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ABSTRACT

Meteorological data are collected over space and time. Techniques for modeling
the temporal characteristics of meteorological data are well known and accepted. While
methods for accommodating the spatial character of meteorological variables have been
available for over 30 years, they are far less frequently used. In part, this is because many
theoretical and computational issues remain to be resolved concerning the application of
spatial modeling methods to meteorological data. One of these issues is the fitting of
spatial correlation functions. In this paper, it is shown that temporal correlations can
seriously bias fitted covariance functions that are used in optimal interpolation and optimal
spatial averaging (kriging) methods. A result of this bias is that the fitting of correlation
functions to temporal correlations can result in overestimates of spatial correlations. In
contrast, the fitting of structure function (semivariogram) models from data for fixed time
periods does not suffer from the temporal biases of correlation function fitting and should
be the preferred method for estimating spatial correlations. Semivariogram estimation and
structure function modeling must, however, accommodate anisotropic trends in the data.

1. Introduction

Spatial modeling has a long history, especially in the meteorological and geoscience
literature. Almost simultaneously Matheron (1962) and Gandin (1963) proposed methods
that have been termed, respectively, (point or block) kriging and optimum interpolation.
Kagan (1979) extended optimal interpolation to optimal spatial averaging. Apart from the
methods used to estimate spatial correlations that are embedded in these methods, the
statistical technique of best linear unbiased prediction in a more general setting is
attributed to Goldberger (1962). All of these derivations were predated by Wold (1938),
Kolmogorov (1941), and Wiener (1949) in a temporal setting. Cressie (1990) provides a
history of the subject.

The seminal contributions of Matheron and Gandin in a spatial setting center around
the estimation of spatial correlations. Both proposed similar estimation methods based on
the calculation and fitting of the same quantity, termed the variogram by Matheron and
the structure function by Gandin. Gandin also proposed fitting correlation functions. The
fitting of models to semivariograms (half the variogram values) predominates in the
geoscience and the statistical literature (e.g., Cressie 1991; Journel and Huijbregts 1978),
whereas the fitting of correlation functions pervades the meteorological literature (e.g.,



Thiebaux and Pedder 1987; see also Section 2). Each is appropriate and effective when
used as warranted by the statistical properties of the data being analyzed.

A concern with the use of correlation function fitting with meteorological data is that
the common occurrence of temporal trends and autocorrelations can induce substantial
bias in the estimation of spatial correlations. Semivariogram model fitting can be more
difficult in many respects than correlation function fitting, so the former cannot be
discounted. Nevertheless, semivariogram models are fit to squared differences in -
meteorological variates measured at a specific time. The proper application of
semivariogram fitting can therefore ameliorate all or most of the temporal effects.
Consequently, the potential for temporal bias in the estimated spatial correlations from
semivariogram model fits is reduced, if not altogether eliminated.

The objective of this paper is twofold. First, the common but often inappropriate use
of models fit to correlations calculated from time series is shown to lead to substantial bias
in the estimation of spatial correlations. Prewhitening the individual time series does not
overcome this bias. Second, the fitting of models to sample semivariograms largely
overcomes the temporal bias but must be done with suitable accommodation of
anisotropic behavior. One method that is easy to implement is to detrend the data with a
suitable trend model and then to calculate and model the residual semivariograms.
Satisfactory detrending of the meteorological data often enables one to fit isotropic
semivariogram models.

In Section 2 of this paper, the aliasing of temporal and spatial effects in correlations
calculated from time series data is discussed. In particular, it is shown that temporal
correlations overestimate spatial correlations when even modest temporal effects exist in
the time series. In contrast, sample semivariogram calculations, detailed in Section 3, do
not suffer from similar temporal biases because they are calculated at fixed points in time
and they involve differences in spatial variates. Ensemble averages of the sample
semivariograms can then provide stable estimates of spatial variability and isotropic
semivariogram modeling, the topic of Section 4. Parameters of the semivariogram models
are shown to provide explicit information on the strength and extent of spatial correlation.
In Section 5, suggestions are made for semivariogram modeling of anisotropic
meteorological data, with emphasis on trend removal. Estimation of spatial correlations

from fitted semivariogram models is the focal point of Section 6. Concluding remarks are
made in Section 7.

