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Abstract: Three estimators are investigated for linearly combining independent nonparametric
regression estimators. Assuming fixed designs, the asymptotic mean squared errors and
asymptotically optimal bandwidths are given for each estimator and compared. One estimator
essentially ignores the differences in the sources and naively pools all of the data. The second
utilizes individually optimized bandwidths and then estimates the best weights to combine them. The
third estimator solves a general minimization problem and employs equal bandwidths and

weights similar to those for combining unbiased estimators with unequal variances. It is found to be
superior to the other two in most situations that would be encountered in practice.
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1.Introduction

Suppose that we have data on measurements of cholesterol (y;) and the weights (x;)
for some subjects. Consider estimating some unknown smooth relationship between them,
often denoted by

yi=m(x;)+¢€;, i=1,..,n.

Details of this model will be given in the next section. There are various ways to estimate the
curve, m(x), without forcing it to belong to some restrictive parametric class. For good
discussions of nonparametric regression estimators using splines and kernel methods the
reader should consult Eubank (1988), Miiller (1988), Wahba (1990), or Hérdle (1990). There
is a rich literature on this general problem. Relatively little has been published on data sets
from different sources.

Only a few journal articles can be found on the subject of combining independent
nonparametric regression estimators. Hérdle and Marron (1990) approach the problem from
a semiparametric perspective. Hart and Wehrly (1986) do not assume independence of the
observations within a group and do not take full advantage of independence if it is present.

[n this article, we propose and compare three estimators that linearly combine data from two
sources, possibly with different variances, to form a nonparametric curve estimator. These
estimators may be based on either kernel regression estimators or locally weighted linear
regression estimators. The biases of these estimators depend upon the amount of smoothing,
which is controlled by window width or bandwidth. To minimize the usual optimality
criterion of asymptotic mean squared error (AMSE) requires a balancing of bias? and



variance. Both of these depend on the bandwidth. The details of these three estimators are
derived in Section 2.

The first of these estimators, 1 (¢), follows the naive approach of disregarding the
fact that the data come from two sources and of proceeding with locally weighted linear
regression as though one large dataset were available. That such an approach will be
employed becomes increasingly likely as nonparametric curve estimators find their way into
widely used computer packages. This naive estimator is equivalent, in terms of AMSE, to a
linear combination of two nonparametric regression estimators, each employing a common
bandwidth. The individual estimators have weights proportional to the product of their
respective sample sizes and design densities. Since the variances are not involved in the
weights, it is not possible for this estimator to reduce the influence of a more variable data set
and thus it performs poorly when one group has a much larger variance.

The second of these estimators, m(¢), is also a linear combination of estimators
from each group. However, the asymptotically optimal bandwidth for each individual
estimator is used and then the weights are obtained by minimizing the associated AMSE of
that combination.

The third estimator, mg (¢), results from solving the more general problem of
minimizing the AMSE of a linear combination of nonparametric regression estimators
simultaneously with respect to the weighting factor and the two bandwidths employed by the
estimators. Equal bandwidths and a weighting factor that is proportional to the inverse of the
variance divided by the product of the sample size and design density yield a local minimum
AMSE. -
The AMSE of mg(t) is never greater than that of my (¢). Equality occurs when the
ratio of the respective variance divided by the product of sample size and design density is
unity. In particular, this includes the special balanced case of equal variances and an equal
number of design points from the same design density for each group. Comparison of
mg (¢) with mp(t) is facilitated by the fact that the ratio of their respective AMSE's can be
written as a function of the ratio specified above. Detailed comparisons of the three AMSE's
are developed in Section 3. Since mg (¢) has a smaller AMSE for most situations seen in
practice, it is recommended unless there is evidence of extreme imbalance in the variances,
sample sizes or design densities of the two groups.

2. Methodology
2.1 Background

Nonparametric regression methods such as kernel regression and locally weighted
linear regression have become a reasonable choice for data analysts to estimate a curve
without specifying a functional form. The responses, y;, are assumed to be related to the

explanatory variables, x;, by

yi =m(x;)+¢g;, i=1,..,n,



with g; being independent, identically distributed random variables having zero mean and
. AP - i
constant variance g2. The x;are fixed values satisfying x; = F 1(——1), where F{(-)
n+

is an absolutely continuous cumulative distribution function with corresponding density f{-)
known as the design density. These values are typically taken to be in (0,1). Usually a
certain amount of smoothness is assumed for m(-).

Gasser and Miiller (1979). proposed
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with s5=0, s~(x;.;+x;)/2, and s5,;=1 as an estimator of m(t). The weight function, K(), is
typically a second order kernel function supported on [-1,1] and /4 is a bandwidth governing
the smoothness of the estimator. Larger values of 4 produce smoother curves, but the bias in
m(t) is greater as a result.

