THEMIS SIGNAL ANALYSIS STATISTICS RESEARCH PROGRAM

ON TESTING SOME LINEAR RELATIONS AMONG VARIANCES
by

James M. Davenport

Technical Report No. 28
Department of Statistics THEMIS Contract

April 12, 1969

Research sponsored by the Office of Naval Research
Contract N0O0014-68-A-0515
Project NR 042-260

Reproduction in whole or in part is permitted
for any purpose of the United States Government.

This document has been approved for public release
and sale; its distribution is unlimited.

DEPARTMENT OF STATISTICS
Southern Methodist University



ON TESTING SOME LINEAR RELATIONS

AMONG VARIANCES

A Thesis Presented to the Faculty of the Graduate School
of
Southern Methodist University
in
Partial Fulfillment of the Requirements
for the degree of
Master of Science
with a

Major in Statistics

by
James Melton Davenport

(B.A., West Texas State University, 1964)

April 11, 1969



Davenport, James Melton B.A., West Texas State University,
1964

On Testing Some Linear Relations Among Variances

Adviser: Associate Professor John T. Webster
Master of Science degree conferred May 25, 1969

Thesis completed April 11, 1969

In statistical methods, it is often desirable to test that the re-

lation

holds among the variances Gi . An assumption made in this paper is that
there e#ists independent mean square estimates v, of the variances @i
such that nivi/Oi follows the chi-square distribution for each i = 1, 2,
*** , p . An approximate test of the above relation is Satterthwaite's
approximate F-test.

A solution, when testing the relation 63 = 0, + @2 , is developed

1
for finding the true probability of being in the rejection region, when
the Satterthwaite approximate F-test is used, and these probabilities
are presented for several values of the parameters involved. A comparison
of the results obtained is made with the work done by W. G. Cochran in
this area.

In addition, methods are developed for finding the true probabilities
of being in the rejection region, when using Satterthwaite's approximate
F-test for testing the relations el + 92 = 93 + 64 and Ol = 92 + 05 - 94 .

However, in these cases none of the probabilities are presented.
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CHAPTER I
INTRODUCTION

In statistical m=2thods, it is often desirable to test the general

null hypothesis that the relation

Cl@l + e 4+ CmOm = C e

m+l mt+l v s Cses (1)

holds among the variances Oi , where the Ci are known real numbers. An
assumption which is essential in deriving the results in the sequel for
testing relation (1), is that there exists a number of independent estimates
A of each of the variances Oi , respectively, (i =1, 2, ¢+ , s). We
assume that each estimate v, is based on n, degrees of freedom, and
nivi/@i follows the chi-square distribution with ng degrees of freedom.

This problem has been encountered several times in the application
of statistical methods, especially in the analysis of variance. Several
methods are well known for testing some particular cases of relation (1).

These are as follows:

1. The FP-test. This tests the relation Ol = @2 .
2. Bartlett's [1l] test of homogeneity of variances.
This tests the series of k-1 relations
Ol = 92 = eee = Ok .
3. The two-tailed Behrens-~Fisher problem. This

tests the relation that

0. =06, + 0 (2)



holds among the variances, as is shown by
Cochran [2].
4. Satterthwaite's [10] F'-statistic, which is
This tests relation

an approximate F-test.

(1) when the Ci =21 , (1 =1, 2, «v.

When the Ci = *1 ,

reduced to the form

+ s + 0 . (3)

Ol + 92 + eer + er =0 + @r+2 K

r+l1

Satterthwaite [10] has suggested the test criterion

+ + eee +
F‘ _ Vl V2 Vr (4)
- * 00 ,
Very V Vi t vy

where the v, are the independent mean square estimates based on n, degrees

of freedom of the variances Oi . When relation (3) is true, the null

distribution F' follows the F~distribution, approximately. The degrees

of freedom of F' , vy and vV, s are found by a rule also suggested by
Satterthwaite.
(v, + v + *°° + v )2 (v + v + e+ V)
v, = 1 2 r . v = r+l r+2 k (5)
1 2 2 o2 o2 v2 o2 o2
AL 2,000 ;E. r+l o X2 oL, K
5 B r “rs1 Pre2

It should be noted that relation (2) is a special case of relation (3).

Hence, an approximate test procedure for relation (2) is one of the

F'-statistics.

Many different ratios in (4) can be formed by testing different

cases of relation (3).

