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Abstract

The small sample properties of a number of approaches to finding a confidence interval
for a slope parameter in rank regression are investigated. An approach based on the

bootstrap percentile-t procedure is shown to have excellent overall performance.
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1 Introduction

Rank-based methods are a popular robust alternative to least squares for analysing data from
a linear model. Advantages of these procedures include bounds on the influence of outliers
in the y space and the ability to handle both symmetric and asymmetric error distributions;

see, for example, Hettmansperger (1984).

There is a large body of literature on rank-based methods beginning with the landmark
papers of Jureckova (1971) and Jaeckel (1972). Much of this literature focusses on asymp-
totic properties. For these methods to be of widespread practical use, their finite sample
properties need to investigated and understood. One such crucial property concerns the va-
lidity of hypothesis tests and confidence intervals, that is, whether the levels and confidence
coefficients are close to their nominal values. McKean and Sheather (1991) provide a sur-
vey of the small sample properties of R-estimates and their acompanying analyses of linear
models. They review the results of previous studies as well as discuss the results of their
own simulations. They conclude that approaches based on the bootstrap and the jackknife
have produced encouraging results for R-estimates based on sign and Wilcoxon scores, re-
spectively, but that further refinement of these procedures is necessary to achieve widespread

small sample validity.

In this paper we compare the small sample properties of a number of approaches to
finding a confidence interval for a slope parameter based on an R-estimate. Section 2 of this
paper provides a short summary of the properties of R-estimates. The focus here is upon
Wilcoxon scores, since these are the most widely used scores. Asymptotic confidence intervals
for regression parameters depend on a scale parameter that must be estimated in practice.
Different approaches to estimating this parameter are discussed in Section 3. Finally, in
Section 4 the results of a Monte Carlo study are reported which compare the performance of
various finite sample methods for obtaining a confidence interval, based on an R-estimator
with Wilcoxon scores, for the slope parameter in straight line regression. An approach based

on the bootstrap percentile-t procedure is shown to have excellent overall performance.



2 R-estimates of a Linear Model

Consider a linear model of the form

Y =fol+XB+e, (2.1)

where 1 is a vector of 1’s, X is an n X p matrix of known constants, B¢ is an intercept, 8 is a
p X 1 vector of parameters, and € is an n X 1 vector of random errors which are independent
and identically distributed with distribution function F' and density function f. We shall
assume that X has full column rank p and that med ¢; = 0. Let o2 denote the variance of

€;. It will be convenient to write the ith row of X as x}.

The R-estimate of 3 proposed by Jaeckel (1972) is a value of B which minimizes the

dispersion function,
n

D(B) =Y a(R(Y: - xiB)) (Y: - xiB), (22)
=1
where R(u;) denotes the rank of u; among uy,...,u,, and a(1) < --- < a(n) is a given set of

rank scores. The scores are generated as a(i) = ¢(¢/(n + 1)) where ¢ is an increasing and
bounded function defined on (0,1) which is standardized so that {¢ = 0 and [¢* = 1. In
this paper we shall only consider Wilcoxon scores generated by é(u) = v/12 (u — 3) and we
denote the resulting R-estimate of 3 as 23 The intercept Bp is estimated by the median of

the residuals e; = Y; — x/83.

The dispersion function D is a nonnegative and convex function of 3. The finite algo-
rithm developed ‘by George and Osborne (1990) is based on the reduced gradient algorithm
(Osborne, 1985) andkprovides the exact R-estimate 3. The k-step Newton algorithm de-
veloped by McKean and Hettmansperger (1978) provides a consistent estimate which is an
approximation to B The statistical package MINITAB now includes R-estimates based on
the k-step algorithm.

Under mild regularity conditions, Jureckova (1971) showed that ,B is asymptotically nor-
-1
mal N (ﬁ, T2 (XéXc)'l), where 7 = (\/ﬁ ff2(a:)d:z:) and X, is X centered by subtracting

the column means. A nominal 100(1 - a) % confidence interval for B based on the R-estimate



and suggested by this asymptotic distribution is given by

Bi £ zgym (XX )7 (2.3)

where z(g) is the (1—§) percentile of the standard normal distribution and (X7 X, )i denotes

the ith diagonal entry of XX . Estimates of 7 are discussed in the next section.

3 Different Approaches to Estimating 7

Koul, Sievers and McKean (1987) proposed an estimator of ¥ = [ f(z)dz and hence 7. It is
based on H,, the empirical distribution function of |e; —e3|, where e; denotes the ¢th residual

(i=1,...,n). Let F, denote the empirical distribution function of ey, ..., e, and fK denote

the kernel estimate of f, that is,
= 5 (552)
REZmm &\ )

where the kernel K is a density function symmetric about 0 and the bandwidth A — 0 as

n — o0o0. Koul, Sievers and McKean (1987) showed that their estimator, 7,,, can be written

as

Ticsu = /0:0 Fr(z)dFo(z) = ni_hi i % (e_—h_ei)

- 1=1j5=1
with K equal to the rectangular kernel. They recommended one use h = qn,an_l/ 2, where
gn,o is the oy, quantile of H,. Under mild regularity conditions, Koul, Sievers and McKean
(1987) showed that their estimate is uniformly consistent under either symmetric or skewed

errors. For a similar estimate of v see Aubuchon and Hettmansperger (1989).