2. The Aliasing of Temporal and Spatial Effects in Time Series Correlations

Arguably, the fitting of a smooth curve to spatial correlations (Pearson's r) plotted as
a function of station separation distance is simpler and more readily understood by
modelers than is the estimation and fitting of semivariograms. Figure 1 is a plot of
correlations calculated from annual temperature anomalies (Jones et al. 1991) for 138
stations in the continental United States whose latitudes are between 300 and 500 N,
These 138 stations have complete monthly data over the period 1920 to 1980. Figure 1 is
typical of correlation plots to which curves are fit for the purpose of estimating spatial
correlations. The exponential curves proposed by Gandin (1963) are often used to fit such



data (e.g., Julian and Thiebaux 1975, Table 1; Thiebaux and Pedder 1987, Section 4.3).
Recent applications include Vinnikov, Groisman, and Lugina 1990, Brown and Eischeid
(1992) and Briffa and Jones (1993).

Two features of the correlation plot are noteworthy. First, as the separation distances
decrease, the correlations appear to approach their maximum value, 1. Second, as the
separation distances increase, the correlations weaken and become negative. The
exponential correlation functions used to fit these correlations are partially justified
because they can accommodate the "negative lobe" of the correlation plot.

The fitting of correlation functions to plots such as Figure 1 is appropriate only when
the meteorological data do not exhibit deterministic or autocorrelated temporal behavior
(e.g., Thiebaux and Pedder 1987, Sections 4.2, 4.3). As obvious as this restriction may
seem, it is not addressed in many applications. The potential for incurring bias in the
estimation of spatial correlations from femporal data is readily demonstrated using the
two time series plotted in Figure 2. Plotted in the figure are annual anomalies for two
stations in the southwestern United States, San Diego and Los Angeles California. The
calculated correlation between the anomalies is 0.86 over the period 1900-1980 and 0.80
over the period 1920-1980, the time period used in the correlation plot in Figure 1. Since
the separation distance between San Diego and Los Angeles is 181 km, one would
conclude from a correlation function fit to Figure 1 that there is a strong spatial
correlation between the station anomalies. The calculated correlations appear to confirm
the expectation -- however, these "spatial" correlations are biased upward because of the
temporal components of the series.

The time series plots in Figure 2 suggest the presence of both linear and periodic
temporal components. Consider the following model for the two time series {y,, } and
{ya),t=12, ... ,n

Yie = Xie T uy(s;) @1

Xie =0 +Bit+ X0 q tay. '
This model was chosen for investigation because the anomaly data in Figure 2 are well
represented by such a representation (see below). In this model, the series{y,, } and {y,,}
represent meteorological time series from two stations situated at locations s, and s,,
respectively, where s; can be a two- or three-dimensional location vector. These series are
composed of a temporal component {x,,} and a spatial component {u,(s; )}. The temporal
component is assumed to be a first-order autoregressive process with deterministic linear
trend. The temporal innovation series {a,,} and {a,,} are assumed to be a bivariate white
noise process with variances o, and ,2 and lag-zero temporal cross-correlation p,. The
spatial error series {u,,} and {u,} are also assumed to be a bivariate white noise process
with variances ¢,.2 and 6,2 and spatial correlation p,. If more than two stations were
being modeled in this example, the spatial correlations would change with the distances
(and directions) between the pairs of stations. Since only two stations are being modeled
here, the spatial correlation p, is modeled as a fixed constant value forallt=1,2, ..., n.
Model (2.1) is simultaneously simple and complex enough to illustrate the effects that
various temporal and spatial components of a meteorological time series can have on the
calculated value of a correlation coefficient.



The effects of the temporal and the spatial components of model (2.1) on calculated

correlations can be more readily appreciated if some of the model parameters are set to
common values:

0,2 =02 =0y, 0,2=02=0, ;=0 =0, B, =P,=B, ¢,=6¢,=¢. 22)

These common values are used merely for simplicity of exposition. Results corresponding
to those discussed below can be derived for any model parameter values of interest.
The correlations plotted in Figure 1 are calculated from the formula for Pearson's r:
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where G; is the sample covariance calculated from the time series for stations i and j, and
6 and G are the corresponding sample variances. An adaptation of Theorem 11.2.1 of

Brockwell and Davis (1991) can be used to show that ry; is a consistent (but not unbiased)
estimator of py, where p;; is ry; with each of the sample moments replaced by its
mathematical expectation. For the two series defined by (2.1) with the common parameter
values in (2.2), tedious but straightforward derivations result in the limiting value:

Prp = sttt +(1-¢2)-lpt0tt + PO
' ﬁzst + {1'4)2)-10“ +0,

sy = (n-1)" t};(t—f)z.