Locally weighted linear regression estimators (Fan,1992) have gained popularity to
some extent because of their improved performance in boundary regions (near the edges of
their available data) compared to kernel estimators. The form of these "local linear"
estimators is
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where z=x-t.

Performance of both of these estimators is typically gauged by AMSE. For interior
estimation (4 < ¢ < 1-h) the AMSE is (Jones et. al.,1994),

(21

2 2
AMSE [y (1)) = AMSE [y (51)] = B"zm"(t)hz} ’ n:f(Qf) ’
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where ko = Juz K(u)du and Q = JKZ (u)du. The only assumptions required are that

-1 -1
n—o0 and A—0 such that nh—c0 and some continuity of m"(¢). Consequently, our findings in
this paper for local linear regression with weight function K(-) apply immediately for kernel
regression with that same kernel.

When data are available from two sources, it may be reasonable to assume that the jt

observation in the ith group, Yij» 1s related to the corresponding explanatory variable , x

. A
through the same smooth mean function, i.e.,



yij=m(xz)+e;, i=12,7=1..n

where the €;; are independent and identically distributed within the ith group with zero mean

and variance 01.2. Again, the x;; are fixed variables satisfying
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where F(-) is an absolutely continuous cumulative distribution function with corresponding
density f{-). Three methods for estimating m(-) are derived in the next three sections.

Rao and Subrahmaniam (1971) investigate combining independent means and linear
regressions. They limit their study to unbiased estimators, namely WLS and MINQUE.
Their regression model entails different variances at each x; rather than across sources.
However, their more elementary problem of estimating a common mean has more potential
relevance to our task of estimating m(f). Even though Rao and Subrahmaniam (1971)
investigate a different class of estimators, they find greater efficiency for the estimator that

am_

"smooths" the individual sample variances within each group (si2 ). This is analogous to a

general justification that is sometimes put forward for nonparametric regression, namely
"borrowing" information about location from neighbors. We are not recommending

shrinkage estimators of c? , although that may merit investigation.

The Associate Editor identified two papers that consider nonparametric curve
estimation from data that are not all from a single source. Hart and Wehrly (1993) consider
continuous time Gaussian processes with unknown covariance function. They establish
consistency of cross validation by deleting one curve at a time. This is essentially the subject
of Rice and Silverman (1991), although they address a practical application involving growth
curves. Again, there are numerous groups of dependent data. Hence both papers address
data structures that are substantially different than we do here. They have unknown
covariance structure, but replication from a common population of curves. By contrast, we
assume independent sequences of disturbances (g i)» but allow the possibility of different

variances (c% # 0'% ).
2.2 A Naive Estimator

One possible estimator of m(r) follows from naively disregarding the fact that the data
are from two sources and proceeding with locally weighted linear regression as though only
one "pooled" dataset were available. If the usual assumptions of n|—<0, n;—c0, and ~A—0
such that n{h—>0 and nyh—0 are supplemented with ny/ny —r (0 <r <), then using
standard integral approximations and Taylor series expansions the expressions for the
asymptotic bias and variance of this estimator, my, (¢), are



Bias[ry ()] = -;—kZm"(t)hz +o(h?)
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Details of these derivations may be found in Gerard (1993).
Introducing notation for an equivalent variance, namely
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the asymptotically optimal bandwidth, A has the familiar form
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This estimator is easily seen to be equivalent, in terms of AMSE, to

ny f1(1) iy (13h) + ny fo (1) .
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where i; (£;h) is the locally weighted linear regression estimator (2.1) from the ith group.

As can be seen from the expression for m (t;h), this estimator essentially weights the

individual estimators by the amount of data available to each and does not involve the
2

variances G; .
2.3 Estimating m(¢) using Individual Optimal Bandwidths

A more reasonable method of estimation entails linearly combining estimators from
each group, each of which employs the asymptotically optimal bandwidth for that respective

group. The combination is selected that minimizes the AMSE of the resulting estimator.
That is, first form the class of estimators

mp (tic) =cmy (1, hopty) +(1—c)my (t;hopty), i=1,2,

where hopt; is the asymptotically optimal bandwidth for the ith group,
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hopt; = , i=1,2.

It follows that the value of ¢ that minimizes AMSE [rho (t;c)] is easily obtained by
differentiation to be

-
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where k = G% / G% . (2.2)
mf()) mfi()

This is the ratio that was mentioned in the introduction. Use of this value of ¢ yields
mo (1)=mg (t;¢0) and

1 (5'k2/5)2
AMSE [1ig (1)]= AMSE [y (13 =3 |
[0 (1)] SE [y (1;hopty)] 5(5k4/5—2k2/5+5)

This expression of the AMSE is especially useful in comparisons with the estimator
introduced in the next section.

