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CORRELATION BETWEEN TWO VECTOR VARIZBLES

by
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H. Ruben (1966) has suggested a simple approximate normalization for
the correlation coefficient in normal samples, by representing it as the
ratio of a linear combination of a standard normal variable and a chi varizble
to an independent chi variable and then using Fisher's approximation to a
chi variable. This result is extended in thié paper to a matrix, which in
a sense is the correlation coefficient between two vector variables x and y .
The result is then used to obtain large sample null and non-null (but in the
linear case) distributions of the Hotelling-Lawlev criterion and the Pillai
criterion in multivariate analysis. Williams (1955) aid Bartlett (1951) have
derived some exact tests for the goodness of fit of a single hypothetical
function to bring out adequately the entire relationship between two vectors
x and y , by factorizing Wilks' A suitably. These factors are known as
"direction” and "collinearity" factors, as they refer to the direction and
collinearity aspects of the null hypothesis. 1In this paper, the other two
criteria viz. the Hotelling-Lawley and Pillai criteria are partitioned into
direction and collinearity parts and large sample tests corresponding to them

are derived for testing the goodness of fit of an assigned function.

*This research was sponsored by the Office of Naval Research, Contract No.
N00014-68-A~0515, Project No. NR042-260. Reproduction in whole or in part
is permitted for any purpose of the United States Government.



1. INTRODUCTION

If r is the sample correlation coefficient between x and vy , r2 is

the ratio of the regression sum of squares to the total sum of squares and
r2/(1 - r2) is the ratio of the regression sum of squares to the residual

sum of squares, in the regression of x on y. When however, we consider the
regression of a » X 1 vector xon agq x 1 vector y, (p < q) we shall obtain
two p X p symmetric matrices corresponding to regression of x on y and the
residual. Let these be denoted by B and A respectively so that A + B is

the "total" matrix. Matrix generalizations of r2 and r2/(1 - r2) can be
obtained from B , A and A + B by expressing A + B as CC' andrA as FF' where

C and F are lower triangular matrices. Then VC--lBC'-'l can be looked upon

as a generalization of r2 and F‘“]'BF'_1 of r2/(l - r2) . Ruben (1966) expressed

£f=rxr/Vl - r2 as

(€ + 6%, _1)/X 5

where £ is a N(O , 1) variable, Xy denotes a chi-variate with 'a' degrees of

freedom (d.f.) and & Xp-2 are independent, ¢ is the population para-

* Xp-1 *
meter. A similar representation is derived in this paper for the matrix
generalization of r and is used to obtain an approximate large sample nor-
malization of this matrix.

Several multivariate problems can be put into the framework of relationship

between two vectors x and y . The following three criteria are generally

used in multivariate analysis to test lack of association between x and y :

(1) wilks' A ; A= |al/|a + B

-1
(2) pillai's criterion tr B(A + B)
. -1
(3) Hotelling-Lawley criterion tr BA



Large sample null and non-null (linear case) distributions of the last two
crite:ia are derived, using the approximate normalization of the generalization
of r and further a suitable partitioning of the two criteria, analogous to

the factorization of Wilk's A by Bartlett (1951), for festing the goodness

of fit of a single hypothetical function g% + --°-+.apxp , is derived.

2, MATRIX GENERALIZATION OF

Let the variance~covariance matrix of the two vectors

X Y1

i = o * X‘ = P
x -
p Yq

be

= (%11 { Liz2|P , (2.1)

LZZI 2214
p q

and let the matrix of correctedvsum of squares (s.s.) ad sum of products

(s.p.) of observations in a sample on these variables be

s = |S11 | S12|P (2.2)
S21 | S22 ]«
P q

This is based on n &.f. Then we have the following matrices:

BO = matrix of regression coefficients slzsgé . of xony (2.3)
. . -1
B = matrix of s.s. & s.p. due to regression 512522521 (2.4)
-1 v
= " 3 " 3 - = -
A residual" s.s. & s.p. matrix S,, - §,,5,,5,) = S;,,, (2.5)
A + B = "total" matrix S (2.6)
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The corresponding matrices for the population are:

-1 571y 5 = 5. -z, Y and I,, respectively.