2.4)

One can calculate the value of (2.4) for any model parameters of interest and assess the

effects of the temporal and spatial components of model (2.1) on the correlation between

the two time series. Table 1 has one such set of calculations for p,, when 6, =0 and f =

0;i.e., for

by = (1-9*)"p +p,
(1-¢%)"+1

(2.5)

In (2.5) p,, is.only a function of the autocorrelation parameter ¢, the temporal lag-zero
cross-correlation p,, and the spatial correlation p,. For strong autocorrelation, say ¢ = 0.9,
the calculated values in Table 1 clearly indicate that ry, is estimating a correlation p,, that
is dominated by the temporal lag-zero cross-correlation. When the autocorrelation is
weaker, say ¢ = 0.3, r,, estimates a combination of the temporal and spatial correlations.
It is clear from (2.4) and (2.5) that r,, estimates the spatial correlation only when there is
no temporal component to the data.

As mentioned above, the series plotted in Figure 2 suggest the presence of both a
linear trend and temporal autocorrelation. Indeed, least squares fits to the San Diego and

Los Angeles series, using year as the predictor, have respective slopes § of 0.029 and



0.021 for the period 1920-1980. First-order autoregressive models fit to the respective

least squares residuals (anomaly - linear fit) have autoregressive parameters estimates J) of
0.29 and 0.30, estimated innovation variances 6, of 0.33 and 0.36, and lag-zero
estimated cross correlation p, of 0.78. The first-order model for the residuals was selected
separately for each series using Akaike's information criterion, AIC. Brockwell and Davis
(1992, Chapter 7) recommend separate prewhitening of each time series prior to
estimating the lag-zero cross-correlations; hence, the cross correlations were obtained
after each series was prewhitened by removing the linear trend and the autoregressive
component. Only the lag-zero cross-correlation was statistically significant between the
prewhitened series. Similar results are obtained if one models the linear and autoregressive
components simultaneously using transfer function models.

Table 2 contains calculations of (2.4) using temporal parameter values comparable to
those of the estimated San Diego and Los Angeles series: B = 0.025, ¢ = 0.35, p, = 0.8,
and o,, =0.3. The spatial variance was obtained from the semivariogram model fits in
Section 4: o, = 0.16. As a function of the spatial correlation p,, the values of p,, in Table
2 change very little, implying that the value of the calculated correlation from the anomaly
series is dominated by the temporal components of the model, not by the true spatial
correlation. In fact, as indicated by the values in Table 2, a small spatial correlation of
approximately 0.4 could lead to a p,, correlation between the anomaly series similar to the
actual calculated value of 0.80.

The foregoing analyses are intended to stress that correlations calculated from time
series data need not be indicative of the magnitude of spatial correlations. Indeed, a
correlation near 1 that is calculated from time series for two stations may be heavily biased
by the temporal characteristics of the time series and may not reflect the true magnitude of
the spatial correlation between the stations. This conclusion might appear to be
counterintuitive, especially when viewing plots such as Figure 1. Two additional
observations make this conclusion more apparent. First, there is a high proportion of
stations in relative close proximity in Figure 1 that do not have anomaly correlations close
to 1. Sixty-six percent of the 65 station pairs whose separation distances are less than 100
km have anomaly correlations less than 0.8; 68% of the 19 stations within 50 km of one
another have anomaly correlations less than 0.8.

Second, a well-documented property of spatial variability is the so-called nugget
effect (e.g., Journel and Huijbregts 1978, Sections I1.A.3, II1.A.3; Cressie 1991, Sections
2.3.1, 3.2.1). This effect exists because of measurement errors and random local variation
at distances less than the closest observations in a data set. Figure 3 is a "box-and-
whisker" plot (e.g., Mason, Gunst, and Hess 1989, Section 4.3) of the absolute differences
in annual temperature anomalies for U.S. station pairs for the year 1980 (other years are
similar). Only station pairs that are in relative close proximity to one another are included
in the plot; specifically, those whose station separation distances are no greater than 500
km. The box limits are plotted at the lower and upper quartiles of the respective anomaly
differences. The box limits thus include 50% of the anomaly differences. The whiskers
(vertical dashed lines) extend to the largest and smallest anomaly differences that do not
exceed robust three-sigma estimates of uncertainty. Individual anomaly differences that do
exceed these limits are shown as horizontal lines beyond the whiskers. Finally, the notched
indentations in the centers of the box locate the calculated medians and approximate (due



to the correlations among the anomaly differences) 95% confidence limits on the true
medians.

