Nonparametric Regression with Measurement Error

by

Nalin D. Perera
Department of Statistics
Kansas State University

Manhattan, KS 66506-0802

and
William R. Schucany
Department of Statistical Science

Southern Methodist University
Dallas, TX 75275-0332

Technical Report No. SMU/DS/TR-278



Nonparametric Regression with Measurement Error

Nalin D. PERERA
Department of Statistics, Kansas State University, Manhattan, KS 66506-0802, USA

William R. SCHUCANY
Department of Statistical Science, Southern Methodist University, Dallas, TX 75275-0332, USA

Abstract: Bias and variance expressions for nonparametric regression with measurement errors in
the predictor are examined. For equally spaced, fixed designs with measurement error, and
sufficiently small measurement error variance, it is shown that the Priestly-Chao (1972) kernel
regression estimator is inconsistent. This is due to the existence of measurement error bias in
addition to smoothing bias. Furthermore, it is shown that if measurement error bias were corrected,
the best uniform convergence rate for AMSE in nonparametric regression with error-free predictors
would be achieved. This suggests that the correction for measurement error bias may be appropriate
approach to nonparametric kemel regression for Berkson-type models.
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1. Introduction

Nonparametric regression is a curve estimation procedure which is a viable alternative
to fitting parametric families of curves. Suppose we observe Y7, Yo, ...... Y, , nindependent
observations at fixed (controlled) values of X, Xo,.....X,,, where the X;'s are equally spaced

on [0,1] (without loss of generality). Consider estimating an unknown mean function, m(z),
which describes the relationship between the Y's and X's, namely

Y, =m((X;) + €, 1=1,2..n, (1.1)

where the €, 's are independent with E (e, ) = Oand E(ef) = 062. There are many

nonparametric regression estimators in the literature. For details see Eubank (1988),
Miiller (1988), or Hirdle (1990).

An experiment might involve a control mechanism that has measurement error v;,
independent of €, for each fixed X;. This can be written

X; =t; +o0,v;, (1.2)

where E (v;) = 0, E (v%) =1, t; is the true unobserved value, and azv is the measurement
error variance. These are discussed in Berkson (1950) and are known as Berkson-type
models. Parametric treatment of other measurement error models, structural and functional,
are discussed in Fuller (1987). However, nonparametric regression with errors in the
predictors has received little attention until Fan and Troung (1993), and Speigelman and
Cline (1993). Fan and Troung (1993) consider the structural model and uses a



Nadaraya-Watson (1964) estimator with a deconvolution kernel. He introduces two classes
of measurement error densities, and shows that the smoother the error density, the harder the
nonparametric regression problem. Spiegelman and Cline (1993) used a

Gasser-Miiller (1979) kernel estimator for Berkson-type models. They found that the
measurement error bias is of order o(a ). They corrected the kernel by applying a linear
operator that is the solution to a differential equation in the unknown mean function. The
approach that we investigate in this article is fundamentally different from that of Spiegelman
and Cline. We analyze the Priestly-Chao (1972) kernel estimator for Berkson-type models.

In the next section, we give details of the Berkson-type models and show the
complication in estimating a mean function with anything other than straight line parametric
regression. It is shown, for a quadratic polynomial, the usual regression assumption is
violated, and hence the difficulty in making inferences on some parameters.

Alternatively, nonparametric kernel regression can be used to estimate m (z). In
particular, the Priestly-Chao (1972) estimator ( PC) is a special case among the other kernel
estimators for Berkson-type models. For simplicity we show that the PC-estimator is
inconsistent for estJmaung m(z) for sufficiently small o,,. The bias contmns a measurement-
error term, % o m(2 (z), in addition to the usual smoothing bias, 5 1 2@ (:z:) where A is
the bandwidth of the PC- estimator. However, the variance is still O((nh)™!). The details are

given in Section 3.

