of A. The following corollary shows that smoothing

with %, is asymptotically third-order equivalent to the bootstrap-t and thus to BC,.

Corollary 1. Let @BT(a), @Bc(a), and 9 pm(h,a) be confidence limits of the
bootstrap-t, BC,, and the smoothed percentile method with bandwidth A, respectively.

Then, under the conditions of Theorem 1,

¥ pre(he, @) =Bpr(a) + O,(n™%?)

= /930(01) + Op(n“3/2).

Thus the smoothed percentile method with plug-in estimates for A has confidence
limits that are asymptotically close to the bootstrap-t and BC, confidence limits. Hence,
for large samples one may expect similar performance from the bootstrap-t, BC,, and
an estimated smoothed percentile method. Note that for many cases the smoothed
percentile method will be computationally less intensive than the bootstrap-t.
Implementation of the bootstrap-t requires that an estimate of the standard error of 8 be
‘calculated with each bootstrap replication. In the smoothed percentile method a
standard error estimate of 6 is needed oniy for the calculation of k.. Further, many
authors, e.g. Efron and Tibshirani (1994), have noted numerical instability of bootstrap-t
estimates for small sample sizes. It is possible that the smoothed percentile method is
more stable in some cases.

The form of the bandwidth can also be related to the BC, method. Let a and z
be the acceleration constant and the bias correction, respectively. See Efron (1987) for a

complete description of this method.
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Corollary 2. Under the conditions of Theorem 1,

he = [wo (220 + az i) J(A2)]2 + O(n™12),

provided wA™}(p;(2o) + ¢1(25)) > 0 and wA ™ (229 +az2) > 0.

The bandwidth is clearly related to the acceleration constant and the bias
correction used by Efron (1987) to achieve similar performance. The O(n~Y/?) error
term is due to an approximation associated with z;. The remaining dependence of the
bandwidth is on F and 6 through the standard error of 6 and A, the relationship between
the smoothed and nonsmoothed standard errors. Hence, the main part of the correction
is due to the median bias of § and the skewness of H, (6, F)). Corollary 2 suggests an
obvious bandwidth estimation technique that relies upon routines for @ and Z,. We have

experimented with this, but do not pursue that topic here.

5. A SIMULATION STUDY
To assess the finite-sample performance of the correction due to A, a small
simulation was performed. The data consisted of 1000 samples of sizes 10 and 20 from
a Gamma distribution with density )
f(z) = {r(e)‘lxﬁ-le-x 6>0,z>0 (9)
0 otherwise,

where the parameter 6 is generally called the shape parameter. The standardized

skewness of this distribution is 26~ /2,

Samples were generated using 8 = 0.25, 0.5,
and 1.0 to study the effect of various amounts of skewness. The samples were simulated
and analyzed using S-Plus. The parameter of interest is the mean §. The skewness makes
this a challenging interval estimation problem for many approximations in small samples.

For each sample, upper 90% confidence limits for 6 were calculated using various

11



bootstrap, smoothed bootstrap, and traditional methods. For each method the coverage
probability was estimated by the proportion of times the method covered & in the 1000
samples. We studied lower confidence limits, as well. While there are some differences
there, the overall lessons are the same.

The three standard bootstrap procedures are the percentile method (BP), the
bootstrap-t (BT), and the BC, (BC) method. The acceleration constant for the BC,
method was estimated using the positive jackknife method as in Frangos and Schucany
(1990).

Two smoothed bootstrap methods using the bandwidth selection result of
Theorem 1 were evaluated. Consider samples X7, ..., X, following the distribution (9).
From the Example in Section 3, when the mean is the parameter of interest, the
bandwidth (5) becomes

he =n"** ['Y(zi + 2)/(3‘72&)]1/2’ (10)

where 02 = E[X — 6]® and v = E[X — 6]*>. For this example, o® = 6 and v = 26, so
that

he = n Y4202 (22 +2)/(320)]Y*. (11)

The first smoothed bootstrap method (ST) considered uses (11), where 6 is set to its
actual theoretical value. This allows us to evaluate the effect of the true smoothing
correction on the coverage. The second method (SP) uses the plug-in estimator (7),

~

he = n"YAR(22 +2)/(352,)] 7.