As station separation distances are reduced, one might expect the anomaly differences
to be approaching zero because of the anticipated high correlations among the stations. If
so, one would expect that the medians of the boxes in Figure 3 would approach zero and
the widths of the boxes would be getting smaller. This is not the case. Box plots have been
constructed for each year from 1880 to 1991 and they all exhibit the same general pattern
as is shown in Figure 3. Station temperature measurements, no matter how closely they
are taken, are subject to measurement errors, instrument differences, local topographical,
and random sources of variation that prevent the measurements from being exactly alike.
This has long been recognized in meteorology (e.g., Buell 1972) and is referred to as the
nugget effect in geoscience applications. In addition, it is important to note that the station
separation distances for data used in global temperature anomaly calculations are typically
no closer than tens of kilometers. Only 65 of the 9,453 station pairs of U.S. stations
having complete monthly data for all months between 1920 and 1980 are within 100 km of
one another. The characteristics noted of the boxes in Figure 3 are not just a feature of
these temperature anomalies. They are common in spatial data. Cressie's (1984) square-
root difference cloud of coal ash data is another example.

It must be stressed that the characteristics of spatial data noted in these analyses,
while common in spatial data, do not necessarily exist in all meteorological measurements.
That they are present in temperature anomaly data mandates that alternative spatial
correlation estimation techniques be considered, if for no other reason than to confirm that
traditional spatial correlation methods applied to temperature anomaly data are not

seriously biased. Semivariogram (structure function) calculations and modeling can be
used for this purpose.

3. Sample Semivariogram Calculations

Semivariograms do not require data to be indexed by time. Rather, semivariogram
calculations are based explicitly on the distances and directions between spatial locations.
Cressie (1991, Section 2.4) details the rationale for calculating semivariogram values
rather than directly calculating spatial covariances (covariograms) or correlations. Fuller
(1976, Section 6.2) details a similar rationale for temporal modeling. In this section,
discussion is restricted to isotropic sample semivariogram calculations. Semivariogram
calculations and model fitting for anisotropic meteorological data are discussed in Section
5.

The semivariogram for two random spatial variables is defined as
Y(81,8,) = var{z(sy) —2(s;)} /2, G.1

where z(s;) denotes an element of a random field of meteorological variables (see Journal
and Huijbregts (1978) for detailed discussions of spatial random fields). In general, the

stochastic variation of random fields can depend on both the distances and the directions
between locations. The variation of many meteorological variables, at least in sufficiently



restricted regions or after detrending, can be satisfactorily modeled as a function of the
only the distance d = |s, - s,| between locations; i.e., they need not be modeled as a
function of their specific locations nor the directions between the locations. This
simplification is the most widely used in practice.

Figure 4 is a plot of 1980 annual temperature anomalies for the 138 U.S.
meteorological stations discussed in the last section. Superimposed over the plotted
anomalies is a nonparametric perspective plot (S-Plus 1991). The fitted surface is included
in Figure 4 only to make the overall trends in the anomalies clearer. There appears to be
an increasing east-west trend in the anomalies, as well as perhaps a south-north trend. Of
primary importance in this plot, however, is the relatively constant variation in the
anomalies as a function of location.

Figure 5 confirms these impressions. In the upper plots in Figure 5, the anomalies are
seen to be roughly linearly decreasing with latitude and quadratically varying with
longitude. If one were to attempt to estimate spatial (random) variability from the data, the
estimates would be biased by the trends (see Section 5). Estimates of spatial variability
must be made from detrended data, similar to recommendations made for the estimation of
variation in time series models (e.g., Brockwell and Davis 1992, Chapter 7) . Katz(1988)
discusses the need to detrend meteorological data when drawing inferences on climate
variation. ‘

To detrend the anomaly data in Figuic 5, a five-term quadratic regression model in
latitude and longitude was fit to the anomalies. The lower two plots in Figure 5 show the
residuals from the fit as a function of latitude and longitude. The trends in the anomalies
are largely removed. Note, however, that the variation of the anomalies remains about the
same magnitude as on the original plots and that it is relatively homogeneous across the
two plots. Trend removal is one method that can be used to deal with anisotropy in
semivariogram modeling and for removing apparent inhomogeneity in spatial variances.
For the remainder of this section, the residuals of this fit to the anomalies will be used to
estimate the spatial variability of the anomalies.

For isotropic meteorological data, the "classical" method of moments variogram
estimator (Matheron 1962) is the sample semivariogram

y(d) =m § {z(s;) —z(s))}" » 3.2)

or half the average of the squared differences of the n(d) meteorological values or
anomalies whose locations are separated by a distance d. When the locations are spaced
on a regular lattice, the n(d) pairs of locations that are separated by each distance d are
readily determined. When locations are irregularly spaced as with many meteorological
data, the station pairs must be binned into groups of distances (e.g., increments of 100
km). Further details on such binning can be found in Cressie (1991, Section 2.4) or
Journel and Huijbregts (1978, Section II1.C.4). The latter also recommend (Section
II1.B.7) that at least 30 location pairs be in each bin and that the largest binned distance
that is modeled be no greater than half of the maximum distance among the locations. For
the U.S. temperature anomaly data, this effectively limits the range for which
semivariogram values should be calculated to 2,000 km.