2.4 Equal Bandwidth Estimator

In the previous section, an estimator was derived by minimizing the AMSE of a linear
combination of local linear regression estimators with each of the bandwidths fixed at their
asymptotically optimal values. If, instead, the bandwidths as well as the weighting factor are
allowed to vary, then a more general minimization problem arises. The next two theorems
provide solutions to two such minimization problems. In the first, the resulting two
bandwidths are equal, but all that can be guaranteed is a local minimum. In the second, by
adding the constraint that the bandwidths are equal, the same solution can be shown to
produce a global minimum. Both proofs may be found in the Appendix.

Theorem 1

Let m(t;¢,hy hy) =cmy(t;h)) + (1= c)my (t;hy), where m; (¢;h;) is the local linear
regression estimator for the it group employing bandwidth 4;. The values
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produce a local minimum in AMSE [m(t;c,hy,hy)].
The next theorem considers the closely related minimization problem with the
bandwidths required to be equal. The minimizers are the same as above and the minimum

can be proven to be a global one.

Theorem 2

Let m(t;c,h) = cmy(t;h) +(1—c)my (t;h), where m; (t;h) is as in Theorem 1. The
values of ¢ and 4 given by (2.3) and (2.4), respectively produce a global minimum
AMSE [m(t;c,h)].

Using these minimizers, our third estimator is denoted by

o3 of
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The AMSE surface as described in Theorem 1 is not convex and hence does not readily
divulge a global minimum. The use of mg (¢) yields a local minimum. However, mg(t)
also represents the global minimization described in Theorem 2. That iz () produces the
global minimum AMSE in a constrained, though reasonable, class of estimators, as well as a
local minimum in a more general class, lends credence to its use as a viable estimator. The
search for smaller minima in the unconstrained problem consistently led us into regions with
bandwidths that were outside the region of validity of the asymptotic expansions.

The asymptotic mean squared error of m g (¢) can be shown to be
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where k is as in (2.2). The last form of AMSE [ (¢)] will facilitate comparisons with

mp (t). Note that the dependence on m through m"”(¢) cancels in ratios of these AMSE's.
The essence of mg (¢) is that equal bandwidths equalize the asymptotic biases of the

two component estimators and then the value of ¢ is the familiar one that minimizes

asymptotic variance. This results in each term in /g (¢) having equal variance. An

efficiency comparison of these three estimators, through ratios of their AMSE's is the subject

of the next section.

3. Comparison of Estimators

In this section, asymptotic relative efficiency (ARE) comparisons of these estimators
will be made through ratios of minimum AMSE's. If these ratios are to have the traditional
sample size interpretation, then they need to be raised to the 5/4 power. Only one estimator
is uniformly better than another. The "naive" is virtually dominated by the "equal
bandwidth" approach, i.e. the minimized AMSE of m, (¢) is as least as large as that of
mg (t) forevery k. This is easily seen since my (¢) is asymptotically equivalent to a linear
combination of local linear regression estimators using a common bandwidth but not
necessarily equal to mg (¢). From Theorem 2, m (¢) minimizes the AMSE of a class of
estimators of this type. Thus m, (¢) is suboptimal unless its coefficients and common
bandwidth happen to equal (2.3) and (2.4), respectively.

To simplify comparisons of 1y (¢) to the nondominating m, (1), take n;=n, and
f1(x)=f5(x)=1, the uniform density on [0,1]. Thus, each group has n equally spaced design
points on [0,1]. The ratio of AMSE's in this case can be expressed as a function of &, which

reduces to G% /0%. [t follows that

AMSE [y (0] (3299)(k+1)*° ARE | (k)
AMSE [ﬁ?()(l)] l (5—/(2/5)2 | .
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This expression is plotted as a function of k in Figure 1. Because of symmetry, only values
of k between 0 an 1 need to be investigated. Note that = (f) has a smaller AMSE than
mo (t) for values of k near 1. Using Gauss-Newton methods to find roots of ARE(k)=1, we
find that for k> 1.6 or k<1/1.6, mp (t) has the smaller ASME. Hence in this special case,
pooling is more efficient unless one variance is 60% greater than the other.

Finally, the ARE of g (¢) relative to m (t),

(s-#25)"
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is plotted as a function of & in Figure 2. Again using Gauss-Newton methods to find roots of
ARE,(k)=1, it follows that 7 (¢) has a smaller AMSE for 1/161.08 <k <161.08. For &=1,
AMSE [ (1)] is 4.5% larger than AMSE [ (t)] and as k-0, AMSE [rg (1)] is 4%
larger than AMSE [ (t)]. Note that in this comparison, the general form for & in (2.2) is
applicable. In other words, this conclusion hold generally and not for the special uniform
example.