An obvious modification is to attempt to correct the PC estimator for measurement
error bias. Section 4 explains why such a correction is desirable by comparing AMSE's for
measurement error bias-corrected estimator with the uncorrected one. The convergence rate
for the AMSE for uncorrected estimator is slower than for a corrected one. Also the best
uniform rate for AMSE for the PC- estimator is obtained for the ideal bias-corrected
estimator.

2. Berkson Models

Linear regression with errors in both variables for a fixed design was described by
Berkson (1950). As a practical situation, consider a "bio-assay" experiment in which
organisms are exposed to increasing specified concentrations of the material to be assayed.
Therefore, the dosage is the fixed controlled observation (X ), but it is actually administered
with an error (o, v;). The desire is to model mortality rate (Y;) and true dosage (¢;).

Berkson (1950) showed that the "true" model is equivalent to the "assumed" model
when fitting a straight line to the data. The "assumed" model is given by (1.1), but the "true"
model is

Yi =m(t) + e, (2.1)
X;=1t; +o,v;, 1=12,...n (2.2)



with € ; as before and mutually independent of v;, which have mean 0 and variance 1. If one
fits a straight line and in fact m(t) = B, + B¢, then it can be easily seen that

Y =6y + 01X +¢;
= m(X;) + €7,

where €’ = €;- o, v; and €] ~ iid (0, o).

Therefore, ordinary least squares linear regression estimators are not biased. But,
Box (1961) showed this is not true for nonlinear models. Let us consider the simple case of a
quadratic model, m(t) = Gy + Bt + B, t2. Substituting ¢; from (2.2) yields

Y; =By + Bu(Xi — oyv) + Bo(Xi — a,vi)? + €
=0/ +6 X+ ﬁzX? +e& — 0y Py + 02 Bv —20,6X i

Thus, the regression of Y on X is

E(Yi| X:) =fo +BiXi+ BXE + 5o}
= (By +Fo02) + B Xi+ oX? .
Therefore,
Y; = E(Y; | X3) + €3(X)),

where e’;(Xi) =€ — 0y (1Y +02v Ps (v2i - 1) = 20,6, X;v; .

It follows that least squares produces a biased estimator for the intercept. Also note
that the homogeneity of the error variance has been destroyed. Hence, parametric regression

is no longer valid, even though the assumed parametric family of curves is the correct family.
This is characteristic of all nonlinear models.

3. Inconsistency in kernel regression estimators

Nonparametric regression techniques are used to estimate a mean function with only
mild constraints on m(z). For example we may believe that m(z) belongs to a broad class of
functions, such as m(z) € C?[0,1] (i.e., twice continuously differentiable). For the equally
spaced design, X;11 — X; = }} , the PC estimator takes the form,

M) =5 > K <;h’5-> Y, (3.1)

=1

where K (z) and h are the kernel function and bandwidth, respectively. For fixed X ;,
Benedetti (1977) established almost sure convergence of (3.1) assuming ~—0as
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n— 00 so that nh — co. Furthermore, it was shown that the uniform convergence rate of
AMSE is O((nh)™). Our interest here is to study the behavior of (3.1) for the Berkson type
models given by (2.1) and (2.2) assuming A — 0 as n— 0o so that nh —= co.

The following theorem establishes that the PC estimator (3.1) is inconsistent for
estimating m(z). It is assumed that the kernel is of order 2 and there is a sufficiently small
measurement error variance, azv. The proof is sketched in the Appendix and details may be
found in Perera (1993). '

Theorem 1.

Assume that m(z) € C?[0,1]. Fora second-order kernel, K, and sufficiently small
azv the expected value of (3.1) is

E(A(z) = m(@) + 2m® () + 52 m@ () + o(h?) + o( o) +O(n~Y)
and the variance is

Var (i(z)) = % ( o2 mW(2) + 0%) +o((nh)™h) + o(?),
where @ = [Y K%(u)du and ky = [, u? K (u)du 0.