Cressie and Hawkins (1980) propose robust estimators of the semivariogram based
on averages of the square roots of the absolute differences. Other robust methods can be
found in Cressie (1991, Section 2.4). Basu and Gunst (1993) show that extreme anomaly
values can cause spikes in semivariogram plots, spikes that induce computational problems
when semivariogram models are fit to the sample semivariogram values. They further
show that robust methods only partially ameliorate the effects of the extreme values on the
semivariogram calculations; i.e., spikes due to such influential observations are not
completely removed. They introduce influence diagnostics for the identification of extreme
values and show that the removal of the influential observations can be more effective than
robust methods for smoothing the sample semivariogram.

Figure 6 displays individual sample semivariogram plots for residuals from quadratic
least squares fits to temperature anomalies for each of the 30 years 1951-1980. The
residual semivariogram values were calculated for bins of length 100 km up to a maximum
distance of 2,000 km. In other words, 20 bins were used, with station pairs whose (great
circle) separation distances were less than or equal to 100 km placed in the first bin and
similarly for the other 19 bins. It is important to recognize the need to restrict the distance
over which semivariogram values are calculated. Apart from the admonitions of Journel
and Huijbregts (1978), restricted ranges are necessary in global modeling because of the
likelihood that temporal influences on meteorological variables are not the same for all
stations over, say, a latitude band. Although different detrending fits could be used for
regions widely separated, different local and regional conditions make it unlikely that one
semivariogram calculation would adequately represent the spatial variation across a
latitude band. Preliminary investigations of United States and European station data
support this concern.

From Figure 6 it is apparent that there is variation across the individual residual
sampie semivariogram plots, as one might expect from any statistics calculated for each of
30 consecutive years. General characteristics of the semivariogram plots include the
following:

(a) the semivariogram values initially increase until separation distances reach
approximately 750-1,000 km, the approximate range of spatial variation;
(b) the semivariogram values are relatively constant (at the sil/l value) for separation
distances larger than the range; and
(c) the semivariogram values approach a positive -- not zero -- nugget value for small
separation distances.
The nugget, sill, and range characteristics are extensively discussed in Cressie (1991) and
Journel and Huijbregts (1978). The nugget effect was noted previously in the discussion of
the box plots in Figure 3. It occurs because the values of the anomalies (and hence the
residuals) are not identical for small station separation distances.

The dark squares in Figure 6 are the ensemble averages of the 30 residual
semivariogram values for each bin. The averages suggest a smooth change in spatial
variability with separation distance rather than the somewhat jagged appearance of many
of the individual plots. In addition, the nugget, sill, and range are better visualized from
the plot of average residual semivariogram values than from most of the individual plots.
The plot of average residual semivariogram values can thus be used to typify the spatial
variation in anomalies over this 30-year period. Note that since separate semivariogram



values are calculated separately for each year, temporal influences that affect correlation
calculations do not bias the individual semivariogram values or the ensemble averages.

The numerical values of the nugget, the sill, and the range quantify the key
characteristics of the spatial variation of the anomalies. Numerical values for these
quantities are readily determined from fits to the average semivariogram values in Figure
6. This is the topic of the next section.

4. Semivariogram Model Fitting

One of the primary reasons for fitting models to sample semivariograms, rather than
using the sample values themselves, is that kriging and optimal spatial averaging require
the use of estimated spatial covariances between each pair of stations. These estimates are
elements of a spatial covariance matrix used in generalized least squares fitting of the
anomaly values (Goldberger 1962; Stein and Corsten 1991). The spatial covariance
matrix must be positive definite. This in turn implies that the corresponding spatial
semivariogram matrix must be conditionally negative definite (Armstrong and Diamond
1984). Spatial semivariogram matrices formed from sample semivariogram values often
are not conditionally negative definite and cannot be guaranteed to be so apriori. By
properly selecting semivariogram models that are fit to sample semivariogram values,
spatial semivariogram matrices formed from the fitted models apriori can be guaranteed to
be conditionally negative definite. Moreover, spatial models fit to semivariograms enable
key spatial characteristics such as the nugget, the sill, and the range to be quantified
through the use of these quantities as parameters of the models.