We have some experience with these estimators on simulated finite samples. The
observed relative efficiencies were in generally good agreement with those predicted by the
ARE calculations. The simple MISE for mg was consistently smaller than that of 771 for
combinations of m, f|, f, 6|, 07, n|, and n, that we investigated. The functions were linear
combinations of exponentials and quadratic; the design densities were uniform and truncated
exponential; the standard deviations 10% to 25% of the range of m; and the sample sizes

were 100 and 200. A full report of that study, which incorporated data based bandwidth
selection, is available from the authors.

4. Conclusions

Of the three estimators investigated for combining independent nonparametric
regression estimators, mg (¢), an estimator with equal bandwidths and weights proportional
o) -1
{

n fi (1)
result for more than two samples should be reasonably straightforward. It is always at least
as efficient as my (), an estimator that ignores the fact that the data were from two sources.
Additionally, it is more efficient than /) (¢), an estimator that optimally combines each
individual estimator using its asymptotically optimal bandwidth, in virtually all cases that
would be encountered in practice. Hence, unless there is a drastic difference in sample sizes,
design densities, or variances, mg (t) may be the recommended estimator.

&)

1s superior in most instances that would be seen in practice. An analogous



As a practical matter, one must estimate the unknown bandwidths that minimize
AMSE. The adaptive choice of good bandwidths is typically quite challenging. For the three
types of estimators examined in this paper, bandwidth selection differs somewhat.
Consequently, the comparisons of the three estimators with data-based bandwidths may
produce somewhat different small sample efficiencies.

5. Appendix -
5.1 Proof of Theorem 1

The asymptotic mean squared error of m(¢;¢,hy,hy ) is

AMSE [(t;¢,hy )] = [lkzm”(t)(chlz +(1-c)h? )T + <’ }0 LU il G%Q.
2 nmfi(Om nmpfr()hy
Letting s’ = (c,hy,hy), set
E(s) = AMSE [(t;c,hy,hp)]-
Though it takes much tedious algebra, it can be shown that

85,-
is satisfied for sy, = (¢, g ,hg). Hence s, is a candidate for producing a local minimum.

0, i=12,3,

Define the Hessian matrix of partial derivatives as

_3%E(s)

P=[Pij]—?asj~,

i,j=12,3,

and the matrix D(s,,)=[d;{(s,,)] as the Hessian matrix P evaluated at s=s,,, . Additionally,
define

h

Vi = ! ) i:1,2.
n; fi (1)

The first principal minor of D(s,,) is strictly positive, since
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The second principal minor of D(s,,) Ts also strictly positive, as
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The third principal minor of D(s,,), is the determinant
dy 1 (Sm)d22 ($)d33 () = i1 (5,)(d3 (5,))° = (d12 (5,))% d33 (5,)
$2d15 (8,)13 (8, )23 () — (d13(5,)) iy (5,) ’
which is a very complicated expression. Using Maple® (Version V) on a Sun Workstation

the expression simplifies to the strictly positive polynomial,

08/5 kym" (£) 4/51)8/5
0% (ky 38)/5 22585 +1508° +3758* + 5008 +375 8% + 150B],

(1+B)

v
where B = -2

vi
Thus s=s,, produces a local minimum AMSE as was to be shown.
5.2 Proof of Theorem 2.

The asymptotic mean squared error of m(¢;c,h) is

czcle +(1—C)ZG§Q
mfi(Oh  nyfa(Oh

2
AMSE [r?z(t;c,h)] = {%kzm”(f)hz} +



Letting s=(c,h), the quantity to be minimized is

czcsle (1—(:)2 GgQ
+
mfi(h  nyfr(0)h

2
E(s) = AMSE [m(t;c,h)]= Bkzm"(t)/ﬂ] +

Though tedious, it is straightforward to show that s, = (Copt »hE ) satisfies

OE(s) _

0, i=1,2.
55,-

[t remains to show that £(s) is a convex function of s. The first term of £(s) is obviously a
convex function of 4. Letting the last two terms of E(s) equal ¥(s), then

6% (s) _ 2070 . 2620

o2 AR mf0k

and the determinant of the relevant Hessian matrix is
2 2 2.2
~ 401 GZQ

= > 0.
£ (ny fo (1)h*

5%V (s) 8% (s) _[62V(s)]

6512 as§ 0s10s7

Thus ¥(s) is convex and hence so is £(s). Therefore s=s,, results in an absolute minimum
AMSE and the proof is complete.
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