George and Osborne (George, 1993) propose an estimator of 7 derived from the asymp-
totic linearity result for rank statistics of Jureckova (1969). First, note that the partial
derivatives (gradient) of D(3) exist almost everywhere and where they exist are equivalent
to the negative of the regression rank statistic S(3) given by Jureckova. Note, whereever

the gradient of D(3) doesn’t exist, S(3) does exist but is multi-valued. Next, this linearity



result suggests a quadratic approximation to (2.2)
D() ~ D(B°) - (B - B)'S(8°) + 5-(B - BOYXLX.(B - B, (3.)

where 3° denotes the true parameter value. A thorough discussion of the above can be found

in Hettmansperger (1984, p. 232-239).

Writing 8- 8° = 8 - [‘3 + ﬁ — B° and substituting this into (3.1), George and Osborne

obtain the following approximation
D(B) ~ D) + 5=(B - BY X\ X8~ B)+ ~(B-BYX:X.B-F),  (32)

ignoring small values from S(3°) ~ 0 and terms involving (E — B%)?2. Choosing a mesh
of values centered and symmetric about ,B', (3.2) defines a set of linear equations with the
unknowns D(8°),1/r,1/7(8 - 8°). Due to symmetry, the normal equations simplify so that

1/7 can be estimated independently of the other unknowns. This estimate is given by

~ bv — aw
TGO = b2 e y (33)
where
a = 4p+1,

P
b = 5 6 (X(X)y,
i=1

17 & , 2
c = TX (2(x1x)a)
p o~
v = D(B)+ 3 {D(B+6L)+ D(B - &) + D(B + 26:I) + D(B - 261,)}

1=1

p -~ o~
w o= % E&?XQ;XC,- {D(ﬁ +6:L,)+ D(B - 6:I;) + 4D(B + 26;I;) + 4D(B — 251.11.)} ’

=1
X.; denotes the ith column of X, I; denotes the ith unit vector, and p is the rank of X.
The set of values {é;},i=1...p, are chosen to so that the resulting mesh is within a region
where the linear trend of the equivalent rank statistics are expected to be strongest. The full

details of this algorithm are given in George (1993).



4 Monte Carlo Study

A Monte Carlo study was carried out to compare different approaches to finding confidence
intervals, based on an R-estimator with Wilcoxon scores, for the slope parameter in straight

line regression. The straight line regression model used was
Y. =060+ f1z;+0.1¢; 1=1,...,n. (4.1)

where Bp = 2 and 7 = 0.5. The random errors ¢; were fixed to have standard deviation one
and mean zefo and were chosen from three distributions, normal, Laplace and lognormal.
Two types of = were used, evenly spaced between 5 and 6 and uniformly distributed between
5 and 6. Three sample sizes (n = 10, 20 and 50) and two confidence coefficients (90% and
95%) were included in the study. These choices result in 36 combinations of z, n, error
distribution and confidence coeflicient. For each configuration, 1000 pseudo-random samples
were drawn. Each of these samples was generated using the 48-bit linear congruential random
number generator ERANDA48, which is available in most Unix implementations. Care was
taken to ensure that each configuration was started with a different randomly drawn seed.

The two results that are summarised here are the coverage probabilities and the lengths of

the confidence intervals for ;.

4.1 Three confidence interval methods

The first type of confidence interval considered is motivated by the asymptotic theory re-
ported in Section 2. Following the recommendations in McKean and Sheather (1991) ¢ critical
values with n — 2 degrees of freedom (denoted by tn_Q,(%)) were used in place of standard

normal values in (2.3) giving

B+ ta-2,(2)TY (XX (4.2)

as a nominal 100(1 - @)% confidence interval for §;. Two different estimates, 7 were consid-
ered, namely, those of Koul, Sievers and McKean (1987) and George and Osborne (1992).

We shall refer to these two estimates as the KSM and the GO estimates, respectively.



The second type of confidence interval considered is based on the jackknife. Originally
introduced by Quenouille (1949) as a bias reduction technique, the jackknife provides a
general tool for estimating variances. Let ,B(;) denote the estimate of 3 obtained when the
i-observation is removed (i = 1,...,n). Then the i-th pseudo-value is nB - (n- 1)['3(;).
The jackknife variance estimate (Tukey, 1958) is just 1/n times the sample variance of the n
pseudo-values. Schucany and Sheather (1989) showed that the jackknife variance estimator
for R-estimators based on Wilcoxon scores is strongly consistent in the one- and two-sample
location problems. They conjectured that the same is true in regression. A confidence interval

based on the jackknife variance estimate is given by

b+ tm-1,(2)V VaTy, (4.3)

where vary is the jackknife variance estimate of 3; and m equals the number of distinct

pseudo values. This formula for the degrees of freedom was first suggested by Mosteller and

Tukey (1977).