Two widely used spatial semivariogram models are the Gaussian and the spherical
models:

Gaussian:
0 d=0
Y(d)={61+(62—61)[1-exp{-(d/63)2] d>0 “D
Spherical: ‘
( o d=0
y(d)={6,+(6,-6,){1.5(d/0,)-0.5(d/0,)*} 0<d<6, 4.2)
6, d>0,

Both of these semivariogram models have nugget 0,, sill 6,, and range 6; parameters.
Two key differences exist between these models. First, the spherical model reaches its sill
when the distance between two locations equals the range parameter value. The Gaussian
model reaches its sill only asymptotically. For this reason, Journal and Huijbregts (1978,
Section II1.B.2) define \/363 to be the "practical" range, the distance at which the
semivariogram reaches approximately 95% of the sill value. Second, the spherical model is
approximately linear for small separation distances whereas the Gaussian is initially
convex; both are concave for large separation distances. A practical implication of their
behavior near the origin is that the Gaussian modei often has a larger estimated nugget
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than a spherical model fit to the same data. On the other hand, nonlinear curve fitting
algorithms often do not converge for spherical models when the first few semivariogram
values are not approximately linear.

Figure 7 shows the fits of these two semivariogram models to the averages of the
residual semivariogram values. The model parameter estimates were calculated using a
Levenberg-Marquardt nonlinear least squares curve fitting algorithm (Press et al. 1989).
For the spherical model, the nugget, sill, and range parameter estimates were 0.079, 0.163,
and 1,210 while for the Gaussian model they were 0.091, 0.163, and 591. Note that the
sill values were virtually identical and that the nugget value for the Gaussian model is
slightly larger than that for the spherical. The common sill estimate is evident in Figure 7,
as is the slight convexity of the Gaussian model as the separation distance approaches
zero. The major difference in the fit is for the range parameters, where the spherical model
estimate of the range is over twice as large as that for the Gaussian model. However, the
Gaussian model range parameter is not a true range estimate since the Gaussian has an
asymptotic sill. Note that the "practical sill" of \/5(33 = 1,024 for the Gaussian model is
not too different from the estimated range for the spherical model.

The sill estimates translate to an overall spatial standard deviation estimate of 0.40 for
individual anomaly values. Similarly, the nugget estimates indicate that the microscale and
measurement error variation component of the overall anomaly variability has a standard
deviation estimate of 0.28 from the spherical fit and 0.30 from the Gaussian fit. The
anomalies are approximately uncorrelated at distances beyond the range estimates.

Spherical model fits to sample semivariograms are often preferred because of their
linear behavior for small separation distances and consequent smaller nugget estimates
than those from Gaussian fits. As will be seen in Section 6, both provide similar estimates
of spatial correlation for U.S. temperature anomalies.

5. Anisotropic Semivariogram Modeling

Meteorological data often are not isotropic. The anomalies plotted in Figures 4 and 5
indicate different trends in the north-south and the east-west directions. Anisotropy can
occur either in trend (drift) behavior or in the stochastic variability of the data. There are
several methods currently available for dealing with anisotropy, some appropriate for trend
and others for spatial variability. Some of the methods believed to be most germane to the
fitting of semivariogram models will be discussed in this section; however, much research
remains to be conducted on quantifying anisotropic characteristics of meteorological data.

One very important method for accommodating anisotropy is the fitting of trend
models and the subsequent detrending of the data. Figure 8 contains plots of annual
semivariogram values for the original U.S. temperature anomalies for the years 1951-
1980. Note that the semivariogram values in Figure 8 are much larger than those of the
residuals in Figure 6 because the apparent spatial variability in the anomalies consists of
both trend effects and stochastic variability. The averages of the semivariogram values
over the 30 years are plotted in Figure 9. These averages do not show a clear range or the
reaching of a sill. Nonlinear fitting of the average semivariogram values by a spherical
semivariogram model failed due to the lack of a sill in the averages; consequently, the
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spatial variability was modeled using Gaussian and linear semivariogram models. The
linear semivariogram model is defined by

Linear:
0 d=0
y(d)=36,+(0,-6,)(d/05) 0<d<0, 5.1
0, d>0, |

The nugget, sill, and range estimates for the Gaussian fit were 0.102, 0.495, and 1,558
while those for the linear fit were 0.058, 0.427, and 2,090. Note that the sill and range
estimates for these two semivariogram model fits are much larger than those of the
residual semivariogram fits. In fact, the range parameter estimate is larger than the
maximum range (2,000 km) of the data that are fit by the semivariogram models.