Those that will be considered in the sequel will



be those that arise in testing the significance of a specific factor in

the analysis of variance of the three factor factorial Eisenhart [4]}

model II and the mixed model. Letting @i represent the variance components
or expected mean squares in the analysis of variance tables for these

two models, testing the hypotheses of no main effects can be reduced to

testing one of the following four relations:

Ol+92=63+64 (6)

Ol - 92 = 03 - 04 (7)

Ol = 92 + 63 - 64 (8)

Ol + @2 - 63 = 64 . 9)

The elements on the right and lefi hand sides of the equal signs indicate
the structure of the test statistic.
In the sequel, results will be derived for testing relations (2),

(6) and (8). For convenience, F!

1 will be used to represent the Satterthwaite's

approximate F-statistic used to test relation (2). Likewise, Fé will be

associated with relation (6) and Fé with relation (8).

In general, the alternative hypothesis will be that the left side
of the relation will be greater than the right side of the relation. However,
if the alternative hypothesis is two-sided, the numerator of F' will be
whichever of the estimates of the variance is larger, so that the alternative
will again be one-sided as above. The resulting probability will be doubled.

In each case, the quantity obtained is P(F' > F(l—a)[vl ' v2]).
F(l—a)[vl ' v2] is the l-a percent level point from the F~-distribution

degrees of freedom, where v, and v, are obtained using

with vl and v 1 >

2

equation (5). In practice, this probability is assumed to be a , which is



not true since F' is only an approximate F-statistic.

Cochran {2] has developed a method for finding the exact probability
of the type-I error for testing relation (2), and he has tabulated this
for several degrees of freedom, several values of the nuisance parameter,
and at the apparent .05 significance level.

In the sequel, this method of testing relation (2) is presented, and
most of the values that Cochran tabulated were recalculated using a computer
for comparison. In addition, the true probability of the type-I error is
calculated for several more degrees of freedom and at three different apparent
significance levels for testing relation (2). Comparisons of Cochran's
conclusions and those obtained in the sequel are also presented.

In Chapters III and IV, methods are presented for testing relations
(6) and (8); however, no numerical integration was accomplished. This is
planned for a later time, including methods for testing relations (7) and
(9), and comparisons of the true probabilities of the type-I error will be
made to find the "best" Satterthwaite's approximate F-statistic in the analysis
of variance of the three factor factorial models. The power functions of

these tests will also be investigated.



CHAPTER II

TESTING THE RELATION 93 = Ol + @2 USING Fi

As stated before, testing relation (2) is a special case of testing

(3). Hence, an F'-statistic can be used. Fi is defined to be

' (10)

where vy v2 and v3 are independent mean square estimates of Ol ’ @2 and

03 , respectively, and each is based on n, . n, and n, degrees of freedon,

respectively. The degrees of freedom of Fi r vy and v, r are

Vl = n3 (11)
(v +v)2 (l+u)2
v, = ——2 . (12)
2 2 2 2 1
Vi V2 e
P ny, n,
1 2

where u = v_ /v

¥
Let A represent the event that Fl > F(l—a)[vl ’ v2]. Note that the
event A actually depends on the realized value of u . Hence, if o is the
significance level of the test, a is actually equal to P(Alu). That is,

any approximation found is conditional. Consequently, applying the rules

of conditional probability it is seen that

P(a) =.f P(aju)f(uwdu , (13)
0



where f£(u) is the density function of the random variable u , and P(a)

[N

is the desired quantity. This may be obtained by routine methods.
An alternate method, given by Cochran [2], gives the conditional
distribution more quickly. First, let us consider the three following

random variables: 1) n3v3/® 2) n2v2/e2 and 3) nlvl/el . It is well

3 [4

known that each is distributed as a central chi-square with n n, and

3772
n, degrees of freedom, respectively, and that they are all independent.

Therefore, the random variable
o= vs(n, + 1))
. n v, . nzv%]
3Le %

is distributed as a central F-distribution with n, and n, + n, degrees of
freedom. Also, Q is independent of u , from the well known fact that the
ratio of two independent chi-squaresis independent of the F-statistic in
which the sum of these two chi-squaresappears as either the numerator or

denominator. A derivation of this is given in Appendix I.