B=1 22 ' 212 22721 " T1l1-2 11 12722721

122

If x and y have a normal distribution, S will have a Wishart distribution

and from that, by suitable matrix transformations, i can be shown that

B. , S and A are independently distributed as below:

0’ "22
-1/2 tr Z;i.z(Bo ~ 8)S,, (B, - B)"
(1) Const. e dBO (2.7)
(n~gq-1) /2 -1
(2) const. |[s,,| exp{-1/2 tr I,,S,.} ds,, (2.8)
and (3) Const. IAI(n-q_p—l)/zexp{-l/Z tr Z;i.zA} an (2.9)

Thus B_. has a normal distribution, while g x g matrix S

0 5 has a Wishart

2

distribution with n - q d.f., We shall denote the last two distributions

(2.8) and (2.9) by wq(szzlzzzln) and wp(Alzll.zln-q) .Let® ,n ,M,F,

C , K be lower triangular matrices such that 222 = o' , 211.2 =nn' ,
522 =MM' , A=FF' , B=KK' and A + B = CC'. Define further
-1 .
U=n (B0 - BIM (2.10)
v=o0lu (2.11)
-1
W=n F (2.12)
_ =1 1
B=n 212¢ (2.13)
~ -1 -1 ‘
R=F S M (2.14)
R - ¢ Xk (2.15)
L =RR' = C 't (2.16)

: . . 2
It can be easily seen that L = RR' is the matrix generalization of r

2

: . 5 .
and RR' is the matrix generalization of r /(1 - r’) . Observe that
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U + BV = n'lslzm"1 (2.17)

where P is the population matrix corresponding to R . Hence

wlw + Bv) (2.18)

gl (2.19)

-~
~ o

and ! F

]

If we transform to U , V and W from BO , S and A respectively in (2.7),

22
(2.8) and (2.9), it can be easily seen that

(1) uij (i=1, ** , p; j=1, *++ , q), the pg variables

in U are independent N(0 , 1) variables.

2 . 1 = R 3 3
(2) Vj] (] 1, , d) are independent xn—j+l variates and
the off-diagonal elements iy (k>3 , k=1, *°°, q
j=1, **+ , gq) of the lower triangular matrix V are

independent N(O , 1) variables, independent of vjj also.

(3) wii (i=1, *++ , p), the diagonal elements of the lower

triangular matrix W are independent ¥ variates,

n-g-i+1
while wik(i >k ,1i, k=1, *++ , p) are independent

N(O , 1) variables, independent of Wik also.

Since a Wishart distribution is the multivariate matrix generalization
2 .. . . . . . .
of a x distribution, V or W , which are in a certain sense matrix square

roots of E—ls and Z-l

22525 11-2A can be looked upon as matrix generalizations of

a chi-variate. This is further supported by the fact that the diagonal
elements of V and W are chi variables. Consequently (2.18) is the multivariate

analogue of Rubin's representation

F= 6+ X)) (2.20)

stated earlier.



Ruben uses Fisher's approximation of a chi-variate viz. Xa is approx-

/2

imately normal with mean (a - 1/2)l and variance 1/2 and proves that

(2n-5)1/2f _ (én—3)1/2-
2 2 4 (2.21)

1+ 2272 + 52/2)*?

is approximately N(O , 1) . This is a fairly good approximation for all
practical purposes. We now proceed to consider a similar result for our
R.. Ruben derived (2.21) by equating (2.20) to io and then showing that

the approximate normal variate
R R

has mean

2n-3 1/2- _ [2n-5 1/25
2 P 2 0

and variance

1+ 1722 + fg)

He then replaces ig by iz to get (2.21) . We employ a similar procedure

mechanically with the hope of obtaining a suitable approximation to the

distribution of R . Consider the matrix

£ =U+ BV - WR (2.22)

0 14

where £ = [£;.] , Ry = [fgjl , A=1, *cc ,p; j=1, > ,q .

Using Fisher's approximation of a Y variate by a normal variate, for vjj



“and w., r We can see by a little algebra that the Eij are normally distributed

and
. q\1/2 . 1/2
_ (2n-23+1)7°.  _ (2n-2q-2i+1)7“ 0
E(Eij) ( 5 pij > rij (2.23)
2 i 02 02
VI(E,.) =1+ ? DPiy + 202 - p2 s2 - 29272 (2.24)
ij k=3 ik k=1 k3 ij ij
0 i#4i' , 3#3"
§ .0 .0
= 20 - 20 =0
CoviE;y v £1ug0) k£1 sty - W2rLE, (2.25)
E' pikpi'k = (l/z)pijﬁln.,
k=3 -
L
Following Ruben's argument for ¥ , we expect
: 1/2 .4 \1/2
(2n-23-21+1) g - (2n-22+1) 5. .
2 : ij 2 ij (2.26)
i
~2 .2 ~2 2 1/2
e 33 B L s o gy )

o

to be approximate N(0O , 1) variable. However, on account of (2.25), rij
are not independently distributed. For large n , the numerator of (2.26)

can very well be taken as

/n (fij - By ) | (2.27)