The semivariogram models fit in Figure 9 contain the effects of anisotropy through
the differences in the anomaly trends for the two directions noted in Figure 5. The fitting
of the quadratic models in latitude and longitude to annual temperature anomalies in the
last section was done in order to detrend the anomalies and remove the anisotropic effects
so that the spatial variability could be correctly modeled. The residual plots in Figure 5
show that the anisotropic trends were removed but that the spatial variability evident in the
anomalies remained in the residuals. The removal of the trends enabied the spatial
variability of the anomalies to be fit using isotropic Gaussian and spherical semivariogram
models, both of which produced very similar fits. These fitted semivariogram models can
be used with universal kriging or optimal averaging methods to provide improved
estimates of regional mean temperature anomalies. This latter topic is not the focus of this
paper but it is the ultimate application of the semivariogram model fitting.

A confirmation of the removal of anisotropic behavior in the residuals was made by
calculating and fitting semivariogram values in north-south (i.e., 900 + 459) and east-west
(i.e., 00 £ 450) directions. Again, 100 km bins were used in each direction. The ensemble
averages for each direction overlapped those of Figure 6. The fitted parameter values for
the two directions, listed in Table 3, are quite close to those for the isotropic fit. These
features of the directional semivariograms confirm that the trend removal eliminated large-
scale anisotropic spatial variability from the anomaly values.

A second method for accommodating spatial anisotropy is to sufficiently restrict the
regions in which isotropic semivariogram models are fit (e.g., Journel and Rossi 1989,
Haas 1990). For example, in some years much of the eastern portion of the United States
suffers from little anisotropy in the temperature anomalies. One could conceivably
partition a large region such as the continental United States into smaller regions, each of
which exhibits isotropic behavior, perhaps after the separate detrending. Semivariogram
models then could be fit to the individual regions and regional estimates of mean
temperature anomalies could be calculated. These regional estimates could then be
combined in an optimal weighted average to produce an estimated mean anomaly for the
United States. This possible option is not deemed practical for many types of
meteorological data because of the requirement for a large number of data values in each
region and because of the likelihood that the anisotropy might not simply consist of
different forms of isotropic behavior in each of several regions.
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Two general patterns of anisotropic spatial variability have been recognized in
previous studies: geometric and zonal anisotropy (Journel and Huijbregts 1978, Section
I11.B.4). Geometric anisotropy occurs when a linear transformation of the coordinates
results in isotropic spatial variation in each of two or more directions. Separate isotropic
semivariograms are fit in each of the isotropic directions and then recombined into one
anisotropic semivariogram. Zonal anisotropy occurs when the spatial variation consists of
several component semivariograms, similar to a variance component model, each of which
may have a distinct geometric anisotropy. Journel and Huijbregts (1978, Section IV.D)
contains examples of the fitting of each type of anisotropic semivariogram. Cressie (1989)
also has an example of geometric anisotropy.

Thiebaux (1977) fits anisotropic correlation functions to 500 mbar winter height and
wind data. Assuming temporal and spatial homogeneity of variances and correlations,
Thiebaux formed anisotropic correlation functions by taking products of isotropic
latitudinal and longitudinal correlation functions: R(t,0) = Ry(t,0)R,(7,0). Justification
for this product form was based on separability assumptions aiong meridonal and zonal
directions.

Due to the widespread availability of regression algorithms, detrending followed by
isotropic semivariogram modeling is an especially attractive approach to the spatial
modeling of anisotropic meteorological data. To the extent that such an approach can be
shown to be generally applicable, it is preferable to the other approaches. The residual
anomalies for each of the years 1951 to 1980 were examined for evidence of anisotropy;
none were found. Hence, the fitting of the individual and average residual semivariogram
values by isotropic semivariogram models satisfactorily characterizes the spatial variability

in the temperature anomalies. Thus, the other alternatives mentioned in this section were
not deemed necessary.

6. Estimating Spatial Correlations

Once sample semivariogram models have been fit to spatial data, spatial correlations
can be calculated. Correlation curves, similar to those commonly used to fit the
correlations in Figure 1, are readily obtainable. Under spatial second-order stationarity
assumptions, taking the mathematical expectation of both sides of (2.1) leads to the
following relationship between semivariogram values and spatial correlations:

v(d)=0,{1-p(d)} . (5.2)

In this expression, o, is the variance (i.e., the sill) of the meteorological variates and p(d)
is the spatial correlation. Second-order stationarity is not necessary for a derivation similar
to (5.2), it is used here only for convenience. The importance of (5.2) is that once a
semivariogram model has been fit to the sample semivariogram values, the spatial
correlation can be estimated for locations any distance d apart by solving (5.2):

B(d)=1-7(d) /&, . (5.3)



13

Figure 10 is a spatial correlation plot from the fits to the anomaly semivariogram
values and to the residual semivariogram values. There are major differences in the
estimated spatial correlations from the fits to the two sets of variogram values. The spatial
correlations estimated from the fits to the anomaly values are uniformly larger than those
fit to the residual semivariogram values; moreover, the two correlation curves for the
anomaly data are not in close agreement. Both the lack of close agreement and the larger
apparent spatial correlations for the anomalies are due to the trend effects and not to the
true spatial correlation effects.