Whenever 7 < 0, we used a rescaling algorithm described in Polansky (1995) for the
smoothing.
Some classical limits are also evaluated. The first is a normal theory (NT)

approximation X + (6/n'?)t, -1, where ton—1 is the o percentile of the Student-t

12



distribution with n — 1 degrees of freedom. For the special case in which an exact pivot
exists at § = 1, we evaluated the parametric limit (PL), namely 2(3_ 7 X;)/X2 5, Where
XZ.on 1s the o™ percentile of a chi-squared distribution with 2n degrees of freedom.
Some results of the simulations are summarized in Tables 1 and 2 and Figure 1.
Table 1 gives the estimated coverages for each method, sample size, and skewness.
With 1000 repetitions the marginal standard errors of these estimates are around .01.
The columns are based on independent runs. Comparing each of the seven methods with
an exact version of McNemar's test by blocking on each repetition, the coverages are
pairwise statistically significantly different (at the .01 level) for all but a few exceptions
noted below. See Frangos and Schucany (1990) for an explanation of a similar

application of this methodology from Lehmann (1975, pages 268-269).
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Table 1. Estimated coverages for approximate upper 90% confidence limits.
Abbreviations for the methods are given in Section 5.

n =10 n =20
Method | 8 = 0.25 l 8 = 0.50 l 8=101|6=0.25 l 6= O.SOW = 1.00
NT 718 761 .795 769 .814 .824
PL .886 .891
BP .702 755 763 766 810 817
BT 852 .836 856 873 877 .866
BC 755 779 .802 .829 851 .844
ST 991 918 .889 928 .907 .888
SP 137 768 790 .800 835 835

The NT and BP methods undercover consistently for all sample sizes and choices
of §. When n = 20, there was no significant difference in the two methods. The
coverages improve for distributions with less skewness (larger ) and for larger values of
n. Both the BC and BT methods reduce this coverage error, the BT method being
significantly better. The ST method provides a quite accurate correction, and was most
successful in reducing the coverage error. The extreme case where § = .25 and n = 10
did cause the ST method to overcorrect. These impressive gains are lost for the plug-in
(SP) method, which performs only slightly worse than the BC method, but is still
significantly better than the BP method. In less skewed cases there was no significant
difference between the BC and SP methods. A study of the average estimated
bandwidths in Table 2 show that h, suffers from a large downward bias. It may be this
bias that destroys much of the correction. If this method is to be of any practical value, a

better bandwidth estimation technique will certainly be required. This may be difficuit.
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Table 2. Average estimated bandwidths for the SP confidence limits

(estimated standard error).

n =10 n =20
Method [§=0.25]6=050]6=10]6=025]6=0.50]8=1.00
true A, 55 65 77 46 55 65
plug-in A, 28 36 43 30 38 50
(007)  (.008)  (.010) | (.006)  (.006)  (.007)

Figure 1 is a plot of the estimated coverage versus the average confidence limit
for each method when § =1 and n = 20. The boxes around each point have heights
and widths approximately equal to one standard error for both the estimated coverage
and the average upper confidence limit, respectively. These boxes are not meant to
represent confidence regions, since the necessary independence assumptions do not hold.
We see that the PL and ST methods performed equally well in terms of coverage; neither
is significantly below 90%. But the added knowledge of the true moments used in the ST
method make it appear more efficient in the sense of interval length. Of the estimated
methods, the smaller coverage error of the BT method is at the price of longer intervals,

on average. The remaining methods seem to follow a rule that a small increase in

coverage is accompanied by a small increase in the average "length".
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0.92

0.88

0.84

0.80

Figure 1. Estimated Coverage vs. Average Upper Confidence Limit for the mean
of a Gamma Distribution with n = 20 and § = 1. The abbreviations for the
methods are the same as in Table 1.
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6. DISCUSSION