For nonparametric regression with error-free predictors, the bias expression contains
only the smoothing bias, %ﬁ— m® (). But with measurement error in the predictor, there is

a measurement error bias, %i m2) (z), in addition. Hence the PC estimator is inconsistent for
m(z), because the smoothing bias vanishes as A — 0, but not the measurement error bias. It
may be seen from the proof that these same results hold for other fixed designs and other
kernel estimators. If o is zero, then we observe that the above results agree with the
expressions from nonparametric regression in the error-free case.

The presence of measurement error bias increases the magnitude of the problem at
peaks and valleys, because both biases are multiples of m(®) (z). However, we observe that
the variance still vanishes like (nh)—l. Therefore measurement error in the predictor has a
more serious impact on bias than on variance. Thus, correcting the estimator, 2 (z), for
measurement error bias seems to be a desirable modification. Essentially the same situation
arises in parametric regression and Stefanski (1985) introduces a bias-corrected estimator for
measurement errors in general parametric modeling.



4. Asymptotic Optimality

The measurment-error bias contains the unknown measurement error variance crzv and
m@ (z). Correcting measurement error bias refers to subtracting a consistent estimator of

%—" m® (z) =B (z) from A (z). Then once again, the smoothing bias is the dominant term in
the bias expansion. This bias-corrected estimator, m (z), can be written as

~

(2) = M(z) - B(a).

If é (z) is a consistent estimator of G (z) and is bounded almost everywhere in [0,1], then it
can be established easily that m (z) - m(z) in mean square. An estimator of [ (z) should be
bounded since 3 (z) itself is bounded on the interval [0,1].

In many experiment situations azv is unknown to the experimenter. In such cases a
consistent estimator of azv is required. More research is needed on such estimators in the

nonparametric setting. If repeats are available at some design points, then a consistent
estimator can be obtained; see Perera (1993).

Derivative estimators are available in nonparametric regression. But to obtain a
consistent estimator of m(®) (z) when predictors are measured with error requires further
research. Obviously there will be a measurement error bias of some order in estimating
m® (z). One may expect that it would be of higher order than the o(azv). Thus such a bias
would be negligible for sufficiently small azv.

In practice there will not be an estimator, 8 (), that corrects the measurement error
bias completely. An estimator that reduces the measurement error bias may increase the

variance for 7n (z). In other words, the measurement error bias in 773 (z) will necessarily
appear in 3 (z), and therefore complete correction is an impossible task. Even so, in this
paper, we consider a case in which () satisfies a condition that gives the desired

convergence rates for m (z). Assuming that Var( ﬁ (z)) =~ O((nh) 1), expressions for
asymptotically optimal bandwidths for corrected and uncorrected estimator are derived in the
following theorem. The resulting AMSE's are given as well. The proof may be found in the
Appendix.

Theorem 2.

If the conditions of Theorem 1 hold and 3 () is as above with Var( 8 (z)) = O((nh) ),
then the uncorrected asymptotically optimal bandwidth for 772(z) in (3.1) is given by

2 2
ml ) 0. _ :
hopt(2) = {—,Z* (M)EZ)) * %(Z “m<2>(x'>) } i @D

provided that m® (z) # 0.



The corresponding asymptotic mean square error of 77 () is

2 L
3 2 (2)2 3
 AMSE (3, hop) = 3{% (azvm(l)z(a:) + ai)} {’l"xi;‘—@} -l @42

The convergence rates for the asymptotically optimal bandwidth and the AMSE for the

corrected estimator, m () are given by

he, opt(z) = O(n —é) (4.3)
and

'AMSE, (z, h¢, o ) = O (n"%). (4.4)

The measurement error in the predictor increases the AMSE in (4.2) when m®)(z) is
large, and this is more apparent in the region where m(z) is sharply increasing or decreasing.
The appearance of m@) (z) in (4.2)relates to the difficulty in estimating the mean function
near peaks or valleys.