The spatial correlation curves for the residuals approach approximately 0.4 while
those of the anomalies approach values in excess of 0.8. This is due to the smaller spatial
variance of the detrended anomalies and the fact that local variation and measurement
errors constitute a larger portion of the spatial variability of the residuals than of the
anomalies. Plots similar to Figure 1 leave the impression that spatial correlations should
approach 1 as the separation distance is decreased. This simply is not the case, as the box
plots in Figure 3 suggest and the correlation curves in Figure 10 confirm. In terms of the
estimated model parameters, it is readily shown that the maximum value of p(d) is

p(0) = l-él / éz . For the Gaussian fit to the residual semivariogram values this
maximum value is 0.44 and for the spherical model it is 0.52. The corresponding estimates
from the anomaly fits are 0.79 for the Gaussian fit and 0.86 for the linear fit. The presence
of trend in the anomalies has a dramatic effect on the estimates of spatial correlation.

Recall again that the station separation distance for San Diego and Los Angeles is 181
km. Inserting this distance into both the spherical and the Gaussian fitted models for the
anomaly residuals results in an estimated spatial correlation of 0.40. With this estimated
spatial correlation, the estimated value of p,, from Table 2 is 0.80, the same as the actual
calculated value from the two time series. Thus, this relatively small estimated spatial

correlation for these two stations is entirely consistent with the very large apparent spatial
correlation calculated from the time series.

6. Concluding Remarks

This paper builds on much previous work on spatial modeling in both the
meteorological and the geoscience literature. An essential ingredient in spatial modeling is
the proper estimation of spatial correlations. The primary goal of this paper is to
emphasize statistically valid methods for estimating spatial correlation. Statistical models
can include a wide range of trend and stochastic components, but failure to account for
any of them can seriously bias the estimation of spatial correlations and, ultimately, defeat
the goal of optimal interpolation or averaging.

There is a vast literature on semivariogram and structure function modeling, but much
more research is needed. The specific spatial models that are most appropriate for
modeling many meteorological variables, including temperature anomalies, awaits further
substantive analysis. Application of these methods to regions of the globe with sparse data
requires some knowledge of the models that have been found useful in data-rich regions of
the globe. The investigation of joint spatial/temporal models is still in its infancy.
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Table 1. Temporal and Spatial Effects on the Correlation Between Two Time
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Series.

=.3
PP 1 3 S 7 9
1 .10 .20 29 .39 48
3 20 .30 40 .49 .59
S 31 41 .50 .60 .69
J 41 51 .60 .70 .80
9 52 .61 71 .80 .90

=.5
PP, A 3 5 J 9
1 .10 .19 27 36 44
3 21 30 .39 47 .56
S 33 41 .50 .59 67
7 44 .53 61 .70 79
9 .56 .64 K 81 .90

: =.7
PP, 1 3 S i 9
1 .10 17 24 30 37
3 .23 .30 37 44 .50
S .36 43 .50 .57 .64
J 5 .56 .63 .70 7
9 .63 .70 76 .83 90

=.9
PP, 1 3 S J 9
1 .10 13 .16 20 23
3 27 30 .33 .36 40
S 44 47 .50 .53 .56
i .60 .64 67 .70 73
9 7 .80 .84 .87 90




Table 2. Correlation Values Using Estimates From the Anomalies in Figure 2.
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Py
1 2 3 4 S 6 7 8 9
75 77 79 80 .82 84 86 88 90

. Table 3. Comparison of Estimated Semivariogram Parameters.

Gaussian Model Spherical Model
Nugget  Sill Range Nugget Sill  Range

Isotropic Semivariogram Values

.091 163 591 .079 163 1,210

North-South Semivariogram Values

.088 156 602 .089 158 1,168

East-West Semivariogram Values

.094 167 579 .086 167 935
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Fig. 5. Trend Removal in 1980 U.S. Annual Anomalies.
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Fig. 6. Semivariogram Values: U.S. Annual Anomaly Residuals, 1951-1980.
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Fig. 8. Semivariogram Values: U.S. Annual Anomalies, 1951-1980.
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