We have seen that the smoothed bootstrap can accomplish corrections to the
percentile method similar to that of the BC, method. Why does the change in
performance criterion from MSE to confidence interval coverage change the effect of
smoothing so dramatically? The smoothed bootstrap has been shown to have only
second-order effects in estimating linear functionals of the underlying distribution; see
Silverman and Young (1987). Confidence interval coverage, however, can be linked to
the bias in the confidence limits, which heavily depend on the estimation of quantiles of
the underlying distribution. It has been shown by Hall, DiCiccio and Romano (1989),
that when estimates rely heavily on local properties of the underlying distribution, such
as the bias of quantile estimation, dramatic effects can been realized in smoothing the
bootstrap.

Hall (1992, Section4.1) also attributes these second-order effects to the
estimation of moments in Edgeworth expansions. Since, in the nonparametric case,
these moments cannot be estimated better than at a rate of O,(n™%/2), smoothing will
not have a first-order effect on the bootstrap estimates. The arguments in the Appendix
show that correction of (5) is a result of an adjustment of these moments. In this case
we are not inherently interested in good estimation of these moments, or even of
Hn(/é,F). Instead, we knowingly introduce bias into these estimates so that certain
corrections are realized.

The correction proposed here relies on an adjustment of the moments of the
resampling distribution and not its continuity. Hence the improvement in the
performance of the smoothed bootstrap in this study is not due to the continuity of the
resampling distribution. Note that a purely asymptotic analysis of bootstrap performance
may never account for this induced continuity. A study of the number of atoms in the

bootstrap distribution, such as given in Fisher and Hall (1991), shows that the bootstrap
17



estimate becomes "approximately” continuous at a very fast rate. Thus the best place to
look for the effect of continuity on the resampling distribution of the bootstrap is where
the sample size is very small, when asymptotics cannot be guaranteed. Additionally,
such an analysis of the added continuity of smoothing can never use the existing
Edgeworth expansion theory. The empirical resampling distribution and a continuous
resampling distribution with the same moments will have the same asymptotic expansion.

This paper presents results for smoothing univariate data with a scalar parameter
of interest. The case of multivariate data and a scalar paranieter should also follow from
a slight extension of these results. The bandwidth for two-sided intervals and an
example with § = Var[X] is in Polansky (1995).

The primary theme of this paper is a re-evaluation of the smoothed bootstrap in
terms of confidence interval coverage rather than MSE. With this new objective it is
shown that asymptotically the smoothed bootstrap can have a first-order effect on one-
sided confidence interval coverage. This correction is closely related to the correction of
the BC, method. This method, bootstrap-t, and BC, methods agree to third order, when
one estimates the bandwidth with plug-in estimates for population moments. A small
simulation study demonstrates that the one-sided smoothed bootstrap correction has
some potential in reducing the finite-sample coverage error of the percentile method, as
well. The difficulty of developing a data-based bandwidth selector, that is ready for wide

practical use, should not be underestimated.

APPENDIX: PROOFS
Proof of Theorem 1
Under the stated conditions, the upper confidence limit of the smoothed

percentile method, with & = O(n~!/4), has the asymptotic expansion
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T oalh@) =¥ + 64072 [5,— 07V 1 (22) + 1B a1 (za)] + Op(n7¥2),

where B ; and ¥ 4, are versions of p, and p,; whose coefficients depend on F', 5. The
polynomials p,, is specified in Equation (1.5) of Hall (1988). The details of the proofs
are in Polansky (1995). For h = O(n~%/4),

P 1(2a) = D1(2a) + OP(n—l/Q)’

and

D 91(2a) = Doy (2a) + Op(”_1/2)~

Hence, from (2),

9 pu(h, ) =Bpy(a) +n 2 A Rz, + 0,(n7%?), (12)

First, consider the case of a one-sided upper smoothed-percentile method interval
(— 00,8 pm(h,a)]. The coverage of this interval, proceeding as in Hall (1988), is given
by

7 pm(h, @) =P[9 < ’bJPM(h,a)J
=P[Sn+An2 — 2z 4 + 671];

where

bn = 12D (24) = N7 Py1 (Za) = Anh? 2,87 + O, (n7h),

A, = n‘%[pl (2) = P1(24)], and S, =n/?671(6 — §). Under the conditions of the
theorem, & = 0 + O,(n"1/2) and A\, = A + O,(n"V/2). Since h = O(n~/4), it follows
that

Ah?2,071 = ARP 2,071 + 0, (n71).