Clearly the convergence rate for AMSE  is O (n'g) is faster than the convergence
rate for the uncorrected estimator. The former rate is the best uniform convergence rate for
PC kernel regression with error free predictors, see Benedetti (1977). This suggests that

correcting for measurement error bias with an estimator such that Var( ,3 (z)) = O((nh) 1)
can preserve the usual AMSE convergence rate.

Optimality of the kernel function in nonparametric regression has received less
attention than optimal bandwidths. The shape of the kernel function does not have a
significant impact on the AMSE. Benedetti (1977) showed that the optimal kernel in the
sense of minimizing the AMSE for the PC estimator with error-free predictors is the
Epanechnikov kemnel, 2 (1 — u2) I (=1,1)(w). The same can be shown to hold for the estimator
analyzed in Theorem 2. Details of the proofs may be found in Perera (1993).

5. Conclusions

This article focuses on the inconsistency of the nonparametric kernel regression
estimation for Berkson-type models. Deriving the bias and variance explicitly for the PC
~ estimator, clearly displays the measurement error bias and the severity of its effects. The
measurement error bias correction has been analyzed as a way of handling this problem. This
is further confirmed by the AMSE for a corrected estimator. Yet, correction requires an
estimate of o, and m® (z). The o, is usually unknown, but may be estimated if repeats at
some design points are available. See Fuller (1987) for more information regarding
parametric approaches to estimating .

Estimating ®) () needs to be addressed in the above setup. There are several
derivative estimators available in the literature, but further research is needed to see that they
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retain their properties when predictors are subject to measurement errors. The bandwidth
selection and boundary effects are other issues which require more investigation. Local linear
fits may have some advantages here, as they do for the error-free case.

6. Appendix

6.1 Proof of Theorem 1

The derivation begins by substituting the model values in (2.1) and (2.2) into (3.1)
and using a Taylor expansion for m( - ) to obtain,

E (A(@) = iK(—"h—X*) mX)+ 3 L LK (=) m® (X)) +o(c?)

1=1
= A + B +o(d?),

4 = & YK (=) mx)

1=1
a2 i z—X;
B = —2“ # EIK(-TX‘) Tn(Q)(X,').
1=

Using an integral approximation to the summation in A (see Conte and de Boor (1980)) we

obtain the usual expansion, Parzen (1962), for large n and small A,

A =-}—16fK(£,?)m(y)dy +0(n7h).

Using an integral approximation to the summation in B, we obtain for large n

1
gz T -
B =% %JK(-?)m(Q)(y)dy +0(nY).
Lettingu = ¥,y =z — hu, dy = —h du, yields

B=% 3 (ff K(u)m®@—hu)du + OnY),

which for sufficiently small 2, so that [- 1,1] C [ — L;Til , %] gives

2 1
% [ K(u)m®(@—hu)du +0(n)
-1

B=
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= 35‘ m®(z) + 522“ -fll K(u) [m®(z - hu) — m@ (z)] du + O(n1).

Since m® (z) is continuous on [0, 1],

1
[ K(u)[m®(z—hu) —m®(z)]du — Oash — O.
-1 )
Thus
B = 3;“ m®(z) +0(a?) +0(n1).

Now, by combining A and B, one obtains

E (m(x)) =m(z) + 2L m®(z) + 2 m®(z) + o( h?) +0( ) +O0(nY).

Next, let us derive an expression for Var(Y;). By assumption, for every ¢, v; and ¢;
are independent. Since the X;'s are fixed constants it is easy to see the independence of i,
and ¢;, V 1. Therefore,
Var(Y;) = Var(m(t;)) + o2, for i=1,2,.

= Var(m(X; — oyv;)) + o%.

m o

Now by a Taylor series expansion of m about X;,

Var(Y;) =Var (m(X;) — oy vim(l) (X3) +322“ v?mm (X;) + o(a%)) + af
2
=FE (m(X-) — g, vm (X)) +52" v¥m®(X;) + 0(02))
_ E? (m(X) — o, vimD(X;) + % v?m® (X;) + o(0 ))

Since the v;'s are iid and assuming E(v?) = 0, the above simplifies to
Var(Y;) =05 2 m(1)? (X5)+ 2 (E(v4) - 1) m®’ (X;) + 0% +0(c?).