Hence, when relation (2) is true, the result follows that:

n_.v n.v
171 %Y
v Qo + 92)[9 *5 ]

- £ e
Vptvy @ (ny + ny) vy +vy)
[nlu ] (14)
_ oIl + U]7T+ n2
(1 + u)(nl + n2)
where U =

01/62

Substituting equation (14) into eguation (13) gives



F(l—a)[vl ' v2](1 + u)(n1 + n2)

Plo > PR ulf(u)du .
0 1+ U)E{%—+ nz]

P(a) =

S———y
8

But, since Q and u are independent, the result reduces to

i [w ofo > F(l—a)[vl » V,1(1 + u)(n, +n,)

P(a) = - - —]£(u)du . (15)
0 1"
(1 + U) '—a—-+ n2

By applying the probability integral transformation dp = f(u)du

ul
or p = JO f(u)du , to equation (15), the work can be simplified. Note
that the random variable u/U is distributed as an F-distribution with

n1 and n2 degrees of freedom. Letting u = x * U , the probability integral

transformation becomes

xl
p= J g(x)dx , (16)
0

where g(x) is the density function of an F-statistic, with nl and n2

degrees of freedom. Therefore, for fixed values of n n, , Uand p ,

1772

a value for x and consequently u is determined. Then applying the

transformation (16), equation (15) becomes

1 F [v. , v.](1 + u)(n, + n_)
P(a) = J' plo > Az 1~ 2 —— I 2 |ap (17)
1
0 (l+U)[—U—-+n2]

which is the form that will be used to evaluate the probability.
The fact that equation (17) is symmetric, when U = 1.0 , with respect
to its parameters ny and n2 can be verified by using the fact that
P = 1
(a)[ml R m2] 1/F(1—a)[m2 ’ ml]. If we switch the roles of n, and n,

and let U = 1.0 in the previous development, equation (15) becomes



r ol > Fla-q) My r V1@ +u)n, + )

P(A) = f(u,)du, , (18)
+
0 2[n2u1 nll 1 1
where u, = vl/v2 ‘
21 and Vv, are now given by
(1 + ul)2
vy =N i v, = -:;;—————— ’ (19)
1 1
. T n.
2 1
and Q is the same F-statistic as before. Since U = 1.0 , u1 is an
F-statistic with n, and n, degrees of freedom. Now applying the trans-—
formation (16) to equation (18), it becomes
1 F [v, , v.1(1 + u,)(n, + n.)
_ (l-a) "1 2 1 2 1
P(Aa) —f PlQ > SThu 7t n1] dp (20)

0 21

Recall that the values for u, are obtained by giving a value for p between

zero and one, say B , and then finding the Bth cumulant point of the

n.l.

F-distribution with n_ and n, degrees of freedom. Then set u, = F(B)[n2 r Dy

2 1

Using the inverse identity for the F-distribution, then ul = 1/u , where

u is the same quantity used in the previous development. That is, u is

the (1-B)th cumulant point of an F-distribution with n, and n, degrees of

freedom. Notice, however, that this is the (1-8)th cumulant, not the Bth
cumulant. Therefore, if the right side of equation (20) is multiplied by
a minus one, integrated from one to zero, and 1/u is substituted for u;
the equality of equation (20) is preserved, and it becomes

1
0 F v, , v.1(1 + D (n, + n.)

P(A) = (_1) J P Q > (l"a) 1 7n2 u 1 2 dp . (21)

l]

1 2 _§_+ n
u



Likewise, if uy is set equal to 1/u in equation (19), it reduces to

1,2
+_
v = ( u) _ 1+ u)2
A N ST R
mutoony oy 0y

which is the same as equation (12). Therefore, equation (21) becomes

[vl ’ v2](1 + u)(nl + n2)

1 F
_ (1-a)

o 1 + n2]

which is equation (17) with U = 1.0 . Hence, the symmetry of equation (17)

with respect to n, and n, is established. However, this is not true if

U is not equal to one.
The limiting cases of equation (17) as U+ 0 and U > = can be con-
sidered by investigating U = 91/02 and relation (2). Since in practical

situations infinite variances can be ignored, U +~ O if and only if Ol >0 .

If 0, - 0 , then relation (2) reduces to 63 = 0

1 , and F! becomes a true

2 1

F-~statistic with n3 and n2 degrees of freedom. Hence, P(A) »+ a . Likewise,

U~ =« if and only if 92 > 0 , and relation (2) then reduces to 63 = Ol .

Fi then is a true F-statistic with n, and ny degrees of freedom. Again

P(A) - a . Therefore, as U + 0 or U+ « , then P(a) - a . Various values
for P(A) were calculated for varying values of U and fixed values of
n; s n, and n; . The results are presented in Figure 1 and Figure 2.