Applying Equation (3.28) of Hall (1992), the desired coverage may be rewritten

as

19



% py(h,@) =P[Sp +A, > — 24 +6] + O(n 1),

where

1/2

6 =n"2p(2) = n7 Py (2a) — ARPza0 7t

Equation (3.36) of Hall (1992) gives an expansion for
P[S,+ A, <z]=P[S, <7z]- n_lurqS(:r) + O(n_3/2), (13)

where u is a constant satisfying E[S,A,] = v+ O(n™1). Using a standard Edgeworth
expansion,

P[S, < z] = ®(z) + n 3 q(2)d(z) + n gy (z)p(z) + O(n~*2).  (14)

Consider (13) evaluated at z = — z, + 6. Using Taylor expansions,
B~ za+6) = 1~ a+n"p(2)6(z)
— AR 2,¢(25)0 L + O(n )

and the two functions in the second term of (14) are expanded separately to give

$(— 2o +6) = ¢(za) =11 (20)9 (26) (15)
+ AR 2,8 (za)0 t + O(n7 1)

and
—q(—2za+06)= — ‘h(%) —n"?Byyzap; (2a)/3 (16)
+ BpAhP2207 /3 +0(n™Y).
The constant Bss is a coefficient of the polynomial g, see Hall (1988) for more details.
Since h? = O(n"'/?), we can combine (15) and (16) and keep terms of order n™/2 to
get
Tfl/?Ql (2a +0)p(20 +6) = ”_1/241 (2a)#(za) + O(n_l)-
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Substitution in (14) and because u is a constant, yields the coverage of the interval stated

in the Theorem,
® pa(h, ) = a—n"wd(2a)(pr(2a) + a1 (2a)).
+ h22,¢(20) A0t +0O(n7Y).

The arguments for the lower confidence limit proceed similarly.

Proof of Corollary 1
Consider the case of the upper confidence limit which, from (12), is

] pu(h, @) =,9\pM(a) +n'1/2/\nh22a + Op(n_?’/?).

Using the estimated bandwidth, ,l';c, specified by (8), provided that
(W/A)[P1(2a) +21(22)] 20,

it follows that the corresponding estimated upper limit of the interval is
~s ~ —~ _ ~2 _
6 py(he,@) =0pu(a) + 07 Ak za + 05(n7%%)
=60+n"1%G x
[za + nql/%jl (2a) + nﬂlfﬁQI (Za)] + Op(n_gﬂ)-
From Hall (1988), the upper endpoint of the bootstrap-t interval has asymptotic
expansion

Opr(a) =0 +n"Y% (2 + n V%G, (20) + 1"y, (za)] + 0,(n™?).

Thus the kernel smoothed upper endpoint matches the bootstrap-t upper endpoint
through terms of order n~!. Hall also shows that 8pr(a) = Gpc(a) + 0,(n"%?), so
that & py(a) = Opc(a) + O,(n"3/?). The arguments for lower confidence limits

follow the same lines.
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Proof of Corollary 2
Under the smooth function model, according to Hall (1992, page 133), the
acceleration constant a =n"2A4073/6, where A = — (Asy + B3o~?).  Also,
Equation (3.95) of Hall (1992) also gives an expansion for
z0=n""p,(0) + O(n™").

Finally, Equation (3.86) of Hall (1992) gives
p1(z) + q1(z) = 2p,(0) + Ao 32 /6.

Combining the above equations,

P1(za) +¢1(2a) = (220 +a2) + O(n™1%).

Hence,

he =n Y4 wo(p) (2a) + q1(2a))/ (Aza)] 2
= [wo (22 + az2)/(Az,)] V2 +0(n "V,
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