If we consider the null case viz. P = 0 , we find that iij and ii'j

(i # i') are uncorrelated and so vVn R can be approximately regarded as a

random sample from a multivariate normal distribution, with zero means and



a certain covariance matrix. In the bivariate case, when p = 0 , we have
two normal approximations available to us for large n viz. Yn £ is N(O , 1)

and the other one is
mEs+ Y% s ArisnNo, D (2.28)
The corresponding multivariate generalizations will be

(1) Yo R is a matrix of independent N(0 , 1) variables - (2.29)

in large samples, and

(2) /E'D-lﬁ is a matrix of independent N(O0 , 1) variables. (2.30)

Here D = F_lC is a lower triangular matrix and so

pp' = F lccrpr Tt
=i+ mp T
but I =rFtar'"l and RR' = F lmFtTY
and therefore,
DD' = I + RR' , a matrix generalization of 1 + f2 of (2.28) . (2.31)

We shall investigate (b) first. If (b) is true, we shall expect

the p X p matrix

I = np tRR'D' L (2.32)
to have the distribution
wp(PIIIq)dP (2.33)



for large n. Now

1 1

FRR'F'C'
1

Lroe
n

1

c "BC'~

L by (2.16) (2.34)

When P = 0 , B has the Wp(Blzlllq) distribution and A has an independent
wb(Alzllln-q) distribution. We transform from A and B to C and T by (2.34)
and CC' = A + B , integrate out C and find that the distribution T is

(see Kshirsagar, 1961 a)

const. |p| (P72 _ L pjtaae=l)/Zqp | (2.35)
But as n > =« ,

!I - %_Fl(n-q—p—l)/Z — e-1/2 tr T
so that, in large samples, T has the Wishart distribution

wp(I'IIIq)dl‘ , (2.36)

as we expected in (2.33), if (b) is true. This, of course, is not a proof

of (b) but it supports our conjecture about the large sample behaviour of
/mo ik .

As regards (a), we observe that
=~ -1 -1 . )
RR' = F "BF' and A = FF (2.37)

Transforming from A and B to F and R , we find the distribution of
4 = nRR' to be

Const. [4] TP /2|1 4 %AI'(“'q*ml)/sz (2.38)
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This, as n » =« , tends to

Const.|A|(q—p_l)/zexp(-1/2 tr A)dA

or (2.39)

Wp(AIIIq)dA ,

as it should if (a) is true.
So, for testing the null hypothesis P = 0 or which is the same as

£12 = 0 , we have two criteria

tr A=ntra B and tr T =n tr (A + B) 'B (2.40)

Both of them have a x2 distribution with pg 4.f., for large n. Both these
criteria are well known in literature., tr A—lB is Hotelling(1951)-Lawley(1938)

criterion and tr (A + B)-lB is Pillai‘'s criterion (1955).

3. NON-NULL DISTRIBUTIONS OF ' AND A

In many practical situations y is a vector of dummy variables repre-
senting differences among g + 1 groups or populations and one is interested
in constructing discriminant functions for these groups. In this case, it
is known that the number of discriminant functions is equal to the number
of non-zero true canonical correlations between x and y . In particular, if
p1 is the only non-zero true canonical correlation and Py s P3 v ser , pP.

are all null, the group means are collinear and only me discriminant function

is adequate. This is the canonical variate corresponding to Py - Suppose
a'x = a.,x, + °°° + a x (3.1)

11 PP

is an assigned or hypothetical function and we want to test its goodness

- 10 -~



of fit for discriminating among q + 1 groups. The hypothesis of goodness

of fit of a'x comprises of two parts:

(I) Direction Aspect: Whether a'x agrees with the true

discriminant function viz. the canonical variate

corresponding to oy and

(II) Collinearity Aspect: Whether one discriminant function

can be adequate at all or in other words, whether Py is

the only non-zero canonical correlation.