The values of P(A) are obtained by numerically integrating equation

(17) using a digital computer program, which is outlined in Appendix II.

Cochran [2] has calculated several values for P(A) , for several values of

nl ’ n2 v n3 and U . Some of these values were computed, using the program,

to check the accuracy of the method and the program. The results are
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presented in Table 1, where Cochran's values are given in parentheses.

When the values of U and the degrees of freedom are relatively large, the
convergence of the numerical integration is slower than when these wvalues
are relatively small. Since Cochran's values were probably calculated by
hand, they may tend to be in error for these slower converging integrations.
In each case, where the values arrived at using the computer program are
different from Cochran's values, the numeral integration program arrived

at Cochran's value and continued to a more accurate answer; since Cochran's
value was not within the tolerance limit set for convergence of the

numerical integration.

TABLE 1
. . 'y .
Comparisons of the Values of P[Fl F(.95)[v1 v VZ]] with

Cochran's Work (Cochran's Values Given in Parentheses)

U= 91/92

nl=n n 1 2 4 16

i2 6 .0477 (.047) .0491 (.049) .0516 (.052) .0525 (.054)
12 .0468 (.046) .0490 (.049) .0529 (.054) .0538 (.056)

24 6 .0493 (.050) .0498 (.050) .0506 (.052) .0508 (.053)
12 .0489 (.049) .0498 (.050) .0512 (.052) .0513 (.054)

In addition, it was noted that the values of P(A) appear to reach
their maximum deviations from a , when the value of U is in the neighborhood
of 0.1 , 1.0 and 10.0 .

Further investigation to determine some of the properties of equation

, n. and n_ with U fixed

(17) was accomplished for several values of ny 5 3

at the value of one.
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By letting n. and n, assume fixed values and letting n, vary, the

1 2

i following results were obtained:

1. For small values of nl and n2 , P(aA) departs from a ,

as n, > ® .,
3

2. For large values of both nl and n2 , the P(A) departs

from o , as n3 -+ « , but at a much slower rate than

the above.

3. For unequal extreme values of nl and n2 , the P(A)

still departs from a , as n3 > «© , but at a more

rapid rate than either of the above cases.

Also by letting n, be fixed, and letting n, and n, vary, the following

3 1l 2

conclusions were made:

, if n. and n_ are

4. Irregardless of the value of n 1 5

3
extremely different, then the P(A) departs drastically
from a .

5. If nl and n2 become large simultaneously, the P(A)
approaches o .

6. If nl and n2 are both small, the P(A) is approximately

o .

Special attention should be made to the cases when the P(A) departs

from o . They are:

7. If ny and n, are both small and n, is large.

8. If n, and n, assume extremely different values.

In both the above cases, drastic departures from o , can be realized for

P(a) .
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Graphic results of all of the above conclusions are given in Figures
;é, 4, and 5.

The properties of equation (17) observed by Cochran [2] include

?tﬁe limiting cases of P(A) as U > 0 and U - « and items 1, 2, 5, 6 and 7

sabove. He also noted that the significance probabilities appear to in-

e
‘crease to a maximum which is not far from the value realized for U = 16 .

‘However, here it was noted that the values for P(A) actually achieve their

;mgximum in a neighborhood for U = 10 . Other points of maximum departure
jfrom o were noted to be in the neighborhoods of U = 1.0 and U = 0.1 .
Additional results not noted by Cochran include the fact that
?gequation (17) is symmetrical with respect to n, and n, when U = 1.0 ,
f,and items 3, 4 and 8 above.

Equation (17) was tabulated for several values of n1 ’ n2 and n3 ’
which are common degrees of freedom that arise in most practical designs;
for four values of U ; and for three values of o , the apparent signifi-
cance level of Fi . These results are presented in Tables 2, 3 and 4.