The first term in the above expression dominates when the measurement error in the
predictor is small. Since m(z) € C2[0,1], m® (z) is bounded and for sufficiently small o,
one can ignore the 4 th order term in o, to obtain,

Var(Y;) =o? m* (X;) + 02 +0(0?) .

To obtain an expression for Var (m‘ (m)) consider



Var(m(z)) = 2h2 EKQ ( ) Var(Y;)
= A + B; + 0(0‘3),

v v o B (58 k) 0 ey B ().

=1 1=1

Using an integral approximation to the summation for large n ( and nh),
2 1 z 2 -
A= 2 [E (5) mP @) dy + o (a0

=2 ( h) fL-Kz (w) mY* (z = hu) du + o ((nk)
Rewrite the above exprcssmn as,

( 2
Ay a m” (I) fK2 (u) du+‘"‘ fK2(u (m(l (= hu) - (a:)) du

+o ((nh)” h,
Consider the second term in the above expression. Since mW* (z) is continuous, the second
mtegral goes to zero as n — oo. But the rate at which it goes to zero is determined by either
o(02) or o((nk)™"). Therefore, for either case

A = 4——“’ Q+0(0?) + of (nh)7).

nh

Next, let us consider the second part of the variance expression,

B, = 2h2 ZK2 (::—X)

=1
o2 1 9 o
—;}25 OfK (”'—hl’)dy +0(n7 1.
Letting u = £¥,

B, = gi(=h) fﬁll{ﬂ (u) du+o ( (nh)™h),

nh?

which for sufficiently small  so that, [- 1, 1] ¢ [~ 322, 2], yields



1
&2}; f u) du +o( (nh)™h).

Combining A; and B; yields
Var(mi(z)) = -n% (03 m’ (z) +0? ) + o( (nh)7Y) + o(a?),

which was to be shown.

6.2 Proof of Theorem 2.
From Theorem 1, for large » and sufficiently small o ,,

AMSE (z,h) =Var (7i(z)) + ( E(m(z) - m(z))2
= Q(Pm(@) + o) +1( 0% +kyh?)2m?(z)

This asymptotic MSE can be written as

AMSE (z,h) = %2 4 B(z)h! + C(z)h? + D(z),

2 2
where A(z) = Q ( Uzvm(l)g(:z:) + Uze), B(z) = k3 m() ()  Cl) = ky o ;nﬂ) (=)

4 @2
and D (z) = — 1 © . For sufficiently small o, Dis neghglble and thus
AMSE (z,h) = 4% ++ B(z)h* + C (z) h?

Further we observe that C () h 2 dominates B (z) h 4 as h approaches zero. Hence AMSE
can be approximated by

AMSE (z, h)— =+ C (z) R
Then from Parzen (1962), the minimizing value of h is
1
Alz) \3 -
hoopt () = (20(3,)> n 3,

which simplifies to (4.1). Substituting A . (x) into AMSE, one obtains (4.2).

b

The variance of m (z) is

Var (m(z)) = Var(#(z)) + Var (Ofa (z)) — 2Cov(iA (z), B (z)).
1



By the Cauchy-Schwartz inequality
Cou((z), B (@) < \/Var((@)) Var (B (@)

Therefore by the assumption on Var (ﬁ (z) ) the upper bound for Cov(1i(z), ,@ (z)) is
O((nh)™).

Thus
Var(m(z)) =~ O(nh) ).

The AMSE for m (z) is
AMSE  (z,h) = 442 4 B(z)nY,

where A {(z) is bounded for all z € [0, 1].

Using Parzen's (1962) lemma again, we obtain

1
Ay (z) 5 1
heae (@) = (£435) n 4,

which simplifies to (4.3). By substituting A ¢, o (x) in AMSE . (z, h),
we obtain (4.4).
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