Bartlett (1951) and Williams (1955) derived exact tests based on
factorization of Wilks' A criterion, IAI/IA + BI for this purpose. Our
aim here is to derive similar tests for (I) and (II) based on the other
two criteria -- Hotelling(1951)-Lawley(1938) and Pillai (1955). For this
purpose, we shall derive the non-null distributions of ' and of A , in
the linear case, i.e., the case where p1 #0 , P, = vee = pp = 0 . This
is called linear case because the means of the g + 1 groups are collinear
or lie in a space of 1 dimension. |

Let x* , y* be the vectors of the true (population) canonical variables

and let the relationship between x* and x be

x* =8 x (3.2

where 6§ is a p X p non-singular matrix. x* and y* have, therefore, Ip
and I as their variance-covariance matrices respectively and except for
p1  the correlation between xi and yi , all other correlations are. zero.

- 1] -



Define

A* = SA8' , B* = SBS' , C*C*' = p* 4+ Bt |

where C* is a lower triangular matrix. (3.3)
" Then, the distribution of
-1 1

* = * = Ok e 1
L [Zij] C B*C R (3.4)

when y* is fixed, is shown to be (Kshirsagar, 196la)

where
2 2
-22/2
¢(1; rP) = e * 1F1[P§ (3 %‘ "Il] ' o B39
and
2 2 4 2 2
A2 = o] rzl y32/(1 - o] (3.7)

As in section 2, for large n
1 - L*l(n-q-p-l)/z

can be replaced by

exp{- %-tr r*} (3.8)
where

T* = nL* : (3.9)

and so, I'* will have a non-central Wishart distribution of the linear case

(Anderson, 1946) for large n . Make a further transformation
't = ni,* = S*g*! A (3.10)

- 12 -



where S* = [S;j] is a lower triangular matrix. Then it can be readily
seen that, for large n , sii is a non-central Y2 (non-centrality para-

meter is A2) , Szi is a x2 withg+ 1 ~-24d.f£. (i=2, **+ , p), S;j
(i>3j;i,3j=2, ¢+ , p) is H(0 , 1) and all these variables are
independent. The over-all criterion for testing the independence of x

and y (which in this case means, 511 the g + 1 groups have identical means)
is, as seen in section 2, tr I' , which is the same as tr I'* on account

of (3.3) and

p

tr T* = (Sii) + (s;i 4+ eee 4 s*i) +(z¢g s;%) (3.11)
p i,j=2 J
i>j

=¥, * Y, t vy say

Then Y,y contains the entire non-centrality; Y, is a xz with p - 1 d4.£. and

Y,y is a x? with (p - 1) (q - 1) &.f.

Let
3 0 1
» 11
* =
s eI (3.12)
1 r-1
B* = K*K*' , K* is lower triangular (3.13)
(K* o ]
11 :
K* = o * (3.14)
L— 24
Fcil 0 ]
c* = | o= (3.15)
Wit 2 P
then s* = no* " Igx (3.16)



e wws a xiTTle algebra, we find that

¥ 8
2y, = W S (3.17)
1 A + B)$ )
n Sl B+ By,
B{(A + B BG ' .B
1. 8118 + B 7By, $1yBa 5.18)
2 §'. .B§ B + A)6 )
n Sy Sty B+ P&y,
B(A + B) B§_
—i—y3 = tr B(A + B) 1 (1) AT (1) (3.19)
—(1) —(1)
where 621) is the first row of the matrix § , defined by (3.2). If we
are testing the goodness of fit of a hypothetical function a'x , we are
testing the hypothesis:
H: °1 #0, p, = s = pp = 0 and a'x is the first true
canonical variate, i.e., xi = a'x (3.20)
But x* = x by (3.2) and so, if H is true, ¢ and § are identical

1 (l) —=(1)
and hence we can use Y, given by (3.18) and Y4 given by (3.19), with §11)

replaced by o for testing the "direction" aspect and the "collinearity"
aspect of H. The over-all test of H is given by 72 + y3 and Yz » Y5 are
the direction and collinearity parts of t; B(A + B)_l . The latter can be
justified by an argument similar to the one employed by the author elsewhere
(1961b), for testing the goodness of fit of a hypothetical principal com-
ponent,

In exactly a similar manner, we can show that, for the other criterion
tr BA-l . the partitioning is

-1 :
n tr BA = 51 + 52 + 53 ’ (3.21)

- 14 -



where

1, _ g'Ba ‘

= El = a'ha (3.22)
l¢ g'BA- Ba _ a'Bg

= 5 a'Ba oA (3.23)
1 -1  go'BA ’Bg

Y 53 = tr BA - W (3.24)

£, is a x, with (p~1) d.f. and £; is a x? with (p-1) (g-1) d4.f. in large

2
samples and these are respectively the "direction" and "collinearity" parts

and can be used to test these aspects of the null hypothesis H.

- 15 -
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