Values for n1 and n, both small were not included, since n, + n2 is the
degree of freedom of the denominator of an F-statistic. Such F-statistics

with small degrees of freedom in the denominator have low power; therefore,

such cases are usually avoided in most practical experiments.
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Yyalues of P[F'

TABLE 2

> F(l—a) [\)l P VZ]] at the Apparent .0l Level

18

1
U=1.0 U=2.0
n3 n3
1% | ™ 2 4 8 5 T 2 4 8
1o
] 8 .0125 | .0115 | .0117 , | 8 .0186 | .0190 | .0210
2 1 16 .0166 | .0172 | .0197 16 .0253 | .0296 | .0376
.| e .0103 | .0089 | .0086 N .0127 | .0119 | .0124
i 16 .0125 | .0118 | .0125 16 .0159 | .0166 | .0195
2 .0125 | .0115 | .0117 2 .0098 | .0084 | .0081
e | 4 .0103 | .0089 | .0086 o | 4 .0097 | .0081 | .0077
) .0103 | .0087 | .0083 8 .0109 | .0095 | .0093
{ 16 .0112 | .0098 | .0095 16 .0123 | .o114 | .ol21
2 .0166 | .0172 | .0197 2 .0121 | .0112 | .0l16
f el 4 .0125 | .o118 | .0125 6 | 4 .0109 | .0095 | .0093
1 8 .0112 | .0098 | .0095 8 .0109 | .0094 | .0090
16 .0111 | .0097 | .0094 16 .0114 | .0100 | .0099
U=4.0 U=16.0
n3 n3
I T 2 4 8 R ) 2 4 8
, | 8 .0279 | .0317 | .0378 , | 8 .0397 | .0480 | .0571
16 .0364 | .0461 | .0608 16 .0451 | .0555 | .0657
4] 8 .0162 | .0166 | .0188 .| 8 .0188 | .0206 | .0239
16 L0196 | .0222 | .0277 16 .0203 | .0228 | .0269
2 .0094 | 0078 | .0074 2 .0112 | .o098 | .0096
e | 4 .0105 | .0090 | .0087 o | 4 .0123 | .0115 | .0119
. 8 .0122 | .0112 | .0l16 8 .0131 | .0126 | .0137
16 .0135 | .0133 | .o149 16 .0135 | .0133 | .0146
2 .0106 | .0092 | .0090 2 .0111 | .0096 | .0093
6| 4 .0107 | .0092 | .oo088 e | 4 .0116 | .0103 | .0102
8 || .0113 | .0099 | .0097 8 .o118 | .0107 | .0108
16 .0118 | .0107 | .0109 16 .0120 | .0109 | .0112




© values of P[F'

TABLE 3

>
Fli-a) vy \)2]] at the Apparent .025 Level

19

1
U=1.0 U=2.0
Ny i3

n, | Ry 2 4 8 o I 2 4 8
, | 8 .0277 | .0274 | .0282 , 8 .0370 | .0399 | .0443
16 .0337 | .0363 | .0413 16 .0453 | .0537 | .0662
R .0244 | .0227 | .0222 R .0280 | .0278 | .0290
16 .0276 | .0274 | .0289 16 .0322 | .0346 | .0395
2 L0277 | .0274 | .0282 2 .0233 | .0216 | .0211
o | 4 .0244 | .0227 | .0222 o | 4 .0235 | .0214 | .0204
8 .0246 | .0226 | .0217 8 .0255 | .0239 | .0235
16 .0259 | .0244 | .0242 16 .0274 | .0269 | .0281
2 .0337 | .0363 | .0413 2 .0270 | .0265 | .0276
6| 4 .0276 | .0274 | .0289 e | 4 .0253 | .0237 | .0234
8 .0259 | .0244 | .0242 8 .0255 | .0238 | .0232
16 ,0259 | .0243 | .0238 16 L0263 | .0249 | .0247

U=4.0 U=16.0
n3 n3

R B 2 4 8 T e 2 4 8
5 8 .0490 | .0570 | .0673 5 8 .0593 | .0700 | .0800
16 .0581 | .0725 | .0912 16 .0641 | .0764 | .0869
. .0327 | .0347 | .0386 .| 8 .0352 | .0382 | .0425
16 .0367 | .0415 | .0493 16 .0367 | .0404 | .0454
2 .0228 | .0207 | .o19s 2 .0261 | .0246 | .0244
6| 4 .0249 | .0231 | .0225 s | 4 .0276 | .0270 | .0277
8 .0273 | .0266 | .0274 8 .0285 | .0284 | .0299
16 .0290 | .0294 | .0320 16 .0289 | .0291 | .0310
2 .0247 | .0231 | .o0228 2 .0259 | .0242 | .0238
16 | 4 .0252 | .0234 | .0227 w6l 4 .0266 | .0253 | .0253
8 .0261 | .0246 | .0244 8 .0269 | .0258 | .0262
16 .0268 | .0258 | .0263 16 .0271 | .0261 | .0266