The bootstrap percentile-t confidence intervals are the third type included in the study.
This method has produced encouraging finite sample results for R-estimators based on sign
scores (Schrader and McKean, 1987). Confidence intervals for 5, involve bootstrapping a
studentized statistic, T = é%k where 5D is a consistent estimate of the standard deviation

of B;. The algorithm used to produce the confidence interval is:
1. Compute ,éo and ,51, the R-estimates of 3y and (3, the resulting residuals e; = Y; —
,30 - ,3193,' t=1,...,n and @, a consistent estimate of the standard deviation of ,31.

2. Inflate the residuals by multiplying each of them by \/n/(n — 2), as recommended in
Stine (1989, p. 256).

3. Draw a bootstrap sample e}, ..., e}, with replacement from these inflated residuals.
4. Calculate a bootstrap sample of y’s via y; = Bo + ,31:1:,- +e i=1,..,n

5. Based on the bootstrap sample compute 4} and @*, the R-estimate of 3; and its

estimated standard deviation.



6. Calculate the bootstrap version of the studentized statistic, t* = %51.

7. Repeat steps 3-6, 1000 times.

Let t7, be the ath sample quantile of the 1000 t*, then a 100(1 — )% bootstrap percentile-¢

confidence interval for 8, is given by
(b1 — ;_o /25D, B — t,1,5D). (4.4)

Two different estimates of gb, the standard deviation of 3, were used in (4.4), namely, the
KSM and the GO estimates. For more details about both the bootstrap and the jackknife
see Efron and Tibshirani (1993).

4.2 Implementation of the Koul-Sievers-McKean and the George-Osborne estimators

of r

In this implementation of the KSM estimate, we used the recommendations in McKean and
Sheather (1991, p. 10). Thus, § was set to be 0.8, the sample standard deviation was

chosen as the intial scale estimate and the resulting estimate of 7 was multiplied by the bias

correction \/n/(n — 2).

For the GO estimator, the quadratic in (3.2) was fitted to D(3) on 5 points. These 5

points form an equally spaced grid within a region over which S is approximately linear. See

George (1993) for specific details.

4.3 Comparison of results

Figures 1 and 2 contain plots of the empirical confidence coefficients versus sample size for

each of the following 5 confidence intervals:

a. The jackknife interval based on (4.3)



o

. The asymptotic interval (4.2) based on the GO estimate of T
c. The asymptotic interval (4.2) based on the KSM estimate of 7
d. The bootstrap-t interval (4.4) based on the GO estimate of T

e. The bootstrap-¢ interval (4.4) based on the KSM estimate of 7

The nominal value of the confidence coefficient is marked on both plots with an unbroken line.
Also marked on both plots with broken lines are values of the empirical confidence coefficient
which are 1.96 standard errors above and below the nominal value. The performance of
the bootstrap percentile-t intervals based on the Koul, Sievers and McKean standard error
estimate is the most impressive with almost all the empirical confidence coefficients lying
within 1.96 standard errors from the nominal value. Confidence intervals a, b and c, that
is, those based on (4.2) and (4.3) typically over cover, while e, the bootstrap percentile-
intervals based on the George and Osborne standard error estimate often significantly under
cover. The under coverage of the bootstrap-t interval based on the George and Osborne

estimator may be due to the fact that there are ties in the bootstrap residuals.

Figures 3 and 4 contain plots of the ratios of the average length of confidence intervals
a, b and c to the average length of the bootstrap percentile-t intervals based on the Koul,
Sievers and McKean standard error estimate, that is, interval e. The bootstrap percentile-¢
intervals based on the George and Osborne standard error estimate were not included in the
comparsion of interval lengths, since the empirical confidence coefficient of these intervals is
consistently more than 1.96 standard errors below the nominal value in small samples. Again
the performance of the Koul, Sievers and McKean bootstrap percentile-t intervals is most
impressive, since it provided the shortest average interval length in almost every situation.
On the other hand, the jackknife confidence intervals generally have the longest average

lengths of all the intervals considered.
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Figure Legends

Figures 1 and 2: Plot of the empirical confidence coefficients of each of the five methods
versus sample size for nominal 90% and 95% confidence intervals; intervals based on (4.3) are
denoted by ‘a’, those based on (4.2) and the GO estimate are denoted by ‘b’, those based on
(4.2) and the KSM estimate are denoted by ‘(é’, those based on (4.4) and the GO estimate
are denoted by ‘d’, and those based on (4.4) and the KSM estimate are denoted by ‘e’.

Figures 3 and 4: Plot of the ratios of the average length of confidence intervals based on
(4.2) and (4.3) to the average length of (4.4) based on the KSM estimate; intervals based
on (4.3) are denoted by ‘a’, those based on (4.2) and the GO estimate are denoted by ‘b’,
those based on (4.2) and the KSM estimate are denoted by ‘c’. Ratios greater than 1 imply
that the average length of the coded interval exceeds that for the bootstrap-t with the KSM

estimate.
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