TABLE 4

’ vzl] at the Apparent .05 Level

r >
values of P[Fl F(l—a 1
U=1.0 U=2.0
n3 n3
S ) 2 4 8 S T 2 4 8
5 8 .0522 | .0528 | .0546 5 8 .0639 | .0695 | .0769
16 .0595 | .0643 | .0719 16 .0731 | .0851 | .1016
s 8 .0481 | .0462 | .0455 4 8 .0527 | .0531 | .0552
16 .0522 | .0526 | .0548 16 .0576 | .0613 | .0680
2 .0522 | .0528 | .0546 2 .0463 | .0444 | .0436
o 4 .0481 | .0462 | .0455 o 4 .0471 | .0445 | .0429
8 .0487 | .0464 | .0451 8 .0499 | .0482 | .0477
16 .0504 | .0489 | .0485 16 .0522 | .0520 | .0537
2 .0595 | .0643 | .0719 2 .0512 | .0513 | .0531
16 4 .0522 | .0526 | .0548 16 4 .0495 | .0478 | .0473
8 .0504 | .0489 | .0485 8 .0501 | .0482 | .0473
16 .0506 | .0490 | .0483 16 .0510 | .0497 | .0495
U=4.0 U=16.0
n3 n3
™ 2 4 8 I R 2 4 8
5 8 .0773 | .0890 | .1028 " 8 .0851 | .0970 | .1072
16 .0863 | .1041 | .1253 16 .0893 | .1025 | .1130
4 8 .0582 | .0616 | .0669 . 8 .0604 | .0641 | .0690
16 .0624 | .0688 | .0783 16 .0618 | .0662 | .0717
2 .0460 | .0433 | .0417 2 .0508 | .0494 | .0492
o 4 .0491 | .0471 | .0462 o | 4 .0526 | .0522 | .0533
8 .0521 | .0517 | .0530 8 .0535 | .0537 | .0556
16 .0539 | .0550 | .0582 16 .0539 | .0545 | .0567
2 .0486 0468 .0462 2 .0505 .0489 .0483
16 4 .0496 | .0476 | .0465 16 4 .0514 | .0502 | .0503
8 .0508 | .0494 | .0490 8 .0518 | .0509 | .0513
16 .0516 | .0509 | .0515 16 || .o0519 | .0512 | .0519




CHAPTER III

+ = + '
TESTING THE RELATION @l 92 93 94 USING F2

The hypothesis that relation (6) holds among the variances can be

tested by using an F'-statistic. Fé , which will be associated with

relation (6) in the sequel, is defined to be

F) = =" ., (22)

where vl ¢ V, » v, and v, are independent mean square estimates of 0

2 3 4 17

@2 ' 03 and 94 , respectively, and each is based on n, ,n, , N and n

2 3 4

degrees of freedom, respectively. The degrees of freedom of F! , v, and

2 1
v, are given by
2 2
~ (v1 + v2) B (1 + u)
Vi T T2 2 2
vl v2 u 1
i ) oM
(v, + v )2 (1 + w)
R T
2 2 2 2 '
v3 v4 W 1
n, n, n, n,
where u = vl/v2 and w = v3/v4 .

Let A_. denote the event that F!

5 .
> 5 F(l—a)[vl ‘ v2]. As in Chapter II

with the Fi-statistic, the probability that the event A2 has occurred is
a conditional probability. Hence, if o is the significance level of the

test, then P(Azlu y W) = o .

21
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gnsequently,

P(AZ) = J J P[Azlu , Wlg(u , w)dudw , (23)
0 "0

ﬁére g(u , w) is the joint density function of the random variables

and w .

Using the method which was developed in Chapter II, this conditional
distribution can be found. From the fact that nivi/ei is distributed with
the chi-square distribution with ni degrees of freedom for, (i =1, 2, 3, 4),

it can be shown that the random variable

n.wv n_.v

1 22
(n3 + n4) 5 + 5

0= 1 2

- (n. + n_) 7373 + A
- 1 2 63 64

is distributed as a central F-distribution with n, +n, and ny, + n, degrees

of freedom. 2also, Q is independent of u and w .

Therefore, the result follows that

n,v n,v
3°3 44
(91 + 02)(vl + v2)(n1 + nZ)[ 5t 5
preL 2,9, 3 4 ,
AR (6, + 0.) (v, + v,) (n, + n | 2L, 2272
17 9 vy v ing ¥ ngt—g o
1 2
and when relation (6) is true, this becomes
nw
(1 + ¢2)(l + u)(n1 + n2) ;;—-+ n,
F! = Q , (24)
2 nlu
-——-—-—+
(1 + ¢1)(l + w)(n3 + n4) b n,

where ¢, = 91/02 and ¢, = 63/04 .
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substituting equation (24) into equation (23) gives

nlu
[vl ’ v2] (1 + ¢1) (1 + w) (n3 + n4) -5-—-+ n,

F
o 00 (]_—a) 1
P(Az) = L)L)P o > Mo u,wlg(u,w)dudw .
(1 + ¢2)(1 + u)(nl + n2) E;—-+ n,

However, since Q is independent of u and w , the result reduces to

n.u
1
- oo F(l—u)[vl rV1 (1 + 600+ w)(n3 + n4)[#1—-fn2 (25)
P(Az) = [ J PIQ > Fow - g(u,w)dudw .
0° 0 3
(1 + ¢2)(1 + u)(nl + nz)[éz—-+ n4]

The probability integral transformation

w' ru
dpldp2 = g(u,w)dudw or P1 . P2 = JO J g(u,w)dudw ,
0

applied to equation (25) will simplify the numerical integration. Note
that u and w are independent, and that u/q>l has an F-distribution with n,

and n2 degrees of freedom. Likewise, w/cb2 has an F~distribution with n3
and n, degrees of freedom. Then by letting x = u/d>1 and y = w/d>2 , the
probability integral transformation becomes
x' y!
P, * P, = jo gl(x)dx JO g,(y)dy . (26)

where gl(x) and gz(y) are density functions of F-statistics with ny and n, i

and n, and n, degrees of freedom, regpectively. Then applying the trans-

formation (26), equation (25) becomes

n,u
11 P gegy V@ vl + 6.0 (1 + W) (ng + n4-)[7¢—1— + 1,
P(Az) = J J P|O > -n3w ; dpldp2 ’
0°0 (1 + ¢2)(l + u)(n1 +n,) 5;— + 1,

which can be easily numerically integrated.



CHAPTER IV

= - A
TESTING THE RELATION @l 92 + @3 04 USING F3

Relation (8) can be tested by using the Fé—statistic, which is

defined to be,

F! = ' (27)

where the vi , (i =1, 2, 3, 4) are independent mean square estimates of
ei , respectively. Each vi is based on n, degrees of freedom. The degrees

of freedom of Fé P Vy and v, are given by

Vit ™y
2 2
- (v2 + v3 - v4) B (u+w-1)
2 2 2 2 221’
v, v, vy u w
n tntan o tatn
2 3 4 2 3 4
where u = v2/v4 and w = v3/v4

Let A, denote the event that F! > F [v, , v,]. As before, this
3 (1-a) "1 2

3
is a conditional event. Hence, P(A3|u , W) = a and, consequently,
P(a,) = f J P[A3|u , wlg(u , w)dudw , (28)
0 °0

where g(u , w) is the joint density function of the random variables u
and w .
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Again, from the fact that nivi/Oi is distributed with a chi-square

distribution with n, degrees, and the v, are independent for, (1 = 1, 2, 3, 4) ,

it can be shown that the random variable

(n2 + n, + n4)vl |
2 M3V PuVy
* %

2 N
H oo 03 4

S

is distributed with a central F-~distribution with n, and n, + n, + n, degrees

of freedom. Also Q is independent of u and w .

Therefore, when relation (8) is true, the result follows that,

, (29)

Fé =2 (n2 + n_, + h4)(u + w - 1)

3
where ¢l = 92/94 and ¢2 = 93/64 .

Substituting equation (29) into equation (28) gives

u,wlg(u,w)dudw .

0 poo F [v. , v.l(n, +n_. +n){u+w-=1)
JJPQ>(1—a)1 2 Y 3 4

P(A3) = n_.u n.w
0" 0 (d)l + ¢2 - l)[__z___ + 3 + n4]
¢l ¢2

But, since Q is independent of u and w , the result reduces to

00 peo F v, , v, +n, +n,)(u+w - 1)
P(A)) = J J PlQ > (1-a) 1 2 2 3 4 g(u,w)dudw . (30)
3 oo nu  ngw
(¢l+¢2-l)'$]-'—+$'2—'—+n4

Let x = u/¢1 and y = w/¢2 ¢« in the probability integral transformation

L} u|
h(Pl ’ PZ) = jw j g (u,w)dudw .
0 °0
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+ then becomes

y' o (x
h(pl ' p2) = f [ g{x,y)dxdy ,
0 0

where x follows the F-distribution with n_, and n, degrees of freedom, and

2

- y follows the P-distribution with ng and n, degrees of freedom. In this
case, however, x and y are not independent. Hence, the points x' and y'

must be found from a bivariate F~distribution with the corresponding

B e sy

degrees of freedom and non-zero correlation.

2 Once this has been accomplished, equation (30) can be numerically

integrated in the form

1.1 F v, , v.J{n, + n, +n)(u+ w - 1)
- (1-g) “71 * Y272 T 3 T Ty
P(p,) = J J PlQ > oy nyw dfh(p; + p,)1 .
0° 0 (¢l+¢2_1) S =~ 4+ n

¢ ¢ 4



APPENDIX I

Let Xl y X2 and X3 be independent random variables, each following

» n, and n, degrees of freedom re-

the chi-square distribution with n 5 3

1

spectively. Then it is well known that

Xl(n2 + n3)

F = —*——
nl(X2 + X3)

follows a central F-distribution with n, and n, + n, degrees of freedom.

The problem is to show that the random variable F and the random variable

, X, and

Z = Xz/x3 are independent. The joint density function of X 5

1l

X N
315

n, -2 n_ -2 n_ -2
( - ) ( : > ( > )
X +X_+X
% 2 X 2 x 2 _ 1 3

2
1 2 3 2
g(x r X y X,) = -~ e
17 %20 %3 n.+n_+n
r(Z1)r(Z2)r(s), 2
2 2 2

for X1 >0, X> 0 and X3 >0 . Letting F and Z be defined as above and

letting W = X, , it can easily be shown that X, = 2W and X, = n FW X

3 2 1 1

(1 + Z)/(n2 + n3). Then the Jacobian of the transformation is
J = nlwz(l + Z)/(n2 + n3). Therefore the joint density of F, Z and

W is as follows:

27
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h(F,Z,W)

n
1
_— n.F
n 2 - l- 1 + 11 (1+Z)W
< 1 e 2 lInp+n3 ,
Ny 0y

for F >0 , 2 >0 and W > 0 . The joint density of F and Z is given by

2(F,Z) = f h(F,Z,W)daw .
0

Hence,

n
nl-Z nl n2—2 1
2 —5 n 2
n, L,z =L L2 2z ( n n)
! 0 (1 ) 2 3
1
(22 ()

+n +n
n, +n_+n_-2 n_F
o (T}_-%——§~_> - %-[; in + ;](1+z)w
wa 27H3 aw .

0

This last integral is of the gamma distribution class; therefore,

28



where g(F) is the den
degrees of freedom.

If X2 = n2v2/®2

u(n.0,/n_0,), where u =

273 372

u is independent of F

n n <H2+n3) g
F(—i>T<—%>(l + Z) 2

sity function of an F-statistic with n, and n, + n

Hence, F and Z are independent.
= = O =
and X3 n3v3/O3 , then Z V2n2@3/v3n3 5

v2/v3 . Since Z is independent of F , then

, also.

3
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APPENDIX II

The numerical integration was actually accomplished by means of a

digital computer program, written in Fortran IV, for an IBM 360/44. The

main body of the program is the Romberg numerical integration technique.

The functional values of the integrand were calculated by a series of

subroutines as the variable of integration, p , assumed values between

zero and one. They are as follows:

Given a value of p , the standard normal pth cumulant
point was found by means of an approximation given by

Hastings [5] (page 192).

th

Then with this value, the p cumulant of the F-distri-

bution with n, and n, degrees of freedom was found using

the Cornish-Fisher [3] method.
This F~cumulant then specifies a value for u , given a

value for U . With the value of u , values of vy and

v2 were calculated.

th

Now with a specified standard normal o cumulant point

and the values of vy and Vo, s the Cornish-Fisher method

was again used to calculate the ath critical point in
F(\)l ’ \)2) .

Given all of the above values, a constant is determined
for this specified value of p . The remaining cumulative
probability of an F with n_ and n, + n_ degrees of free-

3 1 2

dom was found by using the relation between the F-distribution
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and the Beta-distribution, and then using the relation
between the incomplete Beta and the binomial. This
cumulative value was set equal to the functional value

of the integrand at the value, p .

Control was then returned to the main body of the program

to repeat the process as often as